期刊文献+
共找到526篇文章
< 1 2 27 >
每页显示 20 50 100
An Improved Soft Subspace Clustering Algorithm for Brain MR Image Segmentation
1
作者 Lei Ling Lijun Huang +4 位作者 Jie Wang Li Zhang Yue Wu Yizhang Jiang Kaijian Xia 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第12期2353-2379,共27页
In recent years,the soft subspace clustering algorithm has shown good results for high-dimensional data,which can assign different weights to each cluster class and use weights to measure the contribution of each dime... In recent years,the soft subspace clustering algorithm has shown good results for high-dimensional data,which can assign different weights to each cluster class and use weights to measure the contribution of each dimension in various features.The enhanced soft subspace clustering algorithm combines interclass separation and intraclass tightness information,which has strong results for image segmentation,but the clustering algorithm is vulnerable to noisy data and dependence on the initialized clustering center.However,the clustering algorithmis susceptible to the influence of noisydata and reliance on initializedclustering centers andfalls into a local optimum;the clustering effect is poor for brain MR images with unclear boundaries and noise effects.To address these problems,a soft subspace clustering algorithm for brain MR images based on genetic algorithm optimization is proposed,which combines the generalized noise technique,relaxes the equational weight constraint in the objective function as the boundary constraint,and uses a genetic algorithm as a method to optimize the initialized clustering center.The genetic algorithm finds the best clustering center and reduces the algorithm’s dependence on the initial clustering center.The experiment verifies the robustness of the algorithm,as well as the noise immunity in various ways and shows good results on the common dataset and the brain MR images provided by the Changshu First People’s Hospital with specific high accuracy for clinical medicine. 展开更多
关键词 Soft subspace clustering image segmentation genetic algorithm generalized noise brain MR images
下载PDF
Application of U-Net and Optimized Clustering in Medical Image Segmentation:A Review 被引量:2
2
作者 Jiaqi Shao Shuwen Chen +3 位作者 Jin Zhou Huisheng Zhu Ziyi Wang Mackenzie Brown 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期2173-2219,共47页
As a mainstream research direction in the field of image segmentation,medical image segmentation plays a key role in the quantification of lesions,three-dimensional reconstruction,region of interest extraction and so ... As a mainstream research direction in the field of image segmentation,medical image segmentation plays a key role in the quantification of lesions,three-dimensional reconstruction,region of interest extraction and so on.Compared with natural images,medical images have a variety of modes.Besides,the emphasis of information which is conveyed by images of different modes is quite different.Because it is time-consuming and inefficient to manually segment medical images only by professional and experienced doctors.Therefore,large quantities of automated medical image segmentation methods have been developed.However,until now,researchers have not developed a universal method for all types of medical image segmentation.This paper reviews the literature on segmentation techniques that have produced major breakthroughs in recent years.Among the large quantities of medical image segmentation methods,this paper mainly discusses two categories of medical image segmentation methods.One is the improved strategies based on traditional clustering method.The other is the research progress of the improved image segmentation network structure model based on U-Net.The power of technology proves that the performance of the deep learning-based method is significantly better than that of the traditional method.This paper discussed both advantages and disadvantages of different algorithms and detailed how these methods can be used for the segmentation of lesions or other organs and tissues,as well as possible technical trends for future work. 展开更多
关键词 Medical image segmentation clustering algorithm U-Net
下载PDF
Improved Spectral Clustering Clothing Image Segmentation Algorithm Based on Sparrow Search Algorithm 被引量:1
3
作者 HUANG Wenan QIAN Suqin 《Journal of Donghua University(English Edition)》 CAS 2022年第4期340-344,共5页
In the process of clothing image researching,how to segment the clothing quickly and accurately and retain the clothing style details as much as possible is the basis of subsequent image analysis.Spectral clustering c... In the process of clothing image researching,how to segment the clothing quickly and accurately and retain the clothing style details as much as possible is the basis of subsequent image analysis.Spectral clustering clothing image segmentation algorithm is a common method in the process of clothing image extraction.However,the traditional model requires high computing power and is easily affected by the initial center of clustering.It often falls into local optimization.Aiming at the above two points,an improved spectral clustering clothing image segmentation algorithm is proposed in this paper.The Nystrom approximation strategy is introduced into the spectral mapping process to reduce the computational complexity.In the clustering stage,this algorithm uses the global optimization advantage of the particle swarm optimization algorithm and selects the sparrow search algorithm to search the optimal initial clustering point,to effectively avoid the occurrence of local optimization.In the end,the effectiveness of this algorithm is verified on clothing images in each environment. 展开更多
关键词 clothing segmentation spectral clustering particle swarm optimization algorithm intelligent fashion design
下载PDF
An Improved Lung Cancer Segmentation Based on Nature-Inspired Optimization Approaches
4
作者 Shazia Shamas Surya Narayan Panda +4 位作者 Ishu Sharma Kalpna Guleria Aman Singh Ahmad Ali AlZubi Mallak Ahmad AlZubi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1051-1075,共25页
The distinction and precise identification of tumor nodules are crucial for timely lung cancer diagnosis andplanning intervention. This research work addresses the major issues pertaining to the field of medical image... The distinction and precise identification of tumor nodules are crucial for timely lung cancer diagnosis andplanning intervention. This research work addresses the major issues pertaining to the field of medical imageprocessing while focusing on lung cancer Computed Tomography (CT) images. In this context, the paper proposesan improved lung cancer segmentation technique based on the strengths of nature-inspired approaches. Thebetter resolution of CT is exploited to distinguish healthy subjects from those who have lung cancer. In thisprocess, the visual challenges of the K-means are addressed with the integration of four nature-inspired swarmintelligent techniques. The techniques experimented in this paper are K-means with Artificial Bee Colony (ABC),K-means with Cuckoo Search Algorithm (CSA), K-means with Particle Swarm Optimization (PSO), and Kmeanswith Firefly Algorithm (FFA). The testing and evaluation are performed on Early Lung Cancer ActionProgram (ELCAP) database. The simulation analysis is performed using lung cancer images set against metrics:precision, sensitivity, specificity, f-measure, accuracy,Matthews Correlation Coefficient (MCC), Jaccard, and Dice.The detailed evaluation shows that the K-means with Cuckoo Search Algorithm (CSA) significantly improved thequality of lung cancer segmentation in comparison to the other optimization approaches utilized for lung cancerimages. The results exhibit that the proposed approach (K-means with CSA) achieves precision, sensitivity, and Fmeasureof 0.942, 0.964, and 0.953, respectively, and an average accuracy of 93%. The experimental results prove thatK-meanswithABC,K-meanswith PSO,K-meanswith FFA, andK-meanswithCSAhave achieved an improvementof 10.8%, 13.38%, 13.93%, and 15.7%, respectively, for accuracy measure in comparison to K-means segmentationfor lung cancer images. Further, it is highlighted that the proposed K-means with CSA have achieved a significantimprovement in accuracy, hence can be utilized by researchers for improved segmentation processes of medicalimage datasets for identifying the targeted region of interest. 展开更多
关键词 LESION lung cancer segmentation medical imaging META-HEURISTIC Artificial Bee Colony(ABC) Cuckoo Search algorithm(csa) Particle Swarm Optimization(PSO) Firefly algorithm(FFA) segmentation
下载PDF
PHISHING WEB IMAGE SEGMENTATION BASED ON IMPROVING SPECTRAL CLUSTERING 被引量:1
5
作者 Li Yuancheng Zhao Liujun Jiao Runhai 《Journal of Electronics(China)》 2011年第1期101-107,共7页
This paper proposes a novel phishing web image segmentation algorithm which based on improving spectral clustering.Firstly,we construct a set of points which are composed of spatial location pixels and gray levels fro... This paper proposes a novel phishing web image segmentation algorithm which based on improving spectral clustering.Firstly,we construct a set of points which are composed of spatial location pixels and gray levels from a given image.Secondly,the data is clustered in spectral space of the similar matrix of the set points,in order to avoid the drawbacks of K-means algorithm in the conventional spectral clustering method that is sensitive to initial clustering centroids and convergence to local optimal solution,we introduce the clone operator,Cauthy mutation to enlarge the scale of clustering centers,quantum-inspired evolutionary algorithm to find the global optimal clustering centroids.Compared with phishing web image segmentation based on K-means,experimental results show that the segmentation performance of our method gains much improvement.Moreover,our method can convergence to global optimal solution and is better in accuracy of phishing web segmentation. 展开更多
关键词 Spectral clustering algorithm CLONAL MUTATION Quantum-inspired Evolutionary algorithm(QEA) Phishing web image segmentation
下载PDF
Clustering-Inverse: A Generalized Model for Pattern-Based Time Series Segmentation
6
作者 Zhaohong Deng Fu-Lai Chung Shitong Wang 《Journal of Intelligent Learning Systems and Applications》 2011年第1期26-36,共11页
Patterned-based time series segmentation (PTSS) is an important task for many time series data mining applications. In this paper, according to the characteristics of PTSS, a generalized model is proposed for PTSS. Fi... Patterned-based time series segmentation (PTSS) is an important task for many time series data mining applications. In this paper, according to the characteristics of PTSS, a generalized model is proposed for PTSS. First, a new inter-pretation for PTSS is given by comparing this problem with the prototype-based clustering (PC). Then, a novel model, called clustering-inverse model (CI-model), is presented. Finally, two algorithms are presented to implement this model. Our experimental results on artificial and real-world time series demonstrate that the proposed algorithms are quite effective. 展开更多
关键词 Pattern-Based TIME Series segmentation clustering-Inverse Dynamic TIME WARPING Perceptually Important POINTS Evolution Computation Particle SWARM Optimization Genetic algorithm
下载PDF
Agent Based Segmentation of the MRI Brain Using a Robust C-Means Algorithm
7
作者 Hanane Barrah Abdeljabbar Cherkaoui Driss Sarsri 《Journal of Computer and Communications》 2016年第10期13-21,共9页
In the last decade, the MRI (Magnetic Resonance Imaging) image segmentation has become one of the most active research fields in the medical imaging domain. Because of the fuzzy nature of the MRI images, many research... In the last decade, the MRI (Magnetic Resonance Imaging) image segmentation has become one of the most active research fields in the medical imaging domain. Because of the fuzzy nature of the MRI images, many researchers have adopted the fuzzy clustering approach to segment them. In this work, a fast and robust multi-agent system (MAS) for MRI segmentation of the brain is proposed. This system gets its robustness from a robust c-means algorithm (RFCM) and obtains its fastness from the beneficial properties of agents, such as autonomy, social ability and reactivity. To show the efficiency of the proposed method, we test it on a normal brain brought from the BrainWeb Simulated Brain Database. The experimental results are valuable in both robustness to noise and running times standpoints. 展开更多
关键词 Agents and MAS MR Images Fuzzy clustering C-Means algorithm Image segmentation
下载PDF
A method of automatic image segmentation for gas bubbles in water
8
作者 刘波 林焰 王云龙 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2012年第4期31-36,共6页
This paper presents an algorithm of automatic bubble image segmentation using the improved ant colony optimization methodology. The ant colony optimization method is a metaheuristic algorithm, and has been applied in ... This paper presents an algorithm of automatic bubble image segmentation using the improved ant colony optimization methodology. The ant colony optimization method is a metaheuristic algorithm, and has been applied in many fields. To reveal the versatility and appropriateness of automatic bubble image segmentation, the fuzzy clustering analysis method is employed in ant colony optimization algorithm. Compared with the well-known image feature extraction operators such as SUSAN and Canny, the proposed method can comparatively suitable to extract the gas bubbles image edge features. The experimental results show that the proposed method is effective and reliable, and can achieve satisfactory image edge extraction effect. 展开更多
关键词 gas bubbles image segmentation ant colony algorithm fuzzy clustering analysis watershed algorithm
下载PDF
Global Optimization for Combination Test Suite by Cluster Searching Algorithm
9
作者 Hao Chen Xiaoying Pan Jiaze Sun 《自动化学报》 EI CSCD 北大核心 2017年第9期1625-1635,共11页
下载PDF
基于累积和事件段识别与改进谱聚类的锂离子电池储能系统内短路故障检测方法 被引量:1
10
作者 肖先勇 陈智凡 +2 位作者 汪颖 何涛 张逢蓉 《电网技术》 EI CSCD 北大核心 2024年第2期658-667,共10页
锂离子电池系统的内短路故障可能导致严重安全事故,其检测受到在线检测实时性以及故障特征获得性制约,是当下锂离子电池储能系统安全运行亟待解决的问题。该文提出一种基于累积和(cumulative sum,CUSUM)事件段检测与改进谱聚类的锂离子... 锂离子电池系统的内短路故障可能导致严重安全事故,其检测受到在线检测实时性以及故障特征获得性制约,是当下锂离子电池储能系统安全运行亟待解决的问题。该文提出一种基于累积和(cumulative sum,CUSUM)事件段检测与改进谱聚类的锂离子电池储能系统内短路故障检测方法。首先,考虑内短路故障时的电压/温度变化特性,基于累积和事件突变点识别方法,识别疑似内短路故障事件段。其次,构建三维故障特征,刻画检测对象内短路故障特征属性。然后,构建基于Wasserstein测度的内短路故障特征距离矩阵,检测三维空间各点稀疏特性,客观划定故障聚类,实现内短路故障检测。搭建锂离子电池内短路实验平台、建立锂离子电池电–热耦合仿真模型,算例结果表明该文方法能够准确识别疑似内短路故障事件段,在不同串并联形式及故障类型下实现故障检测,证明了该文方法的正确性与可行性。 展开更多
关键词 内短路故障检测 事件段检测 故障特征 Wasserstein距离 改进谱聚类算法
下载PDF
NHNet——新型层次化遥感图像语义分割网络
11
作者 王威 熊艺舟 王新 《吉林大学学报(地球科学版)》 CAS CSCD 北大核心 2024年第5期1764-1772,共9页
深度学习分割方法是遥感图像分割领域的热点之一,主流的深度学习方法有卷积神经网络、transformer神经网络及两者的结合。特征提取是图像分割的重要环节,除了用卷积等方式提取特征,最近的研究聚焦于一些新的特征提取范式,如图卷积、小... 深度学习分割方法是遥感图像分割领域的热点之一,主流的深度学习方法有卷积神经网络、transformer神经网络及两者的结合。特征提取是图像分割的重要环节,除了用卷积等方式提取特征,最近的研究聚焦于一些新的特征提取范式,如图卷积、小波变换等。本文利用聚类算法的区域构建属性,将改进的聚类算法用于骨干特征提取模块,同时使用卷积和视觉transformer作为辅助模块,以获取更丰富的特征表述;在模块基础上,提出了一种新型层次化遥感图像语义分割网络(NHNet);评估了NHNet语义分割的性能,并在LoveDA遥感数据集上与其他方法进行比较。结果表明,基于多特征提取的NHNet获得了竞争性的性能表现,平均交并比为49.64%,F_(1)分数为65.7%。同时,消融实验证明辅助模块提高了聚类算法分割的精确性,给NHNet分别提升了1.03%和2.41%的平均交并比。 展开更多
关键词 遥感图像 语义分割 聚类算法 卷积神经网络 自注意力
下载PDF
高精度视觉感应技术在水肥一体机中的应用
12
作者 王立环 盖立丰 《农机化研究》 北大核心 2024年第9期232-235,共4页
以农田水肥智能化管理为研究对象,构建了一种高精度视觉感应式水肥一体机。采用高精度视觉感应技术获取作物生长状态参数图像,基于超像素图像分割技术,对复杂的作物生长状态图像特征向量进行提取,采用模糊聚类算法对图像进行分割处理,... 以农田水肥智能化管理为研究对象,构建了一种高精度视觉感应式水肥一体机。采用高精度视觉感应技术获取作物生长状态参数图像,基于超像素图像分割技术,对复杂的作物生长状态图像特征向量进行提取,采用模糊聚类算法对图像进行分割处理,根据目标图像的像素值统计结果进行生长状态预测,并结合环境参数信息,构建灌溉过程土壤电导率EC和pH预测模型。测试结果表明:水肥一体机控制系统能够有效预测作物对水肥需求,提高了灌溉过程混肥精度,可节约灌溉用水量、提升生产效率、降低人工成本。 展开更多
关键词 水肥一体机 视觉感应 图像分割 聚类算法 智能控制
下载PDF
基于RFM的聚类算法在零售市场客户细分研究
13
作者 吴花平 冯薇薇 李林 《重庆理工大学学报(社会科学)》 2024年第10期138-149,共12页
客户关系管理作为企业管理的重要组成部分,其客户细分功能直接影响着企业营销战略。为了更好地对零售市场进行客户细分,通过应用某英国零售商数据集,基于RFM模型和4种聚类算法,验证基于RFM模型的K-means、DBSCAN、AGNES、GMM等4种聚类... 客户关系管理作为企业管理的重要组成部分,其客户细分功能直接影响着企业营销战略。为了更好地对零售市场进行客户细分,通过应用某英国零售商数据集,基于RFM模型和4种聚类算法,验证基于RFM模型的K-means、DBSCAN、AGNES、GMM等4种聚类算法在UCI Online Retail零售商数据集上的客户分类效果;并利用轮廓系数、卡林斯基-哈拉巴斯指数(CHI)和戴维森堡丁指数(DBI)评价比较上述4种聚类算法的分类结果。实证结果表明:在所选零售商数据集上,K-means和AGNES算法的聚类效果较好,DBSCAN和GMM算法的聚类效果不理想,旨在为机器学习聚类算法在基于RFM模型的客户分类提供参考和借鉴。建议企业重视产出数据,完善企业数据相关制度;结合客户数据特征和企业自身销售特点,有针对性地使用聚类算法进行客户细分,辅助总结客户画像,进而制定有针对性的营销策略。 展开更多
关键词 客户细分 机器学习 RFM 聚类算法 零售市场
下载PDF
基于预训练模型的单帧航拍图像无监督语义分割 被引量:1
14
作者 任月冬 游新冬 +1 位作者 滕尚志 吕学强 《北京信息科技大学学报(自然科学版)》 2024年第2期21-28,共8页
针对航拍图像语义分割成本高、通用性差和精度低等问题,提出了一种两阶段无监督语义分割网络(two-stage unsupervised semantic segmentation net, TUSSNet),针对单帧航拍图像训练进而生成最终的语义分割结果。算法分为2个阶段。首先,... 针对航拍图像语义分割成本高、通用性差和精度低等问题,提出了一种两阶段无监督语义分割网络(two-stage unsupervised semantic segmentation net, TUSSNet),针对单帧航拍图像训练进而生成最终的语义分割结果。算法分为2个阶段。首先,使用对比语言-图像预训练(contrastive language-image pretraining, CLIP)模型生成航拍图像的粗粒度语义标签,然后进行网络的预热训练。其次,在第一阶段的基础上,采用分割一切模型(segment anything model, SAM)对航拍图像进行细粒度类别预测,生成精细化类别掩码伪标签;然后迭代优化网络,得到最终语义分割结果。实验结果显示,相较于现有无监督语义分割方法,算法显著提高了航拍图像的分割精度,同时提供了准确的语义信息。 展开更多
关键词 预训练模型 航拍图像 语义分割 无监督算法 聚类效果估计 深度学习
下载PDF
基于激光点云的橡胶树参数反演与数字孪生构建
15
作者 胡云帆 张怀清 +1 位作者 安锋 云挺 《西北林学院学报》 CSCD 北大核心 2024年第2期1-12,共12页
基于激光雷达(Light Detection And Ranging,LiDAR)数据重建树体三维模型并精准获取林木空间枝干结构参数对林木性状评价、森林动态经营管理与可视化研究具有重要意义。为此提出一种基于骨架细化提取的树木模型重建方法。首先,采用Focus... 基于激光雷达(Light Detection And Ranging,LiDAR)数据重建树体三维模型并精准获取林木空间枝干结构参数对林木性状评价、森林动态经营管理与可视化研究具有重要意义。为此提出一种基于骨架细化提取的树木模型重建方法。首先,采用FocusS350/350 PLUS三维激光扫描仪获取3块不同树龄橡胶树的样地数据。然后,作为细化建模的重点,将枝干点云从原始树点中分离出来,再将其过度分割为若干点云簇,通过相邻点云簇判断是否有分枝以及动态确定骨架点间距,并将其运用在空间殖民算法以此来生成树的三维骨架点和骨架点连通性链表,根据连通链表结构自动识别树木中的主枝干和各个一级分枝,再通过广义圆柱体生成树干完成树木三维重建。最后,利用数字孪生技术对这3块不同树龄样地树木进行三维实景建模,使其穿越时空在同一空间中重现,以便更为直观地观察树木在生长过程中的形态变化。该算法得到的橡胶树胸径与实测值比对为,决定系数(R^(2))>0.91,均方根误差(root mean square Error,RMSE)<1.00 cm;主枝干与一级枝干的分枝角为,R^(2)>0.91,RMSE<2.93;一级枝干直径为,R^(2)>0.90,RMSE<1.41 cm;将3个树龄放在一起计算其生长参数,并与实测值进行对比,发现该算法同样适用于异龄林样地的各个生长参数计算。同时发现橡胶树的一级枝条的直径越大,其相对应的叶团簇体积就越大。运用人工智能的理论模型来处理林木的激光点云数据,旨在为森林的可视化以及树木骨架结构的智能化分析与处理等研究领域提供有价值的参考。 展开更多
关键词 地基激光点云 点云簇过分割 空间殖民算法 树木骨架重建 林木参数提取 数字孪生
下载PDF
用户特征聚类和ICSA-SVR台区负荷预测 被引量:3
16
作者 滕永兴 杨霖 +2 位作者 钟睿君 闵诚 李祺 《中国测试》 CAS 北大核心 2022年第7期107-113,共7页
为提高配电网负荷预测精度,提出一种将模糊C均值(FCM)聚类与改进乌鸦搜索算法(ICSA)优化支持向量回归机(SVR)相结合的低压台区负荷预测模型。利用FCM算法对台区用户用电特征进行提取和聚类,消除用电行为特性差异对预测精度的影响,并构建... 为提高配电网负荷预测精度,提出一种将模糊C均值(FCM)聚类与改进乌鸦搜索算法(ICSA)优化支持向量回归机(SVR)相结合的低压台区负荷预测模型。利用FCM算法对台区用户用电特征进行提取和聚类,消除用电行为特性差异对预测精度的影响,并构建ICSA-SVR模型,对各类用户的用电负荷进行回归预测,进而叠加得到台区负荷预测结果。结果显示,台区内不同类型用户之间的用电特性差异较大,可分冬季单峰型、夏季单峰型和冬夏双峰型三类,各台区负荷呈现不同的季节性波动;该方法能够明显提升台区负荷预测精度,预测结果可对电力生产运营提供指导。 展开更多
关键词 低压台区 负荷预测 特征聚类 乌鸦搜索算法 支持向量回归
下载PDF
基于分段动态时间弯曲距离的高损线路窃电检测方法
17
作者 魏梅芳 阳靖 +1 位作者 黄頔 苏盛 《南方电网技术》 CSCD 北大核心 2024年第8期106-114,共9页
利用高损线路中窃电用户用电量与线损电量之间的关联关系识别窃电用户,是降低窃电检测误报率的重要途径,但相关方法对用户负荷时序平稳性等方面有严格要求,限制了其工程应用。提出了基于分段动态时间弯曲距离的高损线路窃电用户识别方... 利用高损线路中窃电用户用电量与线损电量之间的关联关系识别窃电用户,是降低窃电检测误报率的重要途径,但相关方法对用户负荷时序平稳性等方面有严格要求,限制了其工程应用。提出了基于分段动态时间弯曲距离的高损线路窃电用户识别方法。首先,运用启发式分割算法对各用户用电量序列和线损电量序列进行数据变换,实现特征提取和数据降维;然后,利用动态时间弯曲距离找出与线损电量形态最相似的用户用电量,分析它们之间的联动性;最后,提出基于分段动态时间弯曲的密度聚类方法,实现用户用电量聚类,得到具有相同波动方向的用电量簇集,并将与线损电量形态上最相似且波动方向相同的用电电量所对应的用户定为窃电嫌疑用户。基于高损线路的实际数据进行算例仿真,结果表明所提方法相较于对比方法具有更好的精确度及更低的误报率。 展开更多
关键词 高损线路 启发式分割算法 动态时间弯曲距离 密度聚类
下载PDF
基于K-means算法的跨国零售商客户细分研究 被引量:1
18
作者 崔雯 李剑锋 《中国商论》 2024年第9期37-40,共4页
随着经济全球化及大数据技术的蓬勃发展,跨国零售商之间的竞争日益激烈,根据客户特征进行客户细分,协助客户进行个性化的服务体验,有利于跨国零售商实现精准营销和高效的客户关系管理。为了提高客户细分的精度,本文提出一种基于RFM模型... 随着经济全球化及大数据技术的蓬勃发展,跨国零售商之间的竞争日益激烈,根据客户特征进行客户细分,协助客户进行个性化的服务体验,有利于跨国零售商实现精准营销和高效的客户关系管理。为了提高客户细分的精度,本文提出一种基于RFM模型的K-means聚类算法,使用簇内误方差(SSE)和轮廓系数(Silhouette Coefficient)计算聚类个数,优化K值选取。本文选取一家跨国零售商的数据进行实证检验,对细分后的结果进行特征分析,将客户划分为核心型客户、维护型客户和风险型客户三种类别,并为不同客户群体提供差异化营销策略,仅供参考。 展开更多
关键词 K-MEANS RFM模型 跨国零售商 客户细分 聚类算法
下载PDF
代理多目标粒子群驱动的粗糙聚类图像分割算法
19
作者 赵凤 孙磊 刘汉强 《西安邮电大学学报》 2024年第2期74-83,共10页
为了提高粗糙聚类算法应用于图像分割时的分割效果,提出一种代理多目标粒子群驱动的粗糙聚类图像分割算法。首先,通过自适应确定粗糙聚类上、下近似的阈值,减少人为干预;其次,利用粗糙聚类中边界样本占比构建动态惩罚因子,进而结合聚类... 为了提高粗糙聚类算法应用于图像分割时的分割效果,提出一种代理多目标粒子群驱动的粗糙聚类图像分割算法。首先,通过自适应确定粗糙聚类上、下近似的阈值,减少人为干预;其次,利用粗糙聚类中边界样本占比构建动态惩罚因子,进而结合聚类的紧致性和可分性度量构造粗糙聚类目标函数,并联合聚类的连通性函数从不同角度共同评价聚类质量;最后,设计代理辅助的精英多目标粒子群优化策略,筛选精英粒子更新种群,得到最终的聚类中心,从而避免粗糙聚类算法对初始中心敏感和易陷入局部最优的问题并提升优化效率。实验结果表明:所设计的优化策略在标准测试问题上能够得到更好的优化结果;对比其他图像分割算法,该算法分割效果最佳。 展开更多
关键词 图像分割 粗糙聚类 多目标粒子群算法 代理辅助优化 精英机制
下载PDF
基于大数据技术的市场细分策略分析
20
作者 彭汉生 尹莹 袁红红 《集成电路应用》 2024年第8期392-393,共2页
阐述大数据分析在市场细分中的应用,介绍应用范围和优势、市场细分的步骤。提出基于大数据分析的市场细分模型构建,对数据预处理、变量选择和聚类算法进行分析。
关键词 大数据分析 细分模型 数据预处理 变量选择 聚类算法
下载PDF
上一页 1 2 27 下一页 到第
使用帮助 返回顶部