期刊文献+
共找到3,107篇文章
< 1 2 156 >
每页显示 20 50 100
Density Clustering Algorithm Based on KD-Tree and Voting Rules
1
作者 Hui Du Zhiyuan Hu +1 位作者 Depeng Lu Jingrui Liu 《Computers, Materials & Continua》 SCIE EI 2024年第5期3239-3259,共21页
Traditional clustering algorithms often struggle to produce satisfactory results when dealing with datasets withuneven density. Additionally, they incur substantial computational costs when applied to high-dimensional... Traditional clustering algorithms often struggle to produce satisfactory results when dealing with datasets withuneven density. Additionally, they incur substantial computational costs when applied to high-dimensional datadue to calculating similarity matrices. To alleviate these issues, we employ the KD-Tree to partition the dataset andcompute the K-nearest neighbors (KNN) density for each point, thereby avoiding the computation of similaritymatrices. Moreover, we apply the rules of voting elections, treating each data point as a voter and casting a votefor the point with the highest density among its KNN. By utilizing the vote counts of each point, we develop thestrategy for classifying noise points and potential cluster centers, allowing the algorithm to identify clusters withuneven density and complex shapes. Additionally, we define the concept of “adhesive points” between two clustersto merge adjacent clusters that have similar densities. This process helps us identify the optimal number of clustersautomatically. Experimental results indicate that our algorithm not only improves the efficiency of clustering butalso increases its accuracy. 展开更多
关键词 density peaks clustering KD-TREE K-nearest neighbors voting rules
下载PDF
Adaptive Density-Based Spatial Clustering of Applications with Noise(ADBSCAN)for Clusters of Different Densities 被引量:3
2
作者 Ahmed Fahim 《Computers, Materials & Continua》 SCIE EI 2023年第5期3695-3712,共18页
Finding clusters based on density represents a significant class of clustering algorithms.These methods can discover clusters of various shapes and sizes.The most studied algorithm in this class is theDensity-Based Sp... Finding clusters based on density represents a significant class of clustering algorithms.These methods can discover clusters of various shapes and sizes.The most studied algorithm in this class is theDensity-Based Spatial Clustering of Applications with Noise(DBSCAN).It identifies clusters by grouping the densely connected objects into one group and discarding the noise objects.It requires two input parameters:epsilon(fixed neighborhood radius)and MinPts(the lowest number of objects in epsilon).However,it can’t handle clusters of various densities since it uses a global value for epsilon.This article proposes an adaptation of the DBSCAN method so it can discover clusters of varied densities besides reducing the required number of input parameters to only one.Only user input in the proposed method is the MinPts.Epsilon on the other hand,is computed automatically based on statistical information of the dataset.The proposed method finds the core distance for each object in the dataset,takes the average of these distances as the first value of epsilon,and finds the clusters satisfying this density level.The remaining unclustered objects will be clustered using a new value of epsilon that equals the average core distances of unclustered objects.This process continues until all objects have been clustered or the remaining unclustered objects are less than 0.006 of the dataset’s size.The proposed method requires MinPts only as an input parameter because epsilon is computed from data.Benchmark datasets were used to evaluate the effectiveness of the proposed method that produced promising results.Practical experiments demonstrate that the outstanding ability of the proposed method to detect clusters of different densities even if there is no separation between them.The accuracy of the method ranges from 92%to 100%for the experimented datasets. 展开更多
关键词 Adaptive DBSCAN(ADBSCAN) density-based clustering Data clustering Varied density clusters
下载PDF
Fast density peak-based clustering algorithm for multiple extended target tracking 被引量:4
3
作者 SHEN Xinglin SONG Zhiyong +1 位作者 FAN Hongqi FU Qiang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第3期435-447,共13页
The key challenge of the extended target probability hypothesis density (ET-PHD) filter is to reduce the computational complexity by using a subset to approximate the full set of partitions. In this paper, the influen... The key challenge of the extended target probability hypothesis density (ET-PHD) filter is to reduce the computational complexity by using a subset to approximate the full set of partitions. In this paper, the influence for the tracking results of different partitions is analyzed, and the form of the most informative partition is obtained. Then, a fast density peak-based clustering (FDPC) partitioning algorithm is applied to the measurement set partitioning. Since only one partition of the measurement set is used, the ET-PHD filter based on FDPC partitioning has lower computational complexity than the other ET-PHD filters. As FDPC partitioning is able to remove the spatially close clutter-generated measurements, the ET-PHD filter based on FDPC partitioning has good tracking performance in the scenario with more clutter-generated measurements. The simulation results show that the proposed algorithm can get the most informative partition and obviously reduce computational burden without losing tracking performance. As the number of clutter-generated measurements increased, the ET-PHD filter based on FDPC partitioning has better tracking performance than other ET-PHD filters. The FDPC algorithm will play an important role in the engineering realization of the multiple extended target tracking filter. 展开更多
关键词 FAST density peak-based clustering (FDPC) MULTIPLE extended target partition probability hypothesis density (PHD) filter track.
下载PDF
A novel fast classification filtering algorithm for LiDAR point clouds based on small grid density clustering 被引量:4
4
作者 Xingsheng Deng Guo Tang Qingyang Wang 《Geodesy and Geodynamics》 CSCD 2022年第1期38-49,共12页
Clustering filtering is usually a practical method for light detection and ranging(LiDAR)point clouds filtering according to their characteristic attributes.However,the amount of point cloud data is extremely large in... Clustering filtering is usually a practical method for light detection and ranging(LiDAR)point clouds filtering according to their characteristic attributes.However,the amount of point cloud data is extremely large in practice,making it impossible to cluster point clouds data directly,and the filtering error is also too large.Moreover,many existing filtering algorithms have poor classification results in discontinuous terrain.This article proposes a new fast classification filtering algorithm based on density clustering,which can solve the problem of point clouds classification in discontinuous terrain.Based on the spatial density of LiDAR point clouds,also the features of the ground object point clouds and the terrain point clouds,the point clouds are clustered firstly by their elevations,and then the plane point clouds are selected.Thus the number of samples and feature dimensions of data are reduced.Using the DBSCAN clustering filtering method,the original point clouds are finally divided into noise point clouds,ground object point clouds,and terrain point clouds.The experiment uses 15 sets of data samples provided by the International Society for Photogrammetry and Remote Sensing(ISPRS),and the results of the proposed algorithm are compared with the other eight classical filtering algorithms.Quantitative and qualitative analysis shows that the proposed algorithm has good applicability in urban areas and rural areas,and is significantly better than other classic filtering algorithms in discontinuous terrain,with a total error of about 10%.The results show that the proposed method is feasible and can be used in different terrains. 展开更多
关键词 Small grid density clustering DBSCAN Fast classification filtering algorithm
下载PDF
A new automatic oceanic mesoscale eddy detection method using satellite altimeter data based on density clustering 被引量:1
5
作者 Jitao Li Yongquan Liang +3 位作者 Jie Zhang Jungang Yang Pingjian Song Wei Cui 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2019年第5期134-141,共8页
The mesoscale eddy is a typical mesoscale oceanic phenomenon that transfers ocean energy. The detection and extraction of mesoscale eddies is an important aspect of physical oceanography, and automatic mesoscale eddy ... The mesoscale eddy is a typical mesoscale oceanic phenomenon that transfers ocean energy. The detection and extraction of mesoscale eddies is an important aspect of physical oceanography, and automatic mesoscale eddy detection algorithms are the most fundamental tools for detecting and analyzing mesoscale eddies. The main data used in mesoscale eddy detection are sea level anomaly(SLA) data merged by multi-satellite altimeters' data.These data objectively describe the state of the sea surface height. The mesoscale eddy can be represented by a local equivalent region surrounded by an SLA closed contour, and the detection process requires the extraction of a stable closed contour structure from SLA maps. In consideration of the characteristics of mesoscale eddy detection based on SLA data, this paper proposes a new automatic mesoscale eddy detection algorithm based on clustering. The mesoscale eddy structure can be extracted by separating and filtering SLA data sets to separate a mesoscale eddy region and non-eddy region and then establishing relationships among eddy regions and mapping them on SLA maps. This paper overcomes the problem of the sensitivity of parameter setting that affects the traditional detection algorithm and does not require a sensitivity test. The proposed algorithm is thus more adaptable. An eddy discrimination mechanism is added to the algorithm to ensure the stability of the detected eddy structure and to improve the detection accuracy. On this basis, the paper selects the Northwest Pacific Ocean and the South China Sea to carry out a mesoscale eddy detection experiment. Experimental results show that the proposed algorithm is more efficient than the traditional algorithm and the results of the algorithm remain stable. The proposed algorithm detects not only stable single-core eddies but also stable multi-core eddy structures. 展开更多
关键词 MESOSCALE EDDY density clustering shape DISCRIMINATION outermost CLOSED CONTOUR
下载PDF
Self-Expanded Clustering Algorithm Based on Density Units with Evaluation Feedback Section 被引量:1
6
作者 YU Yongqian ZHAO Xiangguo CHEN Hengyue WANG Bin YU Ge WANG Guoren 《Wuhan University Journal of Natural Sciences》 CAS 2006年第5期1069-1075,共7页
This paper presents an effective clustering mode and a novel clustering result evaluating mode. Clustering mode has two limited integral parameters. Evaluating mode evaluates clustering results and gives each a mark. ... This paper presents an effective clustering mode and a novel clustering result evaluating mode. Clustering mode has two limited integral parameters. Evaluating mode evaluates clustering results and gives each a mark. The higher mark the clustering result gains, the higher quality it has. By organizing two modes in different ways, we can build two clustering algorithms: SECDU(Self-Expanded Clustering Algorithm based on Density Units) and SECDUF(Self-Expanded Clustering Algorithm Based on Density Units with Evaluation Feedback Section). SECDU enumerates all value pairs of two parameters of clustering mode to process data set repeatedly and evaluates every clustering result by evaluating mode. Then SECDU output the clustering result that has the highest evaluating mark among all the ones. By applying "hill-climbing algorithm", SECDUF improves clustering efficiency greatly. Data sets that have different distribution features can be well adapted to both algorithms. SECDU and SECDUF can output high-quality clustering results. SECDUF tunes parameters of clustering mode automatically and no man's action involves through the whole process. In addition, SECDUF has a high clustering performance. 展开更多
关键词 clustering clustering result evaluating density unit hillclimbing algorithm
下载PDF
K-means Find Density Peaks in Molecular Conformation Clustering 被引量:1
7
作者 Guiyan Wang Ting Fu +5 位作者 Hong Ren Peijun Xu Qiuhan Guo Xiaohong Mou Yan Li Guohui Li 《Chinese Journal of Chemical Physics》 SCIE EI CAS CSCD 2022年第2期353-368,I0026-I0030,I0003,共22页
Performing cluster analysis on molecular conformation is an important way to find the representative conformation in the molecular dynamics trajectories.Usually,it is a critical step for interpreting complex conformat... Performing cluster analysis on molecular conformation is an important way to find the representative conformation in the molecular dynamics trajectories.Usually,it is a critical step for interpreting complex conformational changes or interaction mechanisms.As one of the density-based clustering algorithms,find density peaks(FDP)is an accurate and reasonable candidate for the molecular conformation clustering.However,facing the rapidly increasing simulation length due to the increase in computing power,the low computing efficiency of FDP limits its application potential.Here we propose a marginal extension to FDP named K-means find density peaks(KFDP)to solve the mass source consuming problem.In KFDP,the points are initially clustered by a high efficiency clustering algorithm,such as K-means.Cluster centers are defined as typical points with a weight which represents the cluster size.Then,the weighted typical points are clustered again by FDP,and then are refined as core,boundary,and redefined halo points.In this way,KFDP has comparable accuracy as FDP but its computational complexity is reduced from O(n^(2))to O(n).We apply and test our KFDP method to the trajectory data of multiple small proteins in terms of torsion angle,secondary structure or contact map.The comparing results with K-means and density-based spatial clustering of applications with noise show the validation of the proposed KFDP. 展开更多
关键词 K-means find density peaks Molecular clustering density-based spatial clustering of applications with noise
下载PDF
Clustering algorithm based on density function and nichePSO 被引量:4
8
作者 Chonghui Guo Yunhui Zang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第3期445-452,共8页
This paper introduces niching particle swarm optimiza- tion (nichePSO) into clustering analysis and puts forward a cluster- ing algorithm which uses nichePSO to optimize density functions. Firstly, this paper improv... This paper introduces niching particle swarm optimiza- tion (nichePSO) into clustering analysis and puts forward a cluster- ing algorithm which uses nichePSO to optimize density functions. Firstly, this paper improves main swarm training models and in- creases their ability of space searching. Secondly, the radius of sub-swarms is defined adaptively according to the actual clus- tering problem, which can be useful for the niches' forming and searching. At last, a novel method that distributes samples to the corresponding cluster is proposed. Numerical results illustrate that this algorithm based on the density function and nichePSO could cluster unbalanced density datasets into the correct clusters auto- matically and accurately. 展开更多
关键词 niching particle swarm optimization (nichePSO) density-based clustering automatic clustering.
下载PDF
Density peaks clustering based integrate framework for multi-document summarization 被引量:2
9
作者 BaoyanWang Jian Zhang +1 位作者 Yi Liu Yuexian Zou 《CAAI Transactions on Intelligence Technology》 2017年第1期26-30,共5页
We present a novel unsupervised integrated score framework to generate generic extractive multi- document summaries by ranking sentences based on dynamic programming (DP) strategy. Considering that cluster-based met... We present a novel unsupervised integrated score framework to generate generic extractive multi- document summaries by ranking sentences based on dynamic programming (DP) strategy. Considering that cluster-based methods proposed by other researchers tend to ignore informativeness of words when they generate summaries, our proposed framework takes relevance, diversity, informativeness and length constraint of sentences into consideration comprehensively. We apply Density Peaks Clustering (DPC) to get relevance scores and diversity scores of sentences simultaneously. Our framework produces the best performance on DUC2004, 0.396 of ROUGE-1 score, 0.094 of ROUGE-2 score and 0.143 of ROUGE-SU4 which outperforms a series of popular baselines, such as DUC Best, FGB [7], and BSTM [10]. 展开更多
关键词 Multi-document summarization Integrated score framework density peaks clustering Sentences rank
下载PDF
Outlier detection based on multi-dimensional clustering and local density
10
作者 SHOU Zhao-yu LI Meng-ya LI Si-min 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第6期1299-1306,共8页
Outlier detection is an important task in data mining. In fact, it is difficult to find the clustering centers in some sophisticated multidimensional datasets and to measure the deviation degree of each potential outl... Outlier detection is an important task in data mining. In fact, it is difficult to find the clustering centers in some sophisticated multidimensional datasets and to measure the deviation degree of each potential outlier. In this work, an effective outlier detection method based on multi-dimensional clustering and local density(ODBMCLD) is proposed. ODBMCLD firstly identifies the center objects by the local density peak of data objects, and clusters the whole dataset based on the center objects. Then, outlier objects belonging to different clusters will be marked as candidates of abnormal data. Finally, the top N points among these abnormal candidates are chosen as final anomaly objects with high outlier factors. The feasibility and effectiveness of the method are verified by experiments. 展开更多
关键词 data MINING OUTLIER DETECTION OUTLIER DETECTION method based on MULTI-DIMENSIONAL clustering and local density (ODBMCLD) algorithm deviation DEGREE
下载PDF
Density Functional Theory Study of Water Diffusion and Clustering on Pd(111)
11
作者 CHEN Jin-Wen TU Xue-Yan +1 位作者 TIAN Kai DAI Shu-Shan 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 北大核心 2006年第8期909-914,共6页
The internal structures as well as adsorption and hopping energies of monomers, dimers, trimers, tetramers, pentamers and hexamers of water on Pd(111) have been studied by density functional theory (DFT) plane-wav... The internal structures as well as adsorption and hopping energies of monomers, dimers, trimers, tetramers, pentamers and hexamers of water on Pd(111) have been studied by density functional theory (DFT) plane-wave pseudopotential method which performs the firstprinciples quantum-mechanical calculations to explore the properties of crystals and surfaces in materials. Based on the calculations, we suppose that their absorption is via one water molecule for monomers, dimmers and trimers, but three water molecules for pentamers and hexamers. Moreover, there is one water molecule bonding with Pd atom by O atom in pentamers and hexamers, which explains why pentamers and hexamers are stable. The binding energies of polymers may be used to explain why the trimer comes close to two nearby monomers to form a stable pentamer instead of tetramer. And the difference of mobility of small water clusters is due to their different hopping energies. 展开更多
关键词 density functional theory Pd(111) surface water diffusion and clustering binding energy hopping energy
下载PDF
Free clustering optimal particle probability hypothesis density(PHD) filter
12
作者 李云湘 肖怀铁 +2 位作者 宋志勇 范红旗 付强 《Journal of Central South University》 SCIE EI CAS 2014年第7期2673-2683,共11页
As to the fact that it is difficult to obtain analytical form of optimal sampling density and tracking performance of standard particle probability hypothesis density(P-PHD) filter would decline when clustering algori... As to the fact that it is difficult to obtain analytical form of optimal sampling density and tracking performance of standard particle probability hypothesis density(P-PHD) filter would decline when clustering algorithm is used to extract target states,a free clustering optimal P-PHD(FCO-P-PHD) filter is proposed.This method can lead to obtainment of analytical form of optimal sampling density of P-PHD filter and realization of optimal P-PHD filter without use of clustering algorithms in extraction target states.Besides,as sate extraction method in FCO-P-PHD filter is coupled with the process of obtaining analytical form for optimal sampling density,through decoupling process,a new single-sensor free clustering state extraction method is proposed.By combining this method with standard P-PHD filter,FC-P-PHD filter can be obtained,which significantly improves the tracking performance of P-PHD filter.In the end,the effectiveness of proposed algorithms and their advantages over other algorithms are validated through several simulation experiments. 展开更多
关键词 multiple target tracking probability hypothesis density filter optimal sampling density particle filter random finite set clustering algorithm state extraction
下载PDF
Encephalitis Detection from EEG Fuzzy Density-Based Clustering Model with Multiple Centroid
13
作者 Hanan Abdullah Mengash Alaaeldin M.Hafez Hanan A.Hosni Mahmoud 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期3129-3140,共12页
Encephalitis is a brain inflammation disease.Encephalitis can yield to seizures,motor disability,or some loss of vision or hearing.Sometimes,encepha-litis can be a life-threatening and proper diagnosis in an early stag... Encephalitis is a brain inflammation disease.Encephalitis can yield to seizures,motor disability,or some loss of vision or hearing.Sometimes,encepha-litis can be a life-threatening and proper diagnosis in an early stage is very crucial.Therefore,in this paper,we are proposing a deep learning model for computerized detection of Encephalitis from the electroencephalogram data(EEG).Also,we propose a Density-Based Clustering model to classify the distinctive waves of Encephalitis.Customary clustering models usually employ a computed single centroid virtual point to define the cluster configuration,but this single point does not contain adequate information.To precisely extract accurate inner structural data,a multiple centroids approach is employed and defined in this paper,which defines the cluster configuration by allocating weights to each state in the cluster.The multiple EEG view fuzzy learning approach incorporates data from every sin-gle view to enhance the model's clustering performance.Also a fuzzy Density-Based Clustering model with multiple centroids(FDBC)is presented.This model employs multiple real state centroids to define clusters using Partitioning Around Centroids algorithm.The Experimental results validate the medical importance of the proposed clustering model. 展开更多
关键词 density clustering clustering structural data fuzzy set
下载PDF
Scalable Varied Density Clustering Algorithm for Large Datasets
14
作者 Ahmed Fahim Abd-Elbadeeh Salem +2 位作者 Fawzy Torkey Mohamed Ramadan Gunter Saake 《Journal of Software Engineering and Applications》 2010年第6期593-602,共10页
Finding clusters in data is a challenging problem especially when the clusters are being of widely varied shapes, sizes, and densities. Herein a new scalable clustering technique which addresses all these issues is pr... Finding clusters in data is a challenging problem especially when the clusters are being of widely varied shapes, sizes, and densities. Herein a new scalable clustering technique which addresses all these issues is proposed. In data mining, the purpose of data clustering is to identify useful patterns in the underlying dataset. Within the last several years, many clustering algorithms have been proposed in this area of research. Among all these proposed methods, density clustering methods are the most important due to their high ability to detect arbitrary shaped clusters. Moreover these methods often show good noise-handling capabilities, where clusters are defined as regions of typical densities separated by low or no density regions. In this paper, we aim at enhancing the well-known algorithm DBSCAN, to make it scalable and able to discover clusters from uneven datasets in which clusters are regions of homogenous densities. We achieved the scalability of the proposed algorithm by using the k-means algorithm to get initial partition of the dataset, applying the enhanced DBSCAN on each partition, and then using a merging process to get the actual natural number of clusters in the underlying dataset. This means the proposed algorithm consists of three stages. Experimental results using synthetic datasets show that the proposed clustering algorithm is faster and more scalable than the enhanced DBSCAN counterpart. 展开更多
关键词 EDBSCAN DATA clustering Varied density clustering cluster ANALYSIS
下载PDF
Traffic-Distributed Clustering Scheme for Cluster-Based WSNs with Various Non-Uniform Traffic Fluctuations
15
作者 Ryuta Mizitani Kazuo Mori +1 位作者 Katsuhiro Naito Hideo Kobayashi 《International Journal of Communications, Network and System Sciences》 2013年第2期109-118,共10页
In wireless sensor networks (WSNs), it is essential to save energy consumption at sensor nodes (SNs). A clustering technique is one of the approaches to save energy consumption, where several neighboring SNs form a cl... In wireless sensor networks (WSNs), it is essential to save energy consumption at sensor nodes (SNs). A clustering technique is one of the approaches to save energy consumption, where several neighboring SNs form a cluster and transmit the sensed data to their cluster head (CH), and then the CH sends the aggregated data to a sink node. Under spatial non-uniform traffic environments, the clustering technique causes the non-uniformity in data gathering performance and energy consumption between clusters in WSNs. In this paper, we propose a clustering scheme for the WSNs employing IEEE802.15.4 beacon enabled mode under various non-uniform traffic environments. The proposed scheme distributes network traffic uniformly to the clusters through cluster area control by adjusting beacon transmission power, and thereby achieves uniform and improved data gathering performance. In the clusters with expanded area, however, the performance degradation arises from long distance communications. To solve this problem, the proposed scheme controls transmission power at SNs. In addition, to reduce energy consumption the proposed scheme sets the appropriate active period length in duty cycle operation to the current traffic condition. The performance evaluations by computer simulation show the effectiveness of the proposed scheme for the WSNs under various non-uniform traffic environments. 展开更多
关键词 Wireless Sensor Networks IEEE802.15.4 clustering non-uniform TRAFFIC
下载PDF
Improved Clustering Algorithm Based on Density-Isoline
16
作者 Bin Yan Guangming Deng 《Open Journal of Statistics》 2015年第4期303-310,共8页
An improved clustering algorithm was presented based on density-isoline clustering algorithm. The new algorithm can do a better job than density-isoline clustering when dealing with noise, not having to literately cal... An improved clustering algorithm was presented based on density-isoline clustering algorithm. The new algorithm can do a better job than density-isoline clustering when dealing with noise, not having to literately calculate the cluster centers for the samples batching into clusters instead of one by one. After repeated experiments, the results demonstrate that the improved density-isoline clustering algorithm is significantly more efficiency in clustering with noises and overcomes the drawbacks that traditional algorithm DILC deals with noise and that the efficiency of running time is improved greatly. 展开更多
关键词 density-Isolines density-Based clustering clustering ALGORITHM Noise
下载PDF
LeaDen-Stream: A Leader Density-Based Clustering Algorithm over Evolving Data Stream
17
作者 Amineh Amini Teh Ying Wah 《Journal of Computer and Communications》 2013年第5期26-31,共6页
Clustering evolving data streams is important to be performed in a limited time with a reasonable quality. The existing micro clustering based methods do not consider the distribution of data points inside the micro c... Clustering evolving data streams is important to be performed in a limited time with a reasonable quality. The existing micro clustering based methods do not consider the distribution of data points inside the micro cluster. We propose LeaDen-Stream (Leader Density-based clustering algorithm over evolving data Stream), a density-based clustering algorithm using leader clustering. The algorithm is based on a two-phase clustering. The online phase selects the proper mini-micro or micro-cluster leaders based on the distribution of data points in the micro clusters. Then, the leader centers are sent to the offline phase to form final clusters. In LeaDen-Stream, by carefully choosing between two kinds of micro leaders, we decrease time complexity of the clustering while maintaining the cluster quality. A pruning strategy is also used to filter out real data from noise by introducing dense and sparse mini-micro and micro-cluster leaders. Our performance study over a number of real and synthetic data sets demonstrates the effectiveness and efficiency of our method. 展开更多
关键词 EVOLVING Data STREAMS density-Based clustering Micro cluster Mini-Micro cluster
下载PDF
Density-based clustering method in the moving object database
18
作者 ZHOUXing XIANGShu +2 位作者 GEJun-wei LIUZhao-hong BAEHae-young 《重庆邮电学院学报(自然科学版)》 2004年第5期143-148,共6页
With the rapid advance of wireless communication, tracking the positions of the moving objects is becoming increasingly feasible and necessary. Because a large number of people use mobile phones, we must handle a larg... With the rapid advance of wireless communication, tracking the positions of the moving objects is becoming increasingly feasible and necessary. Because a large number of people use mobile phones, we must handle a large moving object database as well as the following problems. How can we provide the customers with high quality service, that means, how can we deal with so many enquiries within as less time as possible? Because of the large number of data, the gap between CPU speed and the size of main memory has increasing considerably. One way to reduce the time to handle enquiries is to reduce the I/O number between the buffer and the secondary storage.An effective clustering of the objects can minimize the I/O cost between them. In this paper, according to the characteristic of the moving object database, we analyze the objects in buffer, according to their mappings in the two dimension coordinate, and then develop a density based clustering method to effectively reorganize the clusters. This new mechanism leads to the less cost of the I/O operation and the more efficient response to enquiries. 展开更多
关键词 密度 聚类方法 可移动对象数据库 I/O操作
下载PDF
Density Functional Theory Study on Electronic and Magnetic Properties of Mn-doped (MgO)n (n=2-10) Clusters
19
作者 王鹏 杨明霞 +2 位作者 张胜利 黄世萍 田辉平 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2013年第1期35-42,I0003,共9页
We study the geometries, stabilities, electronic and magnetic properties of (MgO)n (n=2-10) clusters doped with a single Mn atom using the density functional theory with the gener- alized gradient approximation. T... We study the geometries, stabilities, electronic and magnetic properties of (MgO)n (n=2-10) clusters doped with a single Mn atom using the density functional theory with the gener- alized gradient approximation. The optimized geometries show that the impurity Mn atom prefers to replace the Mg atom which has low coordination number in all the lowest-energy MnMgn-1On (n=2-10) structures. The stability analysis clearly represents that the average binding energies of the doped clusters are larger than those of the corresponding pure (MgO)n clusters. Maximum peaks of the second order energy differences are observed for MnMg~_1On clusters at n=6, 9, implying that these clusters exhibit higher stability than their neighboring clusters. In addition, all the Mn-doped Mg clusters exhibit high total magnetic moments with the exception of MnMgO2 which has 3.00μB. Their magnetic behavior is attributed to the impurity Mn atom, the charge transfer modes, and the size of MnMgn- 1On clusters. 展开更多
关键词 density functional theory MnMgn-1On cluster Electronic property MAGNETICPROPERTY
下载PDF
Photoelectron Spectroscopy and Density Functional Calculations of TiGen^- (n=7-12) Clusters
20
作者 邓晓娇 孔祥玉 +2 位作者 徐西玲 许洪光 郑卫军 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2016年第1期123-128,I0002,共7页
The growth pattern and electronic properties of TiGen^- (n=7-12) clusters were investigated using anion photoelectron spectroscopy and density functional theory calculations. For both anionic and neutral TiGen clust... The growth pattern and electronic properties of TiGen^- (n=7-12) clusters were investigated using anion photoelectron spectroscopy and density functional theory calculations. For both anionic and neutral TiGen clusters, a half-encapsulated boat-shaped structure appears at n=8, and the boat-shaped structure is gradually covered by the additional Ge atoms to form Gen cage at n=9-11. TiGe12^- cluster has a distorted hexagonal prism cage structure. According to the natural population analysis, the electron transfers from the Gen framework to the Ti atom for TiGen^-/0 clusters at n=8-12, implying that the electron transfer pattern is related to the structural evolution. 展开更多
关键词 Photoelectron spectroscopy density functional theory Germanium clusters
下载PDF
上一页 1 2 156 下一页 到第
使用帮助 返回顶部