In the tag recommendation task on academic platforms,existing methods disregard users’customized preferences in favor of extracting tags based just on the content of the articles.Besides,it uses co-occurrence techniq...In the tag recommendation task on academic platforms,existing methods disregard users’customized preferences in favor of extracting tags based just on the content of the articles.Besides,it uses co-occurrence techniques and tries to combine nodes’textual content for modelling.They still do not,however,directly simulate many interactions in network learning.In order to address these issues,we present a novel system that more thoroughly integrates user preferences and citation networks into article labelling recommendations.Specifically,we first employ path similarity to quantify the degree of similarity between user labelling preferences and articles in the citation network.Then,the Commuting Matrix for massive node pair paths is used to improve computational performance.Finally,the two commonalities mentioned above are combined with the interaction paper labels based on the additivity of Poisson distribution.In addition,we also consider solving the model’s parameters by applying variational inference.Experimental results demonstrate that our suggested framework agrees and significantly outperforms the state-of-the-art baseline on two real datasets by efficiently merging the three relational data.Based on the Area Under Curve(AUC)and Mean Average Precision(MAP)analysis,the performance of the suggested task is evaluated,and it is demonstrated to have a greater solving efficiency than current techniques.展开更多
Journals and their citation relations are abstracted into journal citation networks, basing on CSTPC journal database from year 2003 to 2006. The network shows some typical characteristics from complex networks. This ...Journals and their citation relations are abstracted into journal citation networks, basing on CSTPC journal database from year 2003 to 2006. The network shows some typical characteristics from complex networks. This paper presents the idea of using motifs, subgraphs with higher occurrence in real network than in random ones, to discover two different citation patterns in journal communities. And a further investigation is addressed on both motif granularity and node centrality to figure out some reasons on the differences between two kinds of communities in journal citation network.展开更多
Purpose:We analyzed the structure of a community of authors working in the field of social network analysis(SNA)based on citation indicators:direct citation and bibliographic coupling metrics.We observed patterns at t...Purpose:We analyzed the structure of a community of authors working in the field of social network analysis(SNA)based on citation indicators:direct citation and bibliographic coupling metrics.We observed patterns at the micro,meso,and macro levels of analysis.Design/methodology/approach:We used bibliometric network analysis,including the“temporal quantities”approach proposed to study temporal networks.Using a two-mode network linking publications with authors and a one-mode network of citations between the works,we constructed and analyzed the networks of citation and bibliographic coupling among authors.We used an iterated saturation data collection approach.Findings:At the macro-level,we observed the global structural features of citations between authors,showing that 80%of authors have not more than 15 citations from other works.At the meso-level,we extracted the groups of authors citing each other and similar to each other according to their citation patterns.We have seen a division of authors in SNA into groups of social scientists and physicists,as well as into other groups of authors from different disciplines.We found some examples of brokerage between different groups that maintained the common identity of the field.At the micro-level,we extracted authors with extremely high values of received citations,who can be considered as the most prominent authors in the field.We examined the temporal properties of the most popular authors.Research limitations:The main challenge in this approach is the resolution of the author’s name(synonyms and homonyms).We faced the author disambiguation,or“multiple personalities”(Harzing,2015)problem.To remain consistent and comparable with our previously published articles,we used the same SNA data collected up to 2018.The analysis and conclusions on the activity,productivity,and visibility of the authors are relative only to the field of SNA.Practical implications:The proposed approach can be utilized for similar objectives and identifying key structures and characteristics in other disciplines.This may potentially inspire the application of network approaches in other research areas,creating more authors collaborating in the field of SNA.Originality/value:We identified and applied an innovative approach and methods to study the structure of scientific communities,which allowed us to get the findings going beyond those obtained with other methods.We used a new approach to temporal network analysis,which is an important addition to the analysis as it provides detailed information on different measures for the authors and pairs of authors over time.展开更多
Purpose:The disseminating of academic knowledge to nonacademic audiences partly relies on the transition of subsequent citing papers.This study aims to investigate direct and indirect impact on technology and policy o...Purpose:The disseminating of academic knowledge to nonacademic audiences partly relies on the transition of subsequent citing papers.This study aims to investigate direct and indirect impact on technology and policy originating from transformative research based on ego citation network.Design/methodology/approach:Key Nobel Prize-winning publications(NPs)in fields of gene engineering and astrophysics are regarded as a proxy for transformative research.In this contribution,we introduce a network-structural indicator of citing patents to measure technological impact of a target article and use policy citations as a preliminary tool for policy impact.Findings:The results show that the impact on technology and policy of NPs are higher than that of their subsequent citation generations in gene engineering but not in astrophysics.Research limitations:The selection of Nobel Prizes is not balanced and the database used in this study,Dimensions,suffers from incompleteness and inaccuracy of citation links.Practical implications:Our findings provide useful clues to better understand the characteristics of transformative research in technological and policy impact.Originality/value:This study proposes a new framework to explore the direct and indirect impact on technology and policy originating from transformative research.展开更多
Purpose: This paper intends to explore methodologies and indicators for the analysis of overlapping structures and evolution properties in a co-citation network, and provide reference for overlapping structure analysi...Purpose: This paper intends to explore methodologies and indicators for the analysis of overlapping structures and evolution properties in a co-citation network, and provide reference for overlapping structure analysis of other scientific networks.Design/methodology/approach: The Q-value variance is defined to achieve overlapping structures of different levels in the scientific networks. At the same time, analyses for time correlation variance and subject correlation variance are used to present the formation of overlapping structures in scientific networks. As a test, a co-citation network of highly cited papers on Molecular Biology & Genetics from Essential Science Indicator(ESI) is taken as an example for an empirical analysis.Findings: Our research showed that the Q-value variance is effective for achieving the desired overlapping structures. Meanwhile, the time correlation variance and subject correlation variance are equally useful for uncovering the evolution progress of scientific research, and the properties of overlapping structures in the research of co-citation network as well.Research limitations: In this paper, the theoretical analysis and verification of time and subject correlation variances are still at its initial stage. Further studies in this regard need to take actual evolution of research areas into consideration.Practical implications: Evolution properties of overlapping structures pave the way for overlapping and evolution analysis of disciplines or areas, this study is of practical value for the planning of scientific and technical innovation.Originality/value: This paper proposes an analytical method of time correlation variance and subject correlation variance based on the evolution properties of overlapping structures, which would provide the foundation for the evolution analysis of disciplines and interdisciplinary research.展开更多
Citation network is often used for academic recommendation. However, it is difficult to achieve high recommendation accuracy and low time complexity because it is often very large and sparse and different citations ha...Citation network is often used for academic recommendation. However, it is difficult to achieve high recommendation accuracy and low time complexity because it is often very large and sparse and different citations have different purposes. What's more, some citations include unreasonable information, such as in case of intentional self-citation. To improve the accuracy of citation network-based academic recommendation and reduce the time complexity, we propose an academic recommendation method for recommending authors and papers. In which, an author-paper bilayer citation network is built, then an enhanced topic model, Author Community Topic Time Model(ACTTM) is proposed to detect high quality author communities in the author layer, and a set of attributes are proposed to comprehensively depict the author/paper nodes in the bilayer citation network. Experimental results prove that the proposed ACTTM can detect high quality author communities and facilitate low time complexity, and the proposed academic recommendation method can effectively improve the recommendation accuracy.展开更多
This paper provides an analytic performance evaluation of dual-hop cognitive amplify-and-forward (AF) relaying networks over independent nonidentically distributed (i.n.i.d.) fading channels. Two different transmit po...This paper provides an analytic performance evaluation of dual-hop cognitive amplify-and-forward (AF) relaying networks over independent nonidentically distributed (i.n.i.d.) fading channels. Two different transmit power constraint strategies at the secondary network are proposed to investigate the performance of the secondary network. In the case of combined power constraint,the maximum tolerable interference power on the primary network and the maximum transmit power at the secondary network are considered. Closed-form lower bound and its asymptotic expression for the outage probability (OP) are achieved. Utilizing the above results,average symbol error probability (ABEP) at high signal-to-noise ratios (SNRs) are also derived. In order to further study the performance of dual-hop cognitive AF relaying networks,the Closed-form lower bounds and asymptotic expressions for OP with single power constraint of the tolerable interference on the primary network is also obtained. Both analytical and simulation are employed to validate the accuracy of the theoretical analysis. The results show that the secondary network obtains a better performance when higher power constraint is employed.展开更多
Based on the structure of citation network, the citation paths among papers, and the association strength such as coupling, co-citation and etc. between two papers are defined in this article. We give formulas to quan...Based on the structure of citation network, the citation paths among papers, and the association strength such as coupling, co-citation and etc. between two papers are defined in this article. We give formulas to quantify the association strength in order to establish citation network model based on the citation path structure. Then, the OPTICS algorithm is brought into the scientific communities found model since it can solve the parameter’s setting problem. This method combines various kinds of path structures together and thus it contains more complete citation network information. Experiments and analysis reveal the reliability and validity of this method.展开更多
In this paper,we investigate the evolution of spatiotemporal patterns and synchronization transitions in dependence on the information transmission delay and ion channel blocking in scale-free neuronal networks.As the...In this paper,we investigate the evolution of spatiotemporal patterns and synchronization transitions in dependence on the information transmission delay and ion channel blocking in scale-free neuronal networks.As the underlying model of neuronal dynamics,we use the Hodgkin-Huxley equations incorporating channel blocking and intrinsic noise.It is shown that delays play a significant yet subtle role in shaping the dynamics of neuronal networks.In particular,regions of irregular and regular propagating excitatory fronts related to the synchronization transitions appear intermittently as the delay increases.Moreover,the fraction of working sodium and potassium ion channels can also have a significant impact on the spatiotemporal dynamics of neuronal networks.As the fraction of blocked sodium channels increases,the frequency of excitatory events decreases,which in turn manifests as an increase in the neuronal synchrony that,however,is dysfunctional due to the virtual absence of large-amplitude excitations.Expectedly,we also show that larger coupling strengths improve synchronization irrespective of the information transmission delay and channel blocking.The presented results are also robust against the variation of the network size,thus providing insights that could facilitate understanding of the joint impact of ion channel blocking and information transmission delay on the spatiotemporal dynamics of neuronal networks.展开更多
This article explores the O(t^(-β))synchronization and asymptotic synchronization for fractional order BAM neural networks(FBAMNNs)with discrete delays,distributed delays and non-identical perturbations.By designing ...This article explores the O(t^(-β))synchronization and asymptotic synchronization for fractional order BAM neural networks(FBAMNNs)with discrete delays,distributed delays and non-identical perturbations.By designing a state feedback control law and a new kind of fractional order Lyapunov functional,a new set of algebraic sufficient conditions are derived to guarantee the O(t^(-β))Synchronization and asymptotic synchronization of the considered FBAMNNs model;this can easily be evaluated without using a MATLAB LMI control toolbox.Finally,two numerical examples,along with the simulation results,illustrate the correctness and viability of the exhibited synchronization results.展开更多
Purpose: The evolution of the socio-cognitive structure of the field of knowledge management(KM) during the period 1986–2015 is described. Design/methodology/approach: Records retrieved from Web of Science were submi...Purpose: The evolution of the socio-cognitive structure of the field of knowledge management(KM) during the period 1986–2015 is described. Design/methodology/approach: Records retrieved from Web of Science were submitted to author co-citation analysis(ACA) following a longitudinal perspective as of the following time slices: 1986–1996, 1997–2006, and 2007–2015. The top 10% of most cited first authors by sub-periods were mapped in bibliometric networks in order to interpret the communities formed and their relationships.Findings: KM is a homogeneous field as indicated by networks results. Nine classical authors are identified since they are highly co-cited in each sub-period, highlighting Ikujiro Nonaka as the most influential authors in the field. The most significant communities in KM are devoted to strategic management, KM foundations, organisational learning and behaviour, and organisational theories. Major trends in the evolution of the intellectual structure of KM evidence a technological influence in 1986–1996, a strategic influence in 1997–2006, and finally a sociological influence in 2007–2015.Research limitations: Describing a field from a single database can offer biases in terms of output coverage. Likewise, the conference proceedings and books were not used and the analysis was only based on first authors. However, the results obtained can be very useful to understand the evolution of KM research.Practical implications: These results might be useful for managers and academicians to understand the evolution of KM field and to(re)define research activities and organisational projects.Originality/value: The novelty of this paper lies in considering ACA as a bibliometric technique to study KM research. In addition, our investigation has a wider time coverage than earlier articles.展开更多
Ground subsidence is one of the key factors damaging transportation facilities, e.g., road networks consisting of highways and railways. In this paper, we propose to apply the persistent scatterer synthetic aperture r...Ground subsidence is one of the key factors damaging transportation facilities, e.g., road networks consisting of highways and railways. In this paper, we propose to apply the persistent scatterer synthetic aperture radar interferometry (PS-InSAR) approach that uses high- resolution TerraSAR-X (TSX) imagery to extract the regional scale subsidence rates (i.e., average annual sub- sidence in mm/year) along road networks. The primary procedures involve interferometric pair selection, interfer- ogram generation, persistent scatterer (PS) detection, PS networking, phase parameterization, and subsidence rate estimation. The Xiqing District in southwest Tianjin (China) is selected as the study area. This district contains one railway line and several highway lines. A total of 15 TSX images covering this area between April 2009 and June 2010 are utilized to obtain the subsidence rates by using the PS-InSAR (PSI) approach. The subsidence rates derived from PSI range from -68.7 to -1.3 mm/year. These findings show a significantly uneven subsidence pattern along the road network. Comparison between the PSI-derived subsidence rates and the leveling data obtained along the highways shows that the mean and standard deviation (SD) of the discrepancies between the two types of subsidence rates are 0.1 and 4-3.2 mm/year, respectively. The results indicate that the high-resolution TSX PSI is capable of providing comprehensive and detailed subsidence information regarding road networks with millimeter-level accuracy. Further inspections under geo- logical conditions and land-use categories in the study area indicate that the observed subsidence is highly related to aquifer compression due to groundwater pumping. Therefore, measures should be taken to mitigate groundwater extraction for the study area.展开更多
Hot compression experiments were conducted on Ti 15 3 alloy specimens using Gleeble 1500 Thermal Simulator.These tests were focused to obtain the flow stress data under various conditions of strain,strain rate and tem...Hot compression experiments were conducted on Ti 15 3 alloy specimens using Gleeble 1500 Thermal Simulator.These tests were focused to obtain the flow stress data under various conditions of strain,strain rate and temperature. On the basis of these data, the predicting model for the nonlinear relation between flow stress and deformation strain,strain rate and temperature for Ti 15 3 alloy was developed with a back propagation artificial neural network method. Results show that the neural network can reproduce the flow stress in the sampled data and predict the nonsampled data well. Thus the neural network method has been verified to be used to tackle hot deformation problems of Ti 15 3 alloy. [展开更多
Considering wireless sensor network characteristics,this paper uses network simulator,version2(NS-2)algorithm to improve Ad hoc on-demand distance vector(AODV)routing algorithm,so that it can be applied to wireless se...Considering wireless sensor network characteristics,this paper uses network simulator,version2(NS-2)algorithm to improve Ad hoc on-demand distance vector(AODV)routing algorithm,so that it can be applied to wireless sensor networks.After studying AODV routing protocol,a new algorithm called Must is brought up.This paper introduces the background and algorithm theory of Must,and discusses the details about how to implement Must algorithm.At last,using network simulator(NS-2),the performance of Must is evaluated and compared with that of AODV.Simulation results show that the network using Must algorithm has perfect performance.展开更多
0-1 programming is a special case of the integer programming, which is commonly encountered in many optimization problems. Neural network and its general energy function are presented for 0-1 optimization problem. The...0-1 programming is a special case of the integer programming, which is commonly encountered in many optimization problems. Neural network and its general energy function are presented for 0-1 optimization problem. Then, the 0-1 optimization problems are solved by a neural network model with transient chaotic dynamics (TCNN). Numerical simulations of two typical 0-1 optimization problems show that TCNN can overcome HNN's main drawbacks that it suffers from the local minimum and can search for the global optimal solutions in to solveing 0-1 optimization problems.展开更多
Having criticized the current architecture of Advanced Traveler Information Systems (ATISs), this work discusses a new base of requirements to develop a new paradigm for traffic information systems. It mainly integr...Having criticized the current architecture of Advanced Traveler Information Systems (ATISs), this work discusses a new base of requirements to develop a new paradigm for traffic information systems. It mainly integrates three dimensions within a traffic system: drivers' pattern of behavior and preferences, urban traffic desires, and capabilities of traffic information service providers. Based on the above, functional segments from several related backgrounds are brought together to structure a new architecture, called Interactive Traveler Information System (ITIS). The main interactive feature of this new architecture is a two-way communication track between drivers and the traffic information system provider-in fact, a decision on choosing a road at a particular time for an individual will be made based on the utility of both sides. This new configuration consists of driver-side smartphone application, centric traffic prediction, and decision-maker units, which will shape a new approach of decision-making processes. These all work together to satisfy the designated goal of ITIS, which is preserving the Wardrop equilibrium condition in the traffic network level. Finally, we concentrate on a comparison study, which shows a differentiation between performance of the proposed ITIS and the current ATIS model in a real situation. This has been done with simulations of analogical scenarios. The most noticeable advantage of the proposed architecture is not being limited to a saturation limit, and the positive effect of increasing system penetration in the performance of the newly introduced information system. In conclusion, new research subjects are suggested to be carried out.展开更多
A token-bus-based design method of the distributedfault-tolerant industrial network is presented in this pa-per.The dual-link network is of hot-redundancy.The performance of the network is also discussed.
This paper describes the self—adjustment of some tuning-knobs of the generalized predictive controller(GPC).A three feedforward neural network was utilized to on line learn two key tuning-knobs of GPC,and BP algorith...This paper describes the self—adjustment of some tuning-knobs of the generalized predictive controller(GPC).A three feedforward neural network was utilized to on line learn two key tuning-knobs of GPC,and BP algorithm was used for the training of the linking-weights of the neural network.Hence it gets rid of the difficulty of choosing these tuning-knobs manually and provides easier condition for the wide applications of GPC on industrial plants.Simulation results illustrated the effectiveness of the method.展开更多
Intermediate filaments, in addition to microtubules and actin microfilaments, are one of the three major components of the cytoskeleton in eukaryotic cells. It was discovered during the recent decades that in most cel...Intermediate filaments, in addition to microtubules and actin microfilaments, are one of the three major components of the cytoskeleton in eukaryotic cells. It was discovered during the recent decades that in most cells, intermediate filament proteins play key roles to reinforce cells subjected to large-deformation, and that they participate in signal transduction, and it was proposed that their nanome- chanical properties are critical to perform those functions. However, it is still poorly understood how the nanoscopic structure, as well as the combination of chemical composition, molecular structure and interfacial properties of these protein molecules contribute to the biomechanical properties of filaments and filament networks. Here we review recent progress in computational and theoretical studies of the intermediate filaments network at various levels in the protein's structure. A multiple scale method is discussed, used to couple molecular modeling with atomistic detail to larger-scale material properties of the networked material. It is shown that a finer-trains-coarser method- ology as discussed here provides a useful tool in understanding the biomechanical property and disease mechanism of intermediate filaments, coupling experiment and simulation. It further allows us to improve the understanding of associated disease mechanisms and lays the foundation for engineering the mechanical properties of biomaterials.展开更多
基金supported by the National Natural Science Foundation of China(No.62271274).
文摘In the tag recommendation task on academic platforms,existing methods disregard users’customized preferences in favor of extracting tags based just on the content of the articles.Besides,it uses co-occurrence techniques and tries to combine nodes’textual content for modelling.They still do not,however,directly simulate many interactions in network learning.In order to address these issues,we present a novel system that more thoroughly integrates user preferences and citation networks into article labelling recommendations.Specifically,we first employ path similarity to quantify the degree of similarity between user labelling preferences and articles in the citation network.Then,the Commuting Matrix for massive node pair paths is used to improve computational performance.Finally,the two commonalities mentioned above are combined with the interaction paper labels based on the additivity of Poisson distribution.In addition,we also consider solving the model’s parameters by applying variational inference.Experimental results demonstrate that our suggested framework agrees and significantly outperforms the state-of-the-art baseline on two real datasets by efficiently merging the three relational data.Based on the Area Under Curve(AUC)and Mean Average Precision(MAP)analysis,the performance of the suggested task is evaluated,and it is demonstrated to have a greater solving efficiency than current techniques.
文摘Journals and their citation relations are abstracted into journal citation networks, basing on CSTPC journal database from year 2003 to 2006. The network shows some typical characteristics from complex networks. This paper presents the idea of using motifs, subgraphs with higher occurrence in real network than in random ones, to discover two different citation patterns in journal communities. And a further investigation is addressed on both motif granularity and node centrality to figure out some reasons on the differences between two kinds of communities in journal citation network.
基金supported in part by the Slovenian Research Agency(VB,research program P1-0294)(VB,research project J5-2557)+2 种基金(VB,research project J5-4596)COST EU(VB,COST action CA21163(HiTEc)is prepared within the framework of the HSE University Basic Research Program.
文摘Purpose:We analyzed the structure of a community of authors working in the field of social network analysis(SNA)based on citation indicators:direct citation and bibliographic coupling metrics.We observed patterns at the micro,meso,and macro levels of analysis.Design/methodology/approach:We used bibliometric network analysis,including the“temporal quantities”approach proposed to study temporal networks.Using a two-mode network linking publications with authors and a one-mode network of citations between the works,we constructed and analyzed the networks of citation and bibliographic coupling among authors.We used an iterated saturation data collection approach.Findings:At the macro-level,we observed the global structural features of citations between authors,showing that 80%of authors have not more than 15 citations from other works.At the meso-level,we extracted the groups of authors citing each other and similar to each other according to their citation patterns.We have seen a division of authors in SNA into groups of social scientists and physicists,as well as into other groups of authors from different disciplines.We found some examples of brokerage between different groups that maintained the common identity of the field.At the micro-level,we extracted authors with extremely high values of received citations,who can be considered as the most prominent authors in the field.We examined the temporal properties of the most popular authors.Research limitations:The main challenge in this approach is the resolution of the author’s name(synonyms and homonyms).We faced the author disambiguation,or“multiple personalities”(Harzing,2015)problem.To remain consistent and comparable with our previously published articles,we used the same SNA data collected up to 2018.The analysis and conclusions on the activity,productivity,and visibility of the authors are relative only to the field of SNA.Practical implications:The proposed approach can be utilized for similar objectives and identifying key structures and characteristics in other disciplines.This may potentially inspire the application of network approaches in other research areas,creating more authors collaborating in the field of SNA.Originality/value:We identified and applied an innovative approach and methods to study the structure of scientific communities,which allowed us to get the findings going beyond those obtained with other methods.We used a new approach to temporal network analysis,which is an important addition to the analysis as it provides detailed information on different measures for the authors and pairs of authors over time.
基金supported by the National Natural Science Foundation of China(Grant No.71974167).
文摘Purpose:The disseminating of academic knowledge to nonacademic audiences partly relies on the transition of subsequent citing papers.This study aims to investigate direct and indirect impact on technology and policy originating from transformative research based on ego citation network.Design/methodology/approach:Key Nobel Prize-winning publications(NPs)in fields of gene engineering and astrophysics are regarded as a proxy for transformative research.In this contribution,we introduce a network-structural indicator of citing patents to measure technological impact of a target article and use policy citations as a preliminary tool for policy impact.Findings:The results show that the impact on technology and policy of NPs are higher than that of their subsequent citation generations in gene engineering but not in astrophysics.Research limitations:The selection of Nobel Prizes is not balanced and the database used in this study,Dimensions,suffers from incompleteness and inaccuracy of citation links.Practical implications:Our findings provide useful clues to better understand the characteristics of transformative research in technological and policy impact.Originality/value:This study proposes a new framework to explore the direct and indirect impact on technology and policy originating from transformative research.
基金supported by the National Science Library of Chinese Academy of Sciences
文摘Purpose: This paper intends to explore methodologies and indicators for the analysis of overlapping structures and evolution properties in a co-citation network, and provide reference for overlapping structure analysis of other scientific networks.Design/methodology/approach: The Q-value variance is defined to achieve overlapping structures of different levels in the scientific networks. At the same time, analyses for time correlation variance and subject correlation variance are used to present the formation of overlapping structures in scientific networks. As a test, a co-citation network of highly cited papers on Molecular Biology & Genetics from Essential Science Indicator(ESI) is taken as an example for an empirical analysis.Findings: Our research showed that the Q-value variance is effective for achieving the desired overlapping structures. Meanwhile, the time correlation variance and subject correlation variance are equally useful for uncovering the evolution progress of scientific research, and the properties of overlapping structures in the research of co-citation network as well.Research limitations: In this paper, the theoretical analysis and verification of time and subject correlation variances are still at its initial stage. Further studies in this regard need to take actual evolution of research areas into consideration.Practical implications: Evolution properties of overlapping structures pave the way for overlapping and evolution analysis of disciplines or areas, this study is of practical value for the planning of scientific and technical innovation.Originality/value: This paper proposes an analytical method of time correlation variance and subject correlation variance based on the evolution properties of overlapping structures, which would provide the foundation for the evolution analysis of disciplines and interdisciplinary research.
基金supported by the grants from Natural Science Foundation of China (Project No.61471060)
文摘Citation network is often used for academic recommendation. However, it is difficult to achieve high recommendation accuracy and low time complexity because it is often very large and sparse and different citations have different purposes. What's more, some citations include unreasonable information, such as in case of intentional self-citation. To improve the accuracy of citation network-based academic recommendation and reduce the time complexity, we propose an academic recommendation method for recommending authors and papers. In which, an author-paper bilayer citation network is built, then an enhanced topic model, Author Community Topic Time Model(ACTTM) is proposed to detect high quality author communities in the author layer, and a set of attributes are proposed to comprehensively depict the author/paper nodes in the bilayer citation network. Experimental results prove that the proposed ACTTM can detect high quality author communities and facilitate low time complexity, and the proposed academic recommendation method can effectively improve the recommendation accuracy.
基金National Natural Science Foundation of China(No.61461024)
文摘This paper provides an analytic performance evaluation of dual-hop cognitive amplify-and-forward (AF) relaying networks over independent nonidentically distributed (i.n.i.d.) fading channels. Two different transmit power constraint strategies at the secondary network are proposed to investigate the performance of the secondary network. In the case of combined power constraint,the maximum tolerable interference power on the primary network and the maximum transmit power at the secondary network are considered. Closed-form lower bound and its asymptotic expression for the outage probability (OP) are achieved. Utilizing the above results,average symbol error probability (ABEP) at high signal-to-noise ratios (SNRs) are also derived. In order to further study the performance of dual-hop cognitive AF relaying networks,the Closed-form lower bounds and asymptotic expressions for OP with single power constraint of the tolerable interference on the primary network is also obtained. Both analytical and simulation are employed to validate the accuracy of the theoretical analysis. The results show that the secondary network obtains a better performance when higher power constraint is employed.
文摘Based on the structure of citation network, the citation paths among papers, and the association strength such as coupling, co-citation and etc. between two papers are defined in this article. We give formulas to quantify the association strength in order to establish citation network model based on the citation path structure. Then, the OPTICS algorithm is brought into the scientific communities found model since it can solve the parameter’s setting problem. This method combines various kinds of path structures together and thus it contains more complete citation network information. Experiments and analysis reveal the reliability and validity of this method.
基金supported by the National Natural Science Foundation of China(11172017 and 10972001)the Fujian Natural Science Foundation of China(2009J05004)a Key Project of Fujian Provincial Universities(Information Technology Research Based on Mathematics)
文摘In this paper,we investigate the evolution of spatiotemporal patterns and synchronization transitions in dependence on the information transmission delay and ion channel blocking in scale-free neuronal networks.As the underlying model of neuronal dynamics,we use the Hodgkin-Huxley equations incorporating channel blocking and intrinsic noise.It is shown that delays play a significant yet subtle role in shaping the dynamics of neuronal networks.In particular,regions of irregular and regular propagating excitatory fronts related to the synchronization transitions appear intermittently as the delay increases.Moreover,the fraction of working sodium and potassium ion channels can also have a significant impact on the spatiotemporal dynamics of neuronal networks.As the fraction of blocked sodium channels increases,the frequency of excitatory events decreases,which in turn manifests as an increase in the neuronal synchrony that,however,is dysfunctional due to the virtual absence of large-amplitude excitations.Expectedly,we also show that larger coupling strengths improve synchronization irrespective of the information transmission delay and channel blocking.The presented results are also robust against the variation of the network size,thus providing insights that could facilitate understanding of the joint impact of ion channel blocking and information transmission delay on the spatiotemporal dynamics of neuronal networks.
基金joint financial support of Thailand Research Fund RSA 6280004,RUSA-Phase 2.0 Grant No.F 24-51/2014-UPolicy(TN Multi-Gen),Dept.of Edn.Govt.of India,UGC-SAP(DRS-I)Grant No.F.510/8/DRS-I/2016(SAP-I)+1 种基金DST(FIST-level I)657876570 Grant No.SR/FIST/MS-I/2018/17Prince Sultan University for funding this work through research group Nonlinear Analysis Methods in Applied Mathematics(NAMAM)group number RG-DES-2017-01-17。
文摘This article explores the O(t^(-β))synchronization and asymptotic synchronization for fractional order BAM neural networks(FBAMNNs)with discrete delays,distributed delays and non-identical perturbations.By designing a state feedback control law and a new kind of fractional order Lyapunov functional,a new set of algebraic sufficient conditions are derived to guarantee the O(t^(-β))Synchronization and asymptotic synchronization of the considered FBAMNNs model;this can easily be evaluated without using a MATLAB LMI control toolbox.Finally,two numerical examples,along with the simulation results,illustrate the correctness and viability of the exhibited synchronization results.
文摘Purpose: The evolution of the socio-cognitive structure of the field of knowledge management(KM) during the period 1986–2015 is described. Design/methodology/approach: Records retrieved from Web of Science were submitted to author co-citation analysis(ACA) following a longitudinal perspective as of the following time slices: 1986–1996, 1997–2006, and 2007–2015. The top 10% of most cited first authors by sub-periods were mapped in bibliometric networks in order to interpret the communities formed and their relationships.Findings: KM is a homogeneous field as indicated by networks results. Nine classical authors are identified since they are highly co-cited in each sub-period, highlighting Ikujiro Nonaka as the most influential authors in the field. The most significant communities in KM are devoted to strategic management, KM foundations, organisational learning and behaviour, and organisational theories. Major trends in the evolution of the intellectual structure of KM evidence a technological influence in 1986–1996, a strategic influence in 1997–2006, and finally a sociological influence in 2007–2015.Research limitations: Describing a field from a single database can offer biases in terms of output coverage. Likewise, the conference proceedings and books were not used and the analysis was only based on first authors. However, the results obtained can be very useful to understand the evolution of KM research.Practical implications: These results might be useful for managers and academicians to understand the evolution of KM field and to(re)define research activities and organisational projects.Originality/value: The novelty of this paper lies in considering ACA as a bibliometric technique to study KM research. In addition, our investigation has a wider time coverage than earlier articles.
基金supported by the National Basic Research Program of China(973 Program)under Grant 2012CB719901the National Natural Science Foundation of China under Grant 41074005the 2013 Doctoral Innovation Funds of Southwest Jiaotong University
文摘Ground subsidence is one of the key factors damaging transportation facilities, e.g., road networks consisting of highways and railways. In this paper, we propose to apply the persistent scatterer synthetic aperture radar interferometry (PS-InSAR) approach that uses high- resolution TerraSAR-X (TSX) imagery to extract the regional scale subsidence rates (i.e., average annual sub- sidence in mm/year) along road networks. The primary procedures involve interferometric pair selection, interfer- ogram generation, persistent scatterer (PS) detection, PS networking, phase parameterization, and subsidence rate estimation. The Xiqing District in southwest Tianjin (China) is selected as the study area. This district contains one railway line and several highway lines. A total of 15 TSX images covering this area between April 2009 and June 2010 are utilized to obtain the subsidence rates by using the PS-InSAR (PSI) approach. The subsidence rates derived from PSI range from -68.7 to -1.3 mm/year. These findings show a significantly uneven subsidence pattern along the road network. Comparison between the PSI-derived subsidence rates and the leveling data obtained along the highways shows that the mean and standard deviation (SD) of the discrepancies between the two types of subsidence rates are 0.1 and 4-3.2 mm/year, respectively. The results indicate that the high-resolution TSX PSI is capable of providing comprehensive and detailed subsidence information regarding road networks with millimeter-level accuracy. Further inspections under geo- logical conditions and land-use categories in the study area indicate that the observed subsidence is highly related to aquifer compression due to groundwater pumping. Therefore, measures should be taken to mitigate groundwater extraction for the study area.
文摘Hot compression experiments were conducted on Ti 15 3 alloy specimens using Gleeble 1500 Thermal Simulator.These tests were focused to obtain the flow stress data under various conditions of strain,strain rate and temperature. On the basis of these data, the predicting model for the nonlinear relation between flow stress and deformation strain,strain rate and temperature for Ti 15 3 alloy was developed with a back propagation artificial neural network method. Results show that the neural network can reproduce the flow stress in the sampled data and predict the nonsampled data well. Thus the neural network method has been verified to be used to tackle hot deformation problems of Ti 15 3 alloy. [
文摘Considering wireless sensor network characteristics,this paper uses network simulator,version2(NS-2)algorithm to improve Ad hoc on-demand distance vector(AODV)routing algorithm,so that it can be applied to wireless sensor networks.After studying AODV routing protocol,a new algorithm called Must is brought up.This paper introduces the background and algorithm theory of Must,and discusses the details about how to implement Must algorithm.At last,using network simulator(NS-2),the performance of Must is evaluated and compared with that of AODV.Simulation results show that the network using Must algorithm has perfect performance.
基金This project was supported by the National Natural Science Foundation of China (79970042).
文摘0-1 programming is a special case of the integer programming, which is commonly encountered in many optimization problems. Neural network and its general energy function are presented for 0-1 optimization problem. Then, the 0-1 optimization problems are solved by a neural network model with transient chaotic dynamics (TCNN). Numerical simulations of two typical 0-1 optimization problems show that TCNN can overcome HNN's main drawbacks that it suffers from the local minimum and can search for the global optimal solutions in to solveing 0-1 optimization problems.
文摘Having criticized the current architecture of Advanced Traveler Information Systems (ATISs), this work discusses a new base of requirements to develop a new paradigm for traffic information systems. It mainly integrates three dimensions within a traffic system: drivers' pattern of behavior and preferences, urban traffic desires, and capabilities of traffic information service providers. Based on the above, functional segments from several related backgrounds are brought together to structure a new architecture, called Interactive Traveler Information System (ITIS). The main interactive feature of this new architecture is a two-way communication track between drivers and the traffic information system provider-in fact, a decision on choosing a road at a particular time for an individual will be made based on the utility of both sides. This new configuration consists of driver-side smartphone application, centric traffic prediction, and decision-maker units, which will shape a new approach of decision-making processes. These all work together to satisfy the designated goal of ITIS, which is preserving the Wardrop equilibrium condition in the traffic network level. Finally, we concentrate on a comparison study, which shows a differentiation between performance of the proposed ITIS and the current ATIS model in a real situation. This has been done with simulations of analogical scenarios. The most noticeable advantage of the proposed architecture is not being limited to a saturation limit, and the positive effect of increasing system penetration in the performance of the newly introduced information system. In conclusion, new research subjects are suggested to be carried out.
文摘A token-bus-based design method of the distributedfault-tolerant industrial network is presented in this pa-per.The dual-link network is of hot-redundancy.The performance of the network is also discussed.
基金Supported by the National 863 CIMS Project Foundation(863-511-010)Tianjin Natural Science Foundation(983602011)Backbone Young Teacher Project Foundation of Ministry of Education
文摘This paper describes the self—adjustment of some tuning-knobs of the generalized predictive controller(GPC).A three feedforward neural network was utilized to on line learn two key tuning-knobs of GPC,and BP algorithm was used for the training of the linking-weights of the neural network.Hence it gets rid of the difficulty of choosing these tuning-knobs manually and provides easier condition for the wide applications of GPC on industrial plants.Simulation results illustrated the effectiveness of the method.
文摘Intermediate filaments, in addition to microtubules and actin microfilaments, are one of the three major components of the cytoskeleton in eukaryotic cells. It was discovered during the recent decades that in most cells, intermediate filament proteins play key roles to reinforce cells subjected to large-deformation, and that they participate in signal transduction, and it was proposed that their nanome- chanical properties are critical to perform those functions. However, it is still poorly understood how the nanoscopic structure, as well as the combination of chemical composition, molecular structure and interfacial properties of these protein molecules contribute to the biomechanical properties of filaments and filament networks. Here we review recent progress in computational and theoretical studies of the intermediate filaments network at various levels in the protein's structure. A multiple scale method is discussed, used to couple molecular modeling with atomistic detail to larger-scale material properties of the networked material. It is shown that a finer-trains-coarser method- ology as discussed here provides a useful tool in understanding the biomechanical property and disease mechanism of intermediate filaments, coupling experiment and simulation. It further allows us to improve the understanding of associated disease mechanisms and lays the foundation for engineering the mechanical properties of biomaterials.