期刊文献+
共找到771,166篇文章
< 1 2 250 >
每页显示 20 50 100
Lipid metabolism-related long noncoding RNA RP11-817I4.1 promotes fatty acid synthesis and tumor progression in hepatocellular carcinoma 被引量:1
1
作者 Ren-Yong Wang Jia-Ling Yang +5 位作者 Ning Xu Jia Xu Shao-Hua Yang Dao-Ming Liang Jin-Ze Li Hong Zhu 《World Journal of Gastroenterology》 SCIE CAS 2024年第8期919-942,共24页
BACKGROUND Hepatocellular carcinoma(HCC)is one of the most common types of tumors.The influence of lipid metabolism disruption on the development of HCC has been demonstrated in published studies.AIM To establish an H... BACKGROUND Hepatocellular carcinoma(HCC)is one of the most common types of tumors.The influence of lipid metabolism disruption on the development of HCC has been demonstrated in published studies.AIM To establish an HCC prognostic model for lipid metabolism-related long non-coding RNAs(LMR-lncRNAs)and conduct in-depth research on the specific role of novel LMR-lncRNAs in HCC.METHODS Correlation and differential expression analyses of The Cancer Genome Atlas data were used to identify differentially expressed LMR-lncRNAs.Quantitative real-time polymerase chain reaction analysis was used to evaluate the expression of LMR-lncRNAs.Nile red staining was employed to observe intracellular lipid levels.The interaction between RP11-817I4.1,miR-3120-3p,and ATP citrate lyase(ACLY)was validated through the performance of dual-luciferase reporter gene and RIP assays.RESULTS Three LMR-lncRNAs(negative regulator of antiviral response,RNA transmembrane and coiled-coil domain family 1 antisense RNA 1,and RP11-817I4.1)were identified as predictive markers for HCC patients and were utilized in the construction of risk models.Additionally,proliferation,migration,and invasion were reduced by RP11-817I4.1 knockdown.An increase in lipid levels in HCC cells was significantly induced by RP11-817I4.1 through the miR-3120-3p/ACLY axis.CONCLUSION LMR-lncRNAs have the capacity to predict the clinical characteristics and prognoses of HCC patients,and the discovery of a novel LMR-lncRNAs,RP11-817I4.1,revealed its role in promoting lipid accumulation,thereby accelerating the onset and progression of HCC. 展开更多
关键词 Hepatocellular carcinoma Lipid metabolism Immune microenvironment Prognostic markers metabolic reprogramming
下载PDF
Astrocytic endothelin-1 overexpression impairs learning and memory ability in ischemic stroke via altered hippocampal neurogenesis and lipid metabolism 被引量:5
2
作者 Jie Li Wen Jiang +9 位作者 Yuefang Cai Zhenqiu Ning Yingying Zhou Chengyi Wang Sookja Ki Chung Yan Huang Jingbo Sun Minzhen Deng Lihua Zhou Xiao Cheng 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期650-656,共7页
Vascular etiology is the second most prevalent cause of cognitive impairment globally.Endothelin-1,which is produced and secreted by endothelial cells and astrocytes,is implicated in the pathogenesis of stroke.However... Vascular etiology is the second most prevalent cause of cognitive impairment globally.Endothelin-1,which is produced and secreted by endothelial cells and astrocytes,is implicated in the pathogenesis of stroke.However,the way in which changes in astrocytic endothelin-1 lead to poststroke cognitive deficits following transient middle cerebral artery occlusion is not well understood.Here,using mice in which astrocytic endothelin-1 was overexpressed,we found that the selective overexpression of endothelin-1 by astrocytic cells led to ischemic stroke-related dementia(1 hour of ischemia;7 days,28 days,or 3 months of reperfusion).We also revealed that astrocytic endothelin-1 overexpression contributed to the role of neural stem cell proliferation but impaired neurogenesis in the dentate gyrus of the hippocampus after middle cerebral artery occlusion.Comprehensive proteome profiles and western blot analysis confirmed that levels of glial fibrillary acidic protein and peroxiredoxin 6,which were differentially expressed in the brain,were significantly increased in mice with astrocytic endothelin-1 overexpression in comparison with wild-type mice 28 days after ischemic stroke.Moreover,the levels of the enriched differentially expressed proteins were closely related to lipid metabolism,as indicated by Kyoto Encyclopedia of Genes and Genomes pathway analysis.Liquid chromatography-mass spectrometry nontargeted metabolite profiling of brain tissues showed that astrocytic endothelin-1 overexpression altered lipid metabolism products such as glycerol phosphatidylcholine,sphingomyelin,and phosphatidic acid.Overall,this study demonstrates that astrocytic endothelin-1 overexpression can impair hippocampal neurogenesis and that it is correlated with lipid metabolism in poststroke cognitive dysfunction. 展开更多
关键词 astrocytic endothelin-1 dentate gyrus differentially expressed proteins HIPPOCAMPUS ischemic stroke learning and memory deficits lipid metabolism neural stem cells NEUROGENESIS proliferation
下载PDF
Glycogen metabolism-mediated intercellular communication in the tumor microenvironment influences liver cancer prognosis
3
作者 YANG ZHANG NANNAN QIN +6 位作者 XIJUN WANG RUI LIANG QUAN LIU RUOYI GENG TIANXIAO JIANG YUNFEI LIU JINWEI LI 《Oncology Research》 SCIE 2024年第3期563-576,共14页
Glycogen metabolism plays a key role in the development of hepatoellular carcinoma(HCC),but the function of glycogen metabolism genes in the tumor microenvironment(TME)is still to be elucidated.Single cell RNA-seq dat... Glycogen metabolism plays a key role in the development of hepatoellular carcinoma(HCC),but the function of glycogen metabolism genes in the tumor microenvironment(TME)is still to be elucidated.Single cell RNA-seq data were obtained from ten HCC tumor samples totaling 64,545 cells and 65 glycogen metabolism genes were analyzed bya nonnegative matrix factorization(NMF).The prognosis and immune response of new glycogen TME cell dusters were predicted by using HCC and immunotherapy cohorts from public databases.HOC single cell analysis was divided into fibroblasts,NT T cells,macrophages,endothelial clls,and B cells,which were separately divided into new cell clusters by glycogen metabolism gene annotation.Pseudo temporal trajectory analysis demonstrated the temporal differentiation trajectory of different glycogen subtype cell dusters.Cellular communication analysis revealed extensive interactions between endothelial cells with glycogen metabolizing TME cell.related subtypes and diferent glycogen subtype cell clusters.SCENIC analysis of transcription factors upstream of TME cell clusters with different glycogen metabolism.In addition,TME cell dusters of glycogen metabolism were found to be enriched in expression in CAF subtypes,CD8 depleted,M1,and M2 types.Bulk seq analysis showed the prognostic signifcance of glycogen metabolism.mediated TME cell dusters in HCC,while a significant immune response was found in the immunotherapy cohort in patients treated with immune checkpoint blockade(ICB),especially for CAFs,T cells,and macrophages In summary,our study reveals for the first time that glycogen metabolism mediates intercellular communication in the hepatocellular carcinoma microenvironment while elucidating the anti-tumor mechanisms and immune prognostic responses of different subtypes of cell dusters. 展开更多
关键词 Glycogen metabolism metabolic map Single cell Tumor microenvironment Liver cancer PROGNOSIS IMMUNOTHERAPY
下载PDF
The HIF-1α/PLOD2 axis integrates extracellular matrix organization and cell metabolism leading to aberrant musculoskeletal repair
4
作者 Heeseog Kang Amy L.Strong +15 位作者 Yuxiao Sun Lei Guo Conan Juan Alec C.Bancroft Ji Hae Choi Chase A.Pagani Aysel A.Fernandes Michael Woodard Juhoon Lee Sowmya Ramesh Aaron W.James David Hudson Kevin N.Dalby Lin Xu Robert J.Tower Benjamin Levi 《Bone Research》 SCIE CAS CSCD 2024年第2期289-301,共13页
While hypoxic signaling has been shown to play a role in many cellular processes,its role in metabolism-linked extracellular matrix(ECM)organization and downstream processes of cell fate after musculoskeletal injury r... While hypoxic signaling has been shown to play a role in many cellular processes,its role in metabolism-linked extracellular matrix(ECM)organization and downstream processes of cell fate after musculoskeletal injury remains to be determined.Heterotopicossification(HO)is a debilitating condition where abnormal bone formation occurs within extra-skeletal tissues.Hypoxia andhypoxia-inducible factor 1α(HIF-1α)activation have been shown to promote HO.However,the underlying molecular mechanisms bywhich the HIF-1αpathway in mesenchymal progenitor cells(MPCs)contributes to pathologic bone formation remain to beelucidated.Here,we used a proven mouse injury-induced HO model to investigate the role of HIF-1αon aberrant cell fate.Usingsingle-cell RNA sequencing(scRNA-seq)and spatial transcriptomics analyses of the HO site,we found that collagen ECM organizationis the most highly up-regulated biological process in MPCs.Zeugopod mesenchymal cell-specific deletion of Hif1α(Hoxa11-CreER^(T2);Hif1a^(fl/fl))significantly mitigated HO in vivo.ScRNA-seq analysis of these Hoxa11-CreER^(T2);Hif1a^(fl/fl)mice identified the PLOD2/LOXpathway for collagen cross-linking as downstream of the HIF-1αregulation of HO.Importantly,our scRNA-seq data and mechanisticstudies further uncovered that glucose metabolism in MPCs is most highly impacted by HIF-1αdeletion.From a translational aspect,a pan-LOX inhibitor significantly decreased HO.A newly screened compound revealed that the inhibition of PLOD2 activity in MPCssignificantly decreased osteogenic differentiation and glycolytic metabolism.This suggests that the HIF-1α/PLOD2/LOX axis linked tometabolism regulates HO-forming MPC fate.These results suggest that the HIF-1α/PLOD2/LOX pathway represents a promisingstrategy to mitigate HO formation. 展开更多
关键词 metabolism SKELETAL ABERRANT
下载PDF
Corrigendum: Astrocytic endothelin-1 overexpression impairs learning and memory ability in ischemic stroke via altered hippocampal neurogenesis and lipid metabolism
5
《Neural Regeneration Research》 SCIE CAS 2025年第2期401-401,共1页
In the article titled“Astrocytic endothelin-1 overexpression impairs learning and memory ability in ischemic stroke via altered hippocampal neurogenesis and lipid metabolism,”published on pages 650-656,Issue 3,Volum... In the article titled“Astrocytic endothelin-1 overexpression impairs learning and memory ability in ischemic stroke via altered hippocampal neurogenesis and lipid metabolism,”published on pages 650-656,Issue 3,Volume 19 of Neural Regeneration Research(Li et al.,2024),there were two errors that needed to be corrected. 展开更多
关键词 metabolism ENDOTHELIN
下载PDF
Dietary Supplementation of β-Carotene Reveals miRNAs Involved in the Regulation of Carotenoid Metabolism in Crassostrea gigas
6
作者 SUN Dongfang WAN Sai +2 位作者 YU Hong KONG Lingfeng LI Qi 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第4期1045-1053,共9页
Carotenoids play crucial physiological roles in animals.A comprehensive investigation into the mechanism of carotenoid metabolism in oysters will establish a theoretical foundation for further development of its carot... Carotenoids play crucial physiological roles in animals.A comprehensive investigation into the mechanism of carotenoid metabolism in oysters will establish a theoretical foundation for further development of its carotenoid-rich traits.However,the information on the function of miRNA in β-carotene metabolism in oysters is limited.To elucidate the mechanisms underlying miRNA regulation of carotenoid metabolism in oysters,we compared the expressions of miRNA in digestive gland tissues of Pacific oyster(Crassostrea gigas)fed with aβ-carotene supplemented diet and a normal diet,respectively.A total of 690 candidate miRNAs in the Pacific oyster digestive gland tissues were identified,including 590 known miRNAs and 111 unknown miRNAs.Three differentially expressed miRNAs were obtained in the carotenoid-fed and normal groups,associated to 137 differentially expressed target genes.Moreover,the GO enrichment analysis revealed that the differentially expressed target genes were mainly involved in transmembrane transport activity.KEGG enrichment showed that the differentially expressed target genes were involved in ABC transport.Analysis of the mRNA-miRNA network revealed that novel0025 played a central role in carotenoid metabolism,and it was negatively correlated with the expression of 46 mRNAs.In addition,down-regulated expression of novel0025 upregulated the expression of the lipoprotein gene LOC105342186,suggesting a potential regulatory role in carotenoid metabolism.Our results provide useful information for elucidating the miRNA regulation mechanism during carotenoids metabolism in the Pacific oyster. 展开更多
关键词 Crassostrea gigas Β-CAROTENE microRNA carotenoid metabolism
下载PDF
Surviving winter on the Qinghai-Xizang Plateau:Extensive reversible protein phosphorylation plays a dominant role in regulating hypometabolism in hibernating Nanorana parkeri
7
作者 Yong-Gang Niu Deng-Bang Wei +6 位作者 Xue-Jing Zhang Ti-Sen Xu Xiang-Yong Li Hai-Ying Zhang Zhi-Fang An Kenneth B.Storey Qiang Chen 《Zoological Research》 SCIE CSCD 2024年第1期1-12,共12页
Changes in protein abundance and reversible protein phosphorylation(RPP)play important roles in regulating hypometabolism but have never been documented in overwintering frogs at high altitudes.To test the hypothesis ... Changes in protein abundance and reversible protein phosphorylation(RPP)play important roles in regulating hypometabolism but have never been documented in overwintering frogs at high altitudes.To test the hypothesis that protein abundance and phosphorylation change in response to winter hibernation,we conducted a comprehensive and quantitative proteomic and phosphoproteomic analysis of the liver of the Xizang plateau frog,Nanorana parkeri,living on the Qinghai-Xizang Plateau.In total,5170 proteins and 5695 phosphorylation sites in 1938 proteins were quantified.Based on proteomic analysis,674 differentially expressed proteins(438 up-regulated,236 down-regulated)were screened in hibernating N.parkeri versus summer individuals.Functional enrichment analysis revealed that higher expressed proteins in winter were significantly enriched in immune-related signaling pathways,whereas lower expressed proteins were mainly involved in metabolic processes.A total of 4251 modified sites(4147 up-regulated,104 down-regulated)belonging to 1638 phosphoproteins(1555 up-regulated,83 down-regulated)were significantly changed in the liver.During hibernation,RPP regulated a diverse array of proteins involved in multiple functions,including metabolic enzymatic activity,ion transport,protein turnover,signal transduction,and alternative splicing.These changes contribute to enhancing protection,suppressing energy-consuming processes,and inducing metabolic depression.Moreover,the activities of phosphofructokinase,glutamate dehydrogenase,and ATPase were all significantly lower in winter compared to summer.In conclusion,our results support the hypothesis and demonstrate the importance of RPP as a regulatory mechanism when animals transition into a hypometabolic state. 展开更多
关键词 Nanorana parkeri PROTEOMIC Phosphoproteomic HIBERNATION Reversible protein phosphorylation metabolism
下载PDF
Liver disease in patients with transfusion-dependentβ-thalassemia:The emerging role of metabolism dysfunction-associated steatotic liver disease
8
作者 Nikolaos Fragkou Efthimia Vlachaki +1 位作者 Ioannis Goulis Emmanouil Sinakos 《World Journal of Hepatology》 2024年第5期671-677,共7页
In this Editorial,we highlight the possible role that metabolism dysfunction-associated steatotic liver disease(MASLD)may play in the future,regarding liver disease in patients with transfusion-dependent β-thalassemi... In this Editorial,we highlight the possible role that metabolism dysfunction-associated steatotic liver disease(MASLD)may play in the future,regarding liver disease in patients with transfusion-dependent β-thalassemia(TDBT).MASLD is characterized by excessive accumulation of fat in the liver(hepatic steatosis),in the presence of cardiometabolic factors.There is a strong correlation between the occurrence of MASLD and insulin resistance,while its increased prevalence parallels the global epidemic of diabetes mellitus(DM)and obesity.Patients with TDBT need regular transfusions for life to ensure their survival.Through these transfusions,a large amount of iron is accumulated,which causes saturation of transferrin and leads to the circulation of free iron molecules,which cause damage to vital organs(primarily the liver and myocardium).Over the past,the main mechanisms for the development of liver disease in these patients have been the toxic effect of iron on the liver and chronic hepatitis C,for which modern and effective treatments have been found,resulting in successful treatment.Additional advances in the treatment and monitoring of these patients have led to a reduction in deaths,and an increase in their life expectancy.This increased survival makes them vulnerable to the onset of diseases,which until recently were mainly related to the non-thalassemic general population,such as obesity and DM.There is insufficient data in the literature regarding the prevalence of MASLD in this population or on the risk factors for its occurrence.However,it was recently shown by a study of 45 heavily transfused patients with beta-thalassemia(Padeniya et al,BJH),that the presence of steatosis is a factor influencing the value of liver elastography and thus liver fibrosis.These findings suggest that future research in the field of liver disease in patients with TDBT should be focused on the occurrence,the risk factors,and the effect of MASLD on these patients. 展开更多
关键词 metabolism dysfunction-associated steatotic liver disease Transfusion-dependent thalassemia metabolic syndrome Hepatic steatosis Non-invasive markers Liver fibrosis
下载PDF
Enhancing metformin-induced tumor metabolism destruction by glucose oxidase for triple-combination therapy
9
作者 Rangrang Fan Linrui Cai +4 位作者 Hao Liu Hongxu Chen Caili Chen Gang Guo Jianguo Xu 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第3期321-334,共14页
Despite decades of laboratory and clinical trials,breast cancer remains the main cause of cancer-related disease burden in women.Considering the metabolism destruction effect of metformin(Met)and cancer cell starvatio... Despite decades of laboratory and clinical trials,breast cancer remains the main cause of cancer-related disease burden in women.Considering the metabolism destruction effect of metformin(Met)and cancer cell starvation induced by glucose oxidase(GOx),after their efficient delivery to tumor sites,GOx and Met may consume a large amount of glucose and produce sufficient hydrogen peroxide in situ.Herein,a pH-responsive epigallocatechin gallate(EGCG)-conjugated low-molecular-weight chitosan(LC-EGCG,LE)nanoparticle(Met–GOx/Fe@LE NPs)was constructed.The coordination between iron ions(Fe3+)and EGCG in this nanoplatform can enhance the efficacy of chemodynamic therapy via the Fenton reaction.Met–GOx/Fe@LE NPs allow GOx to retain its enzymatic activity while simultaneously improving its stability.Moreover,this pH-responsive nanoplatform presents controllable drug release behavior.An in vivo biodistribution study showed that the intracranial accumulation of GOx delivered by this nanoplatform was 3.6-fold higher than that of the free drug.The in vivo anticancer results indicated that this metabolism destruction/starvation/chemodynamic triple-combination therapy could induce increased apoptosis/death of tumor cells and reduce their proliferation.This triple-combination therapy approach is promising for efficient and targeted cancer treatment. 展开更多
关键词 METFORMIN Glucose oxidase metabolism disruption Tumor starvation Combination cancer therapy
下载PDF
GLP-1 receptor agonists and myocardial metabolism in atrial fibrillation
10
作者 Jiani Zhong Hang Chen +3 位作者 Qiming Liu Shenghua Zhou Zhenguo Liu Yichao Xiao 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第5期653-665,共13页
Atrial fibrillation(AF)is the most common cardiac arrhythmia.Many medical conditions,including hypertension,diabetes,obesity,sleep apnea,and heart failure(HF),increase the risk for AF.Cardiomyocytes have unique metabo... Atrial fibrillation(AF)is the most common cardiac arrhythmia.Many medical conditions,including hypertension,diabetes,obesity,sleep apnea,and heart failure(HF),increase the risk for AF.Cardiomyocytes have unique metabolic characteristics to maintain adenosine triphosphate production.Significant changes occur in myocardial metabolism in AF.Glucagon-like peptide-1 receptor agonists(GLP-1RAs)have been used to control blood glucose fluctuations and weight in the treatment of type 2 diabetes mellitus(T2DM)and obesity.GLP-1RAs have also been shown to reduce oxidative stress,inflammation,autonomic nervous system modulation,and mitochondrial function.This article reviews the changes in metabolic characteristics in cardiomyocytes in AF.Although the clinical trial outcomes are unsatisfactory,the findings demonstrate that GLP-1 RAs can improve myocardial metabolism in the presence of various risk factors,lowering the incidence of AF. 展开更多
关键词 Atrial fibrillation Glucagon-like peptide-1 receptor agonists metabolism
下载PDF
Improvement of glucose metabolism in middle-aged mice on a high-fat diet by whole-grain highland barley is related to low methionine levels
11
作者 Chuanxing Feng Yueting Ge +6 位作者 Bowen Li Xiangrong Cheng Xue Tang Jianjin Zhu Yuge Jiang Yonghui Shi Guowei Le 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第5期2906-2916,共11页
Methionine restriction(MR)is an effective dietary strategy to regulate energy metabolism and alleviate oxidative stress and inflammation in the body,especially in the middle-aged and elderly population.However,the hig... Methionine restriction(MR)is an effective dietary strategy to regulate energy metabolism and alleviate oxidative stress and inflammation in the body,especially in the middle-aged and elderly population.However,the high methionine content of meat products makes this dietary strategy impossible to combine with protein supplementation and MR.Highland barley(HB),a low-methionine cereal,not only provides the body with protein but also has improved glucose metabolism and antioxidant and anti-inflammatory properties.Therefore,this study evaluated the feasibility of HB as a source of methionine-restricted dietary protein and the potential mechanisms.Middle-aged C57BL/6J mice were fed a control diet(CON),a high-fat diet(HFD),a whole-grain HB high-fat diet(HBHF),or a HBHF+methionine diet(HBHFmet)for 25 weeks.The results showed that the HBHF could keep the body weight,fasting glucose,insulin,homeostasis model assessment of insulin resistance(HOMA-IR),blood lipids,inflammation,and oxidative stress of HFD mice at normal levels.Compared with the HFD groups,HBHF inhibited pancreatic cell apoptosis and improved insulin secretion while improving hepatic and skeletal muscle glucose metabolism.However,these efficacies were attenuated in HBHFmet group mice.These findings suggest that HBHF has an MR strategy. 展开更多
关键词 Methionine restriction strategy Highland barley Insulin secretion Glucose metabolism
下载PDF
Lipid metabolism-related long noncoding RNAs:A potential prognostic biomarker for hepatocellular carcinoma
12
作者 Rui-Nan Zhang Jian-Gao Fan 《World Journal of Gastroenterology》 SCIE CAS 2024年第33期3799-3802,共4页
The incidence rates of hepatocellular carcinoma(HCC)have increased in recent decades.Despite advancements in therapy and early diagnosis improving shortterm prognosis,long-term outcomes remain poor.Long noncoding RNAs... The incidence rates of hepatocellular carcinoma(HCC)have increased in recent decades.Despite advancements in therapy and early diagnosis improving shortterm prognosis,long-term outcomes remain poor.Long noncoding RNAs(lncRNAs)and lipid metabolism play crucial roles in the development and progression of HCC.Enhanced lipid synthesis promotes HCC progression,and lncRNAs can reprogram the expression of lipogenic enzymes.Consequently,lipid metabolism-related(LMR)-lncRNAs regulate lipid anabolism,accelerating the onset and progression of HCC.This suggests that LMR-lncRNAs could serve as novel prognostic biomarkers and therapeutic targets. 展开更多
关键词 Long noncoding RNAs Lipid metabolism Hepatocellular carcinoma PROGNOSIS BIOMARKER
下载PDF
The impact of the novel starch-lipid complexes on the glucolipids metabolism, inflammation, and gut dysbiosis of type 2 diabetes mellitus rats
13
作者 Yingshuang Lu Renbing Qin +8 位作者 Jin Wang Fengjuan Xiang Yan Zhang Bowei Zhang Dancai Fan Huan Lü Xuemeng Ji Shujun Wang Shuo Wang 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第6期3210-3223,共14页
It has been widely accepted that resistant starch(RS)provides numerous health benefits for human.In this research,we aimed at evaluating the performance of novel starch-lipid complexes,RS5,in comparison with RS2 on ph... It has been widely accepted that resistant starch(RS)provides numerous health benefits for human.In this research,we aimed at evaluating the performance of novel starch-lipid complexes,RS5,in comparison with RS2 on physical features,glucolipids metabolism,inflammation,and gut microbiota profiles of type 2 diabetes mellitus(T2DM)rats.The T2DM model was established by streptozotocin injection to the high-fat-sugar fed rats.According to a serial of biochemical analyses,we found that RS5 diets were strongly correlated with enhanced homeostatic model assessment for insulin secretion(HOMA-IS),high-density lipoprotein cholesterol(HDL-C),adiponectin(ADP),insulin action index(IAI),glucagon-like peptide-1(GLP1),and short-chain fatty acids(SCFAs)in T2DM rats whilst negatively associated with the low-density lipoprotein(LDL-C)and inflammatory cytokines,showing the capabilities to ameliorate T2DM symptoms by regulation of glucolipid metabolism,gut metabolites,and inflammation.On the other hand,RS2-enriched supplementations were influential in the mediation of insulin secretion to improve glucose metabolism.The increasing evidence collected herein suggested that intestinal microbiota could mediate glucolipids metabolism and alleviate inflammation after certain microflora nourished by RS.In addition,RS intake made an impact on phosphoinositide 3-kinase/protein kinase B signaling pathway that might contribute to the improvement of glucose metabolism,insulin resistance,and inflammatory responses. 展开更多
关键词 Resistant starch Type 2 diabetes Glucolipid metabolism Gut microbiota INFLAMMATION
下载PDF
Voluntary wheel running ameliorated the deleterious effects of high-fat diet on glucose metabolism,gut microbiota and microbial-associated metabolites
14
作者 Ling Zhang Wenyu Zou +4 位作者 Yongyan Hu Honghua Wu Ying Gao Junqing Zhang Jia Zheng 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1672-1684,共13页
Exercise training is critical for the early prevention and treatment of obesity and diabetes mellitus.However,the mechanism with gut microbiota and fecal metabolites underlying the effects of voluntary wheel running o... Exercise training is critical for the early prevention and treatment of obesity and diabetes mellitus.However,the mechanism with gut microbiota and fecal metabolites underlying the effects of voluntary wheel running on high-fat diet induced abnormal glucose metabolism has not been fully elaborated.C57BL/6 male mice were randomly assigned to 4 groups according to diets(fed with normal chow diet or high-fat diet)and running paradigm(housed in static cage or with voluntary running wheel).An integrative 16S rDNA sequencing and metabolites profiling was synchronously performed to characterize the effects of voluntary wheel running on gut microbiota and metabolites.It showed that voluntary wheel running prevented the detrimental effects of high-fat feeding on glucose metabolism 16S rDNA sequencing showed remarkable changes in Rikenella and Marvinbryantia genera.Metabolic profiling indicated multiple altered metabolites,which were enriched in secondary bile acid biosynthesis signaling.In conclusion,our study indicated that voluntary wheel running significantly improved glucose metabolism and counteracted the deleterious effects of high-fat feeding on body weight and glucose intolerance.We further found that voluntary wheel running could integratively program gut microbiota composition and fecal metabolites changes,and may regulate muricholic acid metabolism and secondary bile acid biosynthesis in high-fat fed mice. 展开更多
关键词 High-fat diet Voluntary wheel running Gut microbiota metabolomics Glucose metabolism
下载PDF
Targeting methyltransferase-like 5-mediated sphingomyelin metabolism:A novel therapeutic approach in gastric cancer
15
作者 Jin-Juan Zhang Chang Yuan Sheng-Chun Dang 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第10期4060-4063,共4页
Gastric cancer(GC)is a global health problem and a leading cause of cancerrelated deaths,with its mortality rate ranking third among all cancers.The etiology and progression of GC are characterized by a complex interp... Gastric cancer(GC)is a global health problem and a leading cause of cancerrelated deaths,with its mortality rate ranking third among all cancers.The etiology and progression of GC are characterized by a complex interplay of genetic and epigenetic changes,which present challenges for its early diagnosis and effective treatment.Elucidating the mechanisms underlying the occurrence and development of GC and identifying novel biomarkers for early detection and prognosis are crucial to improving patient outcomes.This editorial examines the role of methyltransferase-like 5(METTL5)in the progression of GC through sphingomyelin metabolism by considering an article published by Zhang et al in the World Journal of Gastrointestinal Oncology in 2024,which is entitled“METTL5 promotes GC progression via sphingomyelin metabolism”.These authors investigated the biological behavior of METTL5 in GC by examining its expression patterns,clinical relevance,functional effect,and potential mechanisms,as well as its response to chemotherapy.This editorial provides valuable insights into the role of METTL5 in the progression of GC and its potential as a therapeutic target. 展开更多
关键词 Gastric cancer Methyltransferase-like 5 Sphingomyelin metabolism Biomarkers Chemotherapy response
下载PDF
Gut microbiota-mediated metabolism of Panax notoginseng saponins and its role in pharmacokinetics and pharmacodynamics
16
作者 Yu-Ying Zheng Wei-Wei Su +2 位作者 Yu-Ling Liu Wei-Jian Zhang Xuan Zeng 《Traditional Medicine Research》 2024年第12期41-50,共10页
Panax notoginseng saponins(PNS)are a class of effective ingredients in Notoginseng Radix et Rhizoma,a well-known herbal medicine called San-Qi in Chinese.After oral administration,PNS inevitably interacts with gut mic... Panax notoginseng saponins(PNS)are a class of effective ingredients in Notoginseng Radix et Rhizoma,a well-known herbal medicine called San-Qi in Chinese.After oral administration,PNS inevitably interacts with gut microbiota,and thus affect the pharmacokinetic profiles and pharmacological effects.To date,studies concering gut microbiota-mediated metabolism of PNS have not been reviewed systematically.Herein,we outline the metabolic profiles of Panax notoginseng saponins mediated by gut microbiota,as well as its role in the pharmacokinetics and pharmacodynamics on the basis of reported data.The metabolic pathways of primary saponins are proposed,and step-by-step deglycosylation is found to be the primary degradation pathways of PNS mediated by gut microbiota.Specific microorganisms and enzymes involved in the metabolic processes were summarized.Gut microbiota is deeply involved in the metabolism of PNS,affects the pharmacokinetic profiles,and produces a series of active metabolites.These metabolites were documented to play an essential role in the efficacy of the parent compounds.Future studies should focus on strengthening the real-world evidence,defining the interaction between gut microbiota and PNS,and developing the strategy for modulating gut microbiota to enhance the bioavailability and efficacy of PNS.These information would be useful for further research and clinical application of PNS. 展开更多
关键词 Panax notoginseng saponins gut microbiota metabolism PHARMACOKINETICS PHARMACODYNAMICS
下载PDF
Development and Validation of a Carbohydrate Metabolism-Related Model for Predicting Prognosis and Immune Landscape in Hepatocellular Carcinoma Patients
17
作者 Hong-xiang HUANG Pei-yuan ZHONG +9 位作者 Ping LI Su-juan PENG Xin-jing DING Xiang-lian CAI Jin-hong CHEN Xie ZHUI Zhi-hui LUI Xing-yu TAO Yang-yang LIU Li CHEN 《Current Medical Science》 SCIE CAS 2024年第4期771-788,共18页
Objective The activities and products of carbohydrate metabolism are involved in key processes of cancer.However,its relationship with hepatocellular carcinoma(HCC)is unclear.Methods The cancer genome atlas(TCGA)-HCC ... Objective The activities and products of carbohydrate metabolism are involved in key processes of cancer.However,its relationship with hepatocellular carcinoma(HCC)is unclear.Methods The cancer genome atlas(TCGA)-HCC and ICGC-LIRI-JP datasets were acquired via public databases.Differentially expressed genes(DEGs)between HCC and control samples in the TCGA-HCC dataset were identified and overlapped with 355 carbohydrate metabolism-related genes(CRGs)to obtain differentially expressed CRGs(DE-CRGs).Then,univariate Cox and least absolute shrinkage and selection operator(LASSO)analyses were applied to identify risk model genes,and HCC samples were divided into high/low-risk groups according to the median risk score.Next,gene set enrichment analysis(GSEA)was performed on the risk model genes.The sensitivity of the risk model to immunotherapy and chemotherapy was also explored.Results A total of 8 risk model genes,namely,G6PD,PFKFB4,ACAT1,ALDH2,ACYP1,OGDHL,ACADS,and TKTL1,were identified.Moreover,the risk score,cancer status,age,and pathologic T stage were strongly associated with the prognosis of HCC patients.Both the stromal score and immune score had significant negative/positive correlations with the risk score,reflecting the important role of the risk model in immunotherapy sensitivity.Furthermore,the stromal and immune scores had significant negative/positive correlations with risk scores,reflecting the important role of the risk model in immunotherapy sensitivity.Eventually,we found that high-/low-risk patients were more sensitive to 102 drugs,suggesting that the risk model exhibited sensitivity to chemotherapy drugs.The results of the experiments in HCC tissue samples validated the expression of the risk model genes.Conclusion Through bioinformatic analysis,we constructed a carbohydrate metabolism-related risk model for HCC,contributing to the prognosis prediction and treatment of HCC patients. 展开更多
关键词 hepatocellular carcinoma carbohydrate metabolism the cancer genome atlas BIOINFORMATICS
下载PDF
Plant-based meat analogues aggravated lipid accumulation by regulating lipid metabolism homeostasis in mice
18
作者 Yunting Xie Linlin Cai +4 位作者 Zhiji Huang Kai Shan Xinglian Xu Guanghong Zhou Chunbao Li 《Food Science and Human Wellness》 SCIE CSCD 2024年第2期946-960,共15页
To determine the effects of plant-based meat analogues on the metabolic health and the possible mechanisms,mice were fed with a real pork diet(AP),a real beef diet(AB),a plant-based pork analogue diet(PP)and plant-bas... To determine the effects of plant-based meat analogues on the metabolic health and the possible mechanisms,mice were fed with a real pork diet(AP),a real beef diet(AB),a plant-based pork analogue diet(PP)and plant-based beef analogue diet(PB)for 68 days.Compared with real meat,the plant-based meat analogues increased food and energy intake,body weight,white fat and liver weight and caused adipocyte hypertrophy,hepatic lipid droplet accumulation,and inflammatory responses in mice.Metabolomics revealed that plantbased meat analogues altered the composition of serum metabolites,which regulated lipid metabolism homeostasis.The PB diet upregulated gene expression related to lipid synthesis,lipolysis and adipocyte differentiation while the PP diet upregulated expression of lipolysis-related genes but downregulated expression of adipocyte differentiation-related genes in white adipose tissue.Meanwhile,both PP and PB diets upregulated lipid influx-and synthesis-related genes but downregulated lipid oxidation-related genes in liver.The specific metabolite biomarkers may affect fat accumulation mainly by direct lipid metabolism pathways or indirect amino acid metabolism,protein digestion and absorption,bile secretion,aminoacyl-tRNA biosynthesis,neuroactive ligand-receptor interaction and ABC transporters pathways.These findings provide a new insight into understanding the differences in nutritional functions of meat and plant-based meat analogues. 展开更多
关键词 Meat analogues metabolomics Lipid metabolism Adipose tissue dysfunction Ectopic fat deposition
下载PDF
Oligomeric procyanidins combined with Parabacteroides distasonis ameliorate high-fat diet-induced atherosclerosis by regulating lipid metabolism,inflammation reaction and bile acid metabolism in ApoE^(-/-)mice
19
作者 Mingjuan Xu Cheng Lü +5 位作者 Yiqing Hu Mo Zhang Jinxin Shen Chunyi Liu Qun Lu Rui Liu 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第5期2847-2856,共10页
Atherosclerosis(AS)is the main pathological basis of cardiovascular diseases.Hence,the prevention and treatment strategies of AS have attracted great research attention.As a potential probiotic,Pararabacteroides dista... Atherosclerosis(AS)is the main pathological basis of cardiovascular diseases.Hence,the prevention and treatment strategies of AS have attracted great research attention.As a potential probiotic,Pararabacteroides distasonis has a positive regulatory effect on lipid metabolism and bile acids(BAs)profile.Oligomeric procyanidins have been confirmed to be conducive to the prevention and treatment of AS,whose antiatherosclerotic effect may be associated with the promotion of gut probiotics.However,it remains unclear whether and how oligomeric procyanidins and P.distasonis combined(PPC)treatment can effectively alleviate high-fat diet(HFD)-induced AS.In this study,PPC treatment was found to significantly decrease atherosclerotic lesion,as well as alleviate the lipid metabolism disorder,inflammation and oxidative stress injury in ApoE^(-/-)mice.Surprisingly,targeted metabolomics demonstrated that PPC intervention altered the BA profile in mice by regulating the ratio of secondary BAs to primary BAs,and increased fecal BAs excretion.Further,quantitative polymerase chain reaction(qPCR)analysis showed that PPC intervention facilitated reverse cholesterol transport by upregulating Srb1 expression;In addition,PPC intervention promoted BA synthesis from cholesterol in liver by upregulating Cyp7a1 expression via suppression of the farnesoid X receptor(FXR)pathway,thus exhibiting a significant serum cholesterol-lowering effect.In summary,PPC attenuated HFD-induced AS in ApoE^(-/-)mice,which provides new insights into the design of novel and efficient anti-atherosclerotic strategies to prevent AS based on probiotics and prebiotics. 展开更多
关键词 ATHEROSCLEROSIS Pararabacteroides distasonis Oligomeric procyanidins Reverse cholesterol transport Bile acid metabolism
下载PDF
Effects ofγ-aminobutyric Acid on Nitrogen Metabolism in Roots and Leaves of Cold-stressed Rice(Oryza sativa L.)During Early Vegetative Growth
20
作者 Jia Yan Gong Weibin +9 位作者 Ma Huimiao Liu Ge Zhang Can Liu Aixin Han Yiming Dang Yuxiang Bai Xu Wang Haixing Wu Yulong Xin Junying 《Journal of Northeast Agricultural University(English Edition)》 CAS 2024年第3期1-19,共19页
Cold stress adversely affects rice growth,particularly at the early vegetative growth stage.In higher plants,nitrogen metabolism plays a central role in amino acid metabolism,plant defense mechanisms and productivity.... Cold stress adversely affects rice growth,particularly at the early vegetative growth stage.In higher plants,nitrogen metabolism plays a central role in amino acid metabolism,plant defense mechanisms and productivity.This report investigated the effects of cold stress and supplementalγ-aminobutyric acid(GABA)under cold stress on nitrogen metabolism in rice seedlings.Cold stress resulted in a greater increase in the transformation to NH_(4)^(+)by nitrate reductase(NR)in roots,it further resulted in lower levels of NO_(3)^(-)content in roots,weakened glutamine glutamate(GOGAT/GS)pathway and elevated glutamate dehydrogenase(GDH)pathway of rice seedlings.Whereas,compared with cold stress,supplementation of GABA(2.5 mmol·L^(-1))could increase relative water content(79.43%)and biomass(34.15%)of rice seedlings.GABA could act as an amplifier of stress signal conduction/transduction to increase NR activity and promote NO_(3)^(-)assimilation in leaves.In addition,GABA elicited the Ca^(2+)signaling pathway which could promote the GDH pathway and GABA shunt,increase the activities of GS and GDH,and the expression of OsGAD2 and OsGDH family.The GABA might increase the ratio of the Glu family and avoid NH4+toxicity in order to raise the concentration of organic compounds and alleviate the harmful consequences of cold stress.Based on these observations,this study proposed that GABA mediated cold tolerance in rice seedlings by activating Ca^(2+)burst and subsequent crosstalk among Ca^(2+)signaling,GDH pathway and GABA shunt. 展开更多
关键词 cold stress γ-aminobutyric acid RICE nitrogen metabolism
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部