Neural stem cells,which are capable of multi-potential differentiation and self-renewal,have recently been shown to have clinical potential for repairing central nervous system tissue damage.However,the theme trends a...Neural stem cells,which are capable of multi-potential differentiation and self-renewal,have recently been shown to have clinical potential for repairing central nervous system tissue damage.However,the theme trends and knowledge structures for human neural stem cells have not yet been studied bibliometrically.In this study,we retrieved 2742 articles from the PubMed database from 2013 to 2018 using "Neural Stem Cells" as the retrieval word.Co-word analysis was conducted to statistically quantify the characteristics and popular themes of human neural stem cell-related studies.Bibliographic data matrices were generated with the Bibliographic Item Co-Occurrence Matrix Builder.We identified 78 high-frequency Medical Subject Heading(MeSH)terms.A visual matrix was built with the repeated bisection method in gCLUTO software.A social network analysis network was generated with Ucinet 6.0 software and GraphPad Prism 5 software.The analyses demonstrated that in the 6-year period,hot topics were clustered into five categories.As suggested by the constructed strategic diagram,studies related to cytology and physiology were well-developed,whereas those related to neural stem cell applications,tissue engineering,metabolism and cell signaling,and neural stem cell pathology and virology remained immature.Neural stem cell therapy for stroke and Parkinson’s disease,the genetics of microRNAs and brain neoplasms,as well as neuroprotective agents,Zika virus,Notch receptor,neural crest and embryonic stem cells were identified as emerging hot spots.These undeveloped themes and popular topics are potential points of focus for new studies on human neural stem cells.展开更多
Hyperstatic structure plane model being built by structural mechanics is studied. Space model precisely reflected in real stress of the structure is built by finite element method (FEM) analysis commerce software. M...Hyperstatic structure plane model being built by structural mechanics is studied. Space model precisely reflected in real stress of the structure is built by finite element method (FEM) analysis commerce software. Mapping model of complex structure system is set up, with convenient calculation just as in plane model and comprehensive information as in space model. Plane model and space model are calculated under the same working condition. Plane model modular construction inner force is considered as input data; Space model modular construction inner force is considered as output data. Thus specimen is built on input data and output dam. Character and affiliation are extracted through training specimen, with the employment of nonlinear mapping capability of the artificial neural network. Mapping model with interpolation and extrpolation is gained, laying the foundation for optimum design. The steel structure of high-layer parking system (SSHLPS) is calculated as an instance. A three-layer back-propagation (BP) net including one hidden layer is constructed with nine input nodes and eight output nodes for a five-layer SSHLPS. The three-layer structure optimization result through the mapping model interpolation contrasts with integrity re-analysis, and seven layers structure through the mapping model extrpulation contrasts with integrity re-analysis. Any layer SSHLPS among 1-8 can be calculated with much accuracy. Amount of calculation can also be reduced if it is appfied into the same topological structure, with reduced distortion and assured precision.展开更多
基金supported by the National Natural Science Foundation of China,No.81471308(to JL)the Stem Cell Clinical Research Project in China,No.CMR-20161129-1003(to JL)the Innovation Technology Funding of Dalian in China,No.2018J11CY025(to JL)
文摘Neural stem cells,which are capable of multi-potential differentiation and self-renewal,have recently been shown to have clinical potential for repairing central nervous system tissue damage.However,the theme trends and knowledge structures for human neural stem cells have not yet been studied bibliometrically.In this study,we retrieved 2742 articles from the PubMed database from 2013 to 2018 using "Neural Stem Cells" as the retrieval word.Co-word analysis was conducted to statistically quantify the characteristics and popular themes of human neural stem cell-related studies.Bibliographic data matrices were generated with the Bibliographic Item Co-Occurrence Matrix Builder.We identified 78 high-frequency Medical Subject Heading(MeSH)terms.A visual matrix was built with the repeated bisection method in gCLUTO software.A social network analysis network was generated with Ucinet 6.0 software and GraphPad Prism 5 software.The analyses demonstrated that in the 6-year period,hot topics were clustered into five categories.As suggested by the constructed strategic diagram,studies related to cytology and physiology were well-developed,whereas those related to neural stem cell applications,tissue engineering,metabolism and cell signaling,and neural stem cell pathology and virology remained immature.Neural stem cell therapy for stroke and Parkinson’s disease,the genetics of microRNAs and brain neoplasms,as well as neuroprotective agents,Zika virus,Notch receptor,neural crest and embryonic stem cells were identified as emerging hot spots.These undeveloped themes and popular topics are potential points of focus for new studies on human neural stem cells.
基金This project is supported by Provincial Natural Science Foundation of Shanxi, China (No. 20041074)Provincial Natural Science Youth Foundation of Shanxi, China (No. 20051030)Provincial Education Office Key Subject of Shanxi, China (No. 20045027-20045028)
文摘Hyperstatic structure plane model being built by structural mechanics is studied. Space model precisely reflected in real stress of the structure is built by finite element method (FEM) analysis commerce software. Mapping model of complex structure system is set up, with convenient calculation just as in plane model and comprehensive information as in space model. Plane model and space model are calculated under the same working condition. Plane model modular construction inner force is considered as input data; Space model modular construction inner force is considered as output data. Thus specimen is built on input data and output dam. Character and affiliation are extracted through training specimen, with the employment of nonlinear mapping capability of the artificial neural network. Mapping model with interpolation and extrpolation is gained, laying the foundation for optimum design. The steel structure of high-layer parking system (SSHLPS) is calculated as an instance. A three-layer back-propagation (BP) net including one hidden layer is constructed with nine input nodes and eight output nodes for a five-layer SSHLPS. The three-layer structure optimization result through the mapping model interpolation contrasts with integrity re-analysis, and seven layers structure through the mapping model extrpulation contrasts with integrity re-analysis. Any layer SSHLPS among 1-8 can be calculated with much accuracy. Amount of calculation can also be reduced if it is appfied into the same topological structure, with reduced distortion and assured precision.