In this paper,by characterizing Carleson measures,we investigate a class of bounded Toeplitz operator between weighted Bergman spaces with Békolléweights over the half-plane for all index choices.
In this paper,we investigate the complex symmetric structure of Toeplitz operators T_(φ)on the Hardy space over the bidisk.We first characterize the weighted composition operators,W_(u,v)which are J-symmetric and uni...In this paper,we investigate the complex symmetric structure of Toeplitz operators T_(φ)on the Hardy space over the bidisk.We first characterize the weighted composition operators,W_(u,v)which are J-symmetric and unitary.As a consequence,we characterize conjugations of the form A_(u,v).In addition,a class of conjugations of the form C_(λ,a)is introduced.We show that the class of conjugations C_(λ,a)coincides with the class of conjugations A_(u,v);we then characterize the complex symmetry of the Toeplitz operators T_(φ)with respect to the conjugation C_(λ,a).展开更多
Important operator characteristics (such boundedness or compactness) for particular classes of operators on particular reproducing kernel Hilbert spaces may be impacted by the behaviour of the operators on the reprodu...Important operator characteristics (such boundedness or compactness) for particular classes of operators on particular reproducing kernel Hilbert spaces may be impacted by the behaviour of the operators on the reproducing kernels. These results have been shown for Toeplitz operators on the Paley-Wiener space, a reproducing kernel Hilbert space over C. Furthermore, we show how the norm of such an operator has no relation to the supremum of the norms of the pictures of the normalization reproducing kernels of the space. As a result, if this supremum is finite, the operator is implicitly bounded. To further demonstrate that the operator norm is not the same as the supremum of the norms of the pictures of the real normalized reproducing kernels, another example is also provided. We also set out a necessary and sufficient condition for the operators’ compactness in terms of their limiting function on the reproducing kernels.展开更多
Let L be the infinitesimal generator of an analytic semigroup on L 2 (Rn)with Gaussian kernel bounds,and L-α/ 2 be the fractional integrals generated by L for 0< α<n.Let Tj,1 be the singular integral with nons...Let L be the infinitesimal generator of an analytic semigroup on L 2 (Rn)with Gaussian kernel bounds,and L-α/ 2 be the fractional integrals generated by L for 0< α<n.Let Tj,1 be the singular integral with nonsmooth kernel related to L,or Tj,1=I, Tj,2,Tj,4 be the linear operators,which are bounded on Lp(Rn)for 1<p<∞,and Tj,3=±I(j=1,2,···,m),where I is the identity operator.For b∈L 1 loc (Rn),denote the Toeplitz-type operator byΘαbfmj=1(Tj,1MbIαTj,2 + Tj,3MbIαTj,4),where Mb is a multiplication ope...展开更多
In this article,we study complex symmetric Toeplitz operators on the Bergman space and the pluriharmonic Bergman space in several variables.Surprisingly,the necessary and sufficient conditions for Toeplitz operators t...In this article,we study complex symmetric Toeplitz operators on the Bergman space and the pluriharmonic Bergman space in several variables.Surprisingly,the necessary and sufficient conditions for Toeplitz operators to be complex symmetric on these two spaces with certain conjugations are just the same.Also,some interesting symmetry properties of complex symmetric Toeplitz operators are obtained.展开更多
In this paper,we construct a function u in L2,1(Bn,dA),which is unbounded on any neighborhood of each boundary point of B n,such that Toeplitz operator Tu is compact on Dirichlet space D(Bn,dA).Furthermore,Schatte...In this paper,we construct a function u in L2,1(Bn,dA),which is unbounded on any neighborhood of each boundary point of B n,such that Toeplitz operator Tu is compact on Dirichlet space D(Bn,dA).Furthermore,Schatten p-class(0〈p〈∞) Toeplitz operators on Dirichlet space D(Bn,dA) with unbounded symbols are also obtained.展开更多
Let H^2(M) be a noncommutative Hardy space associated with semifinite von Neumann algebra M, we get the connection between numerical spectrum and the spectrum of Toeplitz operator Tt acting on H^2(M), and the norm...Let H^2(M) be a noncommutative Hardy space associated with semifinite von Neumann algebra M, we get the connection between numerical spectrum and the spectrum of Toeplitz operator Tt acting on H^2(M), and the norm of Toeplitz operator Tt is equivalent to ||t|| when t is hyponormal operator in M.展开更多
The convergence of several Galerkin-Petrov methods, including polynomial collocation and analytic element collocation methods of Toeplitz operators on Dirichlet space, is established. In particular, it is shown that s...The convergence of several Galerkin-Petrov methods, including polynomial collocation and analytic element collocation methods of Toeplitz operators on Dirichlet space, is established. In particular, it is shown that such methods converge if the basis and test function own certain circular symmetry.展开更多
In this paper, we investigate the Toeplitz operators with positive measure symbols on the Bergman spaces of bounded multi-connected domains and show that a Toeplitz operator is bounded or compact if and only if the sy...In this paper, we investigate the Toeplitz operators with positive measure symbols on the Bergman spaces of bounded multi-connected domains and show that a Toeplitz operator is bounded or compact if and only if the symbol measure is a Carleson or vanishing Carleson measure respectively.展开更多
In this paper,we study unbounded complex symmetric Toeplitz operators on the Hardy space H^(2)(D) and the Fock space g^(2).The technique used to investigate the complex symmetry of unbounded Toeplitz operators is diff...In this paper,we study unbounded complex symmetric Toeplitz operators on the Hardy space H^(2)(D) and the Fock space g^(2).The technique used to investigate the complex symmetry of unbounded Toeplitz operators is different from that used to investigate the complex symmetry of bounded Toeplitz operators.展开更多
In this paper we consider the block Toeplitz operators TФ on the weighted Bergman space A2α(D, Cn) and we give a necessary and sufficient condition for the hyponor-mality of block Toeplitz operators with symbol in...In this paper we consider the block Toeplitz operators TФ on the weighted Bergman space A2α(D, Cn) and we give a necessary and sufficient condition for the hyponor-mality of block Toeplitz operators with symbol in the class of functions Ф=F + G* withmatrix-valued polynomial functions F and G with degree 2.展开更多
In this article,we study some characterizations of Toeplitz operators with positive operator-valued function as symbols on the vector-valued generalized Bargmann-Fock spaces Fψ^2.Main results including Fock-Carleson ...In this article,we study some characterizations of Toeplitz operators with positive operator-valued function as symbols on the vector-valued generalized Bargmann-Fock spaces Fψ^2.Main results including Fock-Carleson condition,bounded Toeplitz operators,compact Toeplitz operators,and Toeplitz operators in the Schatten-p class are all considered.展开更多
Suppose T^k,l and T^k,2 are singular integrals with variable kernels and mixed homogeneity or ±I (the identity operator). Denote the Toeplitz type operator by T^b=k=1∑^QT^k,1M^bT^k,2 where M^bf= bf. In this pa...Suppose T^k,l and T^k,2 are singular integrals with variable kernels and mixed homogeneity or ±I (the identity operator). Denote the Toeplitz type operator by T^b=k=1∑^QT^k,1M^bT^k,2 where M^bf= bf. In this paper, the boundedness of Tb on weighted Morrey space are obtained when b belongs to the weighted Lipschitz function space and weighted BMO function space, respectively.展开更多
We consider Toeplitz operators Tu with symbol u on the Bergman space of the unit ball,and then study the convergences and summability for the sequences of powers of Toeplitz operators.We first charactreize analytic sy...We consider Toeplitz operators Tu with symbol u on the Bergman space of the unit ball,and then study the convergences and summability for the sequences of powers of Toeplitz operators.We first charactreize analytic symbolsφfor which the sequence Tφ*kf or Tφkf converges to 0 or∞as k→∞in norm for every nonzero Bergman function f.Also,we characterize analytic symbolsφfor which the norm of such a sequence is summable or not summable.We also study the corresponding problems on an infinite direct sum of Bergman spaces as a generalization of our result.展开更多
We completely characterize commutativity of S and Sψ on La2(Dn)⊥ for bounded pluriharmonic symbols and ψ on Dn, and prove that SSψ = Sψ if and only if is analytic or ψˉ is analytic.
We consider dual Toeplitz operators on the orthogonal complements of the FockSobolev spaces of all nonnegative real orders.First,for symbols in a certain class containing all bounded functions,we study the problem of ...We consider dual Toeplitz operators on the orthogonal complements of the FockSobolev spaces of all nonnegative real orders.First,for symbols in a certain class containing all bounded functions,we study the problem of when an operator which is finite sums of the dual Toeplitz products is compact or zero.Next,for bounded symbols,we construct a symbol map and exhibit a short exact sequence associated with the C^(*)-algebra generated by all dual Toeplitz operators with bounded symbols.展开更多
Denote by Ω the Siegel domain in Cn, n 〉 1. In this paper, we study the essential spectra of Toeplitz operators defined on the Hardy space H2(а↓Ω). In addition, the characteristic equation of analytic Toeplitz ...Denote by Ω the Siegel domain in Cn, n 〉 1. In this paper, we study the essential spectra of Toeplitz operators defined on the Hardy space H2(а↓Ω). In addition, the characteristic equation of analytic Toeplitz operators iааs obtained.展开更多
In this work, we introduce a class of Hilbert spaces Fq of entire functions on the disk , , with reproducing kernel given by the q-exponential function eq(z);and we prove some properties concerning Toeplitz operators ...In this work, we introduce a class of Hilbert spaces Fq of entire functions on the disk , , with reproducing kernel given by the q-exponential function eq(z);and we prove some properties concerning Toeplitz operators on this space. The definition and properties of the space extend naturally those of the well-known classical Fock space. Next, we study the multiplication operator Dq by and the q-Derivative operator on the Fock space Fq;and we prove that these operators are adjoint-operators and continuous from this space into itself. Lastly, we study a generalized translation operators and a Weyl commutation relations on Fq .展开更多
基金supported by the Natural Science Foundation of China(12271134)the Shanxi Scholarship Council of China(2020–089)the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province(20200019).
文摘In this paper,by characterizing Carleson measures,we investigate a class of bounded Toeplitz operator between weighted Bergman spaces with Békolléweights over the half-plane for all index choices.
基金partially the National Natural Science Foundation of China(11771340,12101179,12171373)。
文摘In this paper,we investigate the complex symmetric structure of Toeplitz operators T_(φ)on the Hardy space over the bidisk.We first characterize the weighted composition operators,W_(u,v)which are J-symmetric and unitary.As a consequence,we characterize conjugations of the form A_(u,v).In addition,a class of conjugations of the form C_(λ,a)is introduced.We show that the class of conjugations C_(λ,a)coincides with the class of conjugations A_(u,v);we then characterize the complex symmetry of the Toeplitz operators T_(φ)with respect to the conjugation C_(λ,a).
文摘Important operator characteristics (such boundedness or compactness) for particular classes of operators on particular reproducing kernel Hilbert spaces may be impacted by the behaviour of the operators on the reproducing kernels. These results have been shown for Toeplitz operators on the Paley-Wiener space, a reproducing kernel Hilbert space over C. Furthermore, we show how the norm of such an operator has no relation to the supremum of the norms of the pictures of the normalization reproducing kernels of the space. As a result, if this supremum is finite, the operator is implicitly bounded. To further demonstrate that the operator norm is not the same as the supremum of the norms of the pictures of the real normalized reproducing kernels, another example is also provided. We also set out a necessary and sufficient condition for the operators’ compactness in terms of their limiting function on the reproducing kernels.
基金Supported by the NNSF of China(10571014)SEDF of China(20040027001)
文摘Let L be the infinitesimal generator of an analytic semigroup on L 2 (Rn)with Gaussian kernel bounds,and L-α/ 2 be the fractional integrals generated by L for 0< α<n.Let Tj,1 be the singular integral with nonsmooth kernel related to L,or Tj,1=I, Tj,2,Tj,4 be the linear operators,which are bounded on Lp(Rn)for 1<p<∞,and Tj,3=±I(j=1,2,···,m),where I is the identity operator.For b∈L 1 loc (Rn),denote the Toeplitz-type operator byΘαbfmj=1(Tj,1MbIαTj,2 + Tj,3MbIαTj,4),where Mb is a multiplication ope...
基金supported in part by the National Natural Science Foundation of China(11201331,11771323)。
文摘In this article,we study complex symmetric Toeplitz operators on the Bergman space and the pluriharmonic Bergman space in several variables.Surprisingly,the necessary and sufficient conditions for Toeplitz operators to be complex symmetric on these two spaces with certain conjugations are just the same.Also,some interesting symmetry properties of complex symmetric Toeplitz operators are obtained.
文摘In this paper,we construct a function u in L2,1(Bn,dA),which is unbounded on any neighborhood of each boundary point of B n,such that Toeplitz operator Tu is compact on Dirichlet space D(Bn,dA).Furthermore,Schatten p-class(0〈p〈∞) Toeplitz operators on Dirichlet space D(Bn,dA) with unbounded symbols are also obtained.
基金partly supported by Natural Science Foundation of the Xinjiang Uygur Autonomous Region(2013211A001)
文摘Let H^2(M) be a noncommutative Hardy space associated with semifinite von Neumann algebra M, we get the connection between numerical spectrum and the spectrum of Toeplitz operator Tt acting on H^2(M), and the norm of Toeplitz operator Tt is equivalent to ||t|| when t is hyponormal operator in M.
基金Supported by the National Natural Science Foundation of China (10371082)Chinese National Natural Science Foundation Committee Tianyuan Foundation (10526040)Guangzhou University Doctor Foundation (WXF-1001)
文摘The convergence of several Galerkin-Petrov methods, including polynomial collocation and analytic element collocation methods of Toeplitz operators on Dirichlet space, is established. In particular, it is shown that such methods converge if the basis and test function own certain circular symmetry.
基金This work was supported by the NSF (19971061) of China and the Science Foundation ofFushun Petroleum Institute.
文摘In this paper, we investigate the Toeplitz operators with positive measure symbols on the Bergman spaces of bounded multi-connected domains and show that a Toeplitz operator is bounded or compact if and only if the symbol measure is a Carleson or vanishing Carleson measure respectively.
基金partially supported by the National Natural Science Foundation of China(11771340)。
文摘In this paper,we study unbounded complex symmetric Toeplitz operators on the Hardy space H^(2)(D) and the Fock space g^(2).The technique used to investigate the complex symmetry of unbounded Toeplitz operators is different from that used to investigate the complex symmetry of bounded Toeplitz operators.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(2009-0093827)
文摘In this paper we consider the block Toeplitz operators TФ on the weighted Bergman space A2α(D, Cn) and we give a necessary and sufficient condition for the hyponor-mality of block Toeplitz operators with symbol in the class of functions Ф=F + G* withmatrix-valued polynomial functions F and G with degree 2.
基金Supported by National Natural Science Foundation of China(11471084,11301101,11971125)Young Innovative Talent Project of Department of Edcucation of Guangdong Province(2017KQNCX220)the Natural Research Project of Zhaoqing University(221622).
文摘In this article,we study some characterizations of Toeplitz operators with positive operator-valued function as symbols on the vector-valued generalized Bargmann-Fock spaces Fψ^2.Main results including Fock-Carleson condition,bounded Toeplitz operators,compact Toeplitz operators,and Toeplitz operators in the Schatten-p class are all considered.
文摘Suppose T^k,l and T^k,2 are singular integrals with variable kernels and mixed homogeneity or ±I (the identity operator). Denote the Toeplitz type operator by T^b=k=1∑^QT^k,1M^bT^k,2 where M^bf= bf. In this paper, the boundedness of Tb on weighted Morrey space are obtained when b belongs to the weighted Lipschitz function space and weighted BMO function space, respectively.
基金supported by NSFC(11771401)the last author was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2019R1I1A3A01041943)。
文摘We consider Toeplitz operators Tu with symbol u on the Bergman space of the unit ball,and then study the convergences and summability for the sequences of powers of Toeplitz operators.We first charactreize analytic symbolsφfor which the sequence Tφ*kf or Tφkf converges to 0 or∞as k→∞in norm for every nonzero Bergman function f.Also,we characterize analytic symbolsφfor which the norm of such a sequence is summable or not summable.We also study the corresponding problems on an infinite direct sum of Bergman spaces as a generalization of our result.
基金Foundation item: Supported by the Science Foundation of Zhejiang Education Ha11(20040850)Acknowledgment The authors would like to thank the referee for his useful comment.
文摘We completely characterize commutativity of S and Sψ on La2(Dn)⊥ for bounded pluriharmonic symbols and ψ on Dn, and prove that SSψ = Sψ if and only if is analytic or ψˉ is analytic.
基金supported by the NSFC(12271134,11771401)supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2019R1I1A3A01041943)。
文摘We consider dual Toeplitz operators on the orthogonal complements of the FockSobolev spaces of all nonnegative real orders.First,for symbols in a certain class containing all bounded functions,we study the problem of when an operator which is finite sums of the dual Toeplitz products is compact or zero.Next,for bounded symbols,we construct a symbol map and exhibit a short exact sequence associated with the C^(*)-algebra generated by all dual Toeplitz operators with bounded symbols.
基金Supported by National Natural Science Foundation of China(11271092)Natural Science Foundation of Guangdong Province(s2011010005367)+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education(20114410110001,20124410120002)SRF of Guangzhou Education Bureau(2012A088)
文摘Denote by Ω the Siegel domain in Cn, n 〉 1. In this paper, we study the essential spectra of Toeplitz operators defined on the Hardy space H2(а↓Ω). In addition, the characteristic equation of analytic Toeplitz operators iааs obtained.
文摘In this work, we introduce a class of Hilbert spaces Fq of entire functions on the disk , , with reproducing kernel given by the q-exponential function eq(z);and we prove some properties concerning Toeplitz operators on this space. The definition and properties of the space extend naturally those of the well-known classical Fock space. Next, we study the multiplication operator Dq by and the q-Derivative operator on the Fock space Fq;and we prove that these operators are adjoint-operators and continuous from this space into itself. Lastly, we study a generalized translation operators and a Weyl commutation relations on Fq .