This study examined the application of co-benefit-type wastewater treatment technology in the fish-processing industry. Given that there was a dearth of information on fish-processing industrial wastewater in Indonesi...This study examined the application of co-benefit-type wastewater treatment technology in the fish-processing industry. Given that there was a dearth of information on fish-processing industrial wastewater in Indonesia, site surveys were conducted. For the entire fish-processing industry throughout the country, the dissemination rate of wastewater treatment facilities was less than 50%. Using a co-benefit approach, a real-scale swim-bed technology (SBT) and a system combining an anaerobic baffled reactor (ABR) with SBT (ABR–SBT) were installed in a fishmeal processing factory in Bali, Indonesia, and the wastewater system process performance was evaluated. In a business-as-usual scenario, the estimated chemical oxygen demand load and greenhouse gas (GHG) emissions from wastewater from the Indonesian fish-processing industry were 33 000 tons per year and 220 000 tons of equivalent CO_(2) per year, respectively. On the other hand, the GHG emissions in the co-benefit scenarios of the SBT system and ABR–SBT system were 98 149 and 26 720 tons per year, respectively. Therefore, introducing co-benefit-type wastewater treatment to Indonesia’s fish-processing industry would significantly reduce pollution loads and GHG emissions.展开更多
Implementation of forestry activities as a climate change mitigation option is likely to result in a range of outcomes in addition to carbon sequestration and these include changes with respect to environmental, socia...Implementation of forestry activities as a climate change mitigation option is likely to result in a range of outcomes in addition to carbon sequestration and these include changes with respect to environmental, social and economic aspects. These impacts to the extent when positive are deemed “co-benefit” and if adverse and uncertain, imply risk. It is important to recognize that implementation of forestry mitigation activities can have varied environmental, socio-economic co-benefits and/or risks. Further, there is no general agreement on attribution of co-benefits and risks to specific forestry mitigation activities. An overarching risk to mitigation potential that could be realised by implementation of forestry activities is climate change. But, overall, forestry mitigation activities also contribute to the sustainable development agenda. Maximizing co-benefits of forestry mitigation measures can increase efficiency in achieving the objectives of other international agreements.展开更多
With policy incentives for the coalbed methane in energy industry,coalbed methane from coal production has been effectively improved by technology innovations in coalbed methane extraction and utilization.The progress...With policy incentives for the coalbed methane in energy industry,coalbed methane from coal production has been effectively improved by technology innovations in coalbed methane extraction and utilization.The progress of coalbed methane promotes the clean construction of energy system and contributes to carbon neutrality target.To quantitatively measure the contributions of the coalbed methane in energy industry,this paper builds a carbon emissions accounting system for coalbed methane in China and assesses the historical co-benefits of coalbed methane utilization from the aspects of emissions reduction,safety and economy.By using the parameters of gas content,raw coal production,gas extraction rate and utilization rate over the years,emissions reduction potential and economic viability of coal seam gas are estimated and the safety benefits of coal mine gas extraction are analyzed by using data for gas accidents and economic losses.The results reveal that with the increase in raw coal production,the great emission reduction potential of coalbed methane is expected to benefit clean energy system and the development of carbon neutrality by means of policy incentives and technology innovations.The co-benefit evaluation indicates the huge profitability of coalbed methane from 2012 to 2015 and the significance of emissions reduction and safety gain internalization.Safety benefits are obvious in the negative exponential function between the annual drainage quantities of coalbed methane and annual death tolls from coal mine gas accidents.Based on these results,relevant suggestions are put forward for sustainable development of the coalbed methane in energy industry.展开更多
An electricity generation planning model of the six major Chinese power grids was developed based on the General Algebraic Modeling System to evaluate and analyze the CDM (clean development mechanism), including con...An electricity generation planning model of the six major Chinese power grids was developed based on the General Algebraic Modeling System to evaluate and analyze the CDM (clean development mechanism), including consideration of the environmental co-benefits of reductions in air pollutants (SO~, NO~ and particulate matter) achieved by advanced electricity generation technologies incorporating CCS (carbon capture and storage). An objective function was developed that included revenue from sales of electric power, total system cost, the cost of CO2 transport and storage, and emissions reduction co-benefits for SOx, NO~, and particulate matter. The objective function was minimized using an optimization model. We also developed a method for evaluating and analyzing the potential for transferring advanced power generation technologies into the Chinese power system through the CDM. We found that: (1) thermal power generation is predominant in the Chinese electricity system and will remain so for a long time; (2) advanced thermal plants are being installed as a result of the CDM, which contribute to decreasing emissions of CO2 and other air pollutants; and (3) CCS projects have significant potential to reduce substantial and sustained CO2 emissions from the Chinese power and industrial sectors.展开更多
This study examines the effects of the inclusion of co-benefits on the potential capacity of advanced thermal plants with a linear programming model in the CDM (clean development mechanism) in India's power sector....This study examines the effects of the inclusion of co-benefits on the potential capacity of advanced thermal plants with a linear programming model in the CDM (clean development mechanism) in India's power sector. It investigates how different marginal damage costs of air pollutants affect the potential capacity of NGCC (natural gas combined cycle) and IGCC (integrated gasification combined cycle) by CDM projects with a scenario analysis. Three results are found from this analysis. First, IGCC and NGCC are installed at lower CER (certified emission reductions) prices when the marginal damage costs of air pollutants are added to the CER prices. Second, the CER prices of $1/tCO2 correspond with the sum of marginal damage costs of air pollutants of $150/t for NGCC and $30/t for IGCC in India's power sector. Thus, including the co-benefits into CDM attracts developing countries such as India where coal resource is redundant. Third, the SOx and NOx reduction benefits attained from the CDM projects become large in a grid where IGCC is installed.展开更多
文摘This study examined the application of co-benefit-type wastewater treatment technology in the fish-processing industry. Given that there was a dearth of information on fish-processing industrial wastewater in Indonesia, site surveys were conducted. For the entire fish-processing industry throughout the country, the dissemination rate of wastewater treatment facilities was less than 50%. Using a co-benefit approach, a real-scale swim-bed technology (SBT) and a system combining an anaerobic baffled reactor (ABR) with SBT (ABR–SBT) were installed in a fishmeal processing factory in Bali, Indonesia, and the wastewater system process performance was evaluated. In a business-as-usual scenario, the estimated chemical oxygen demand load and greenhouse gas (GHG) emissions from wastewater from the Indonesian fish-processing industry were 33 000 tons per year and 220 000 tons of equivalent CO_(2) per year, respectively. On the other hand, the GHG emissions in the co-benefit scenarios of the SBT system and ABR–SBT system were 98 149 and 26 720 tons per year, respectively. Therefore, introducing co-benefit-type wastewater treatment to Indonesia’s fish-processing industry would significantly reduce pollution loads and GHG emissions.
文摘Implementation of forestry activities as a climate change mitigation option is likely to result in a range of outcomes in addition to carbon sequestration and these include changes with respect to environmental, social and economic aspects. These impacts to the extent when positive are deemed “co-benefit” and if adverse and uncertain, imply risk. It is important to recognize that implementation of forestry mitigation activities can have varied environmental, socio-economic co-benefits and/or risks. Further, there is no general agreement on attribution of co-benefits and risks to specific forestry mitigation activities. An overarching risk to mitigation potential that could be realised by implementation of forestry activities is climate change. But, overall, forestry mitigation activities also contribute to the sustainable development agenda. Maximizing co-benefits of forestry mitigation measures can increase efficiency in achieving the objectives of other international agreements.
基金support from the National Natural Science Foundation of China(No.71704178)Beijing Excellent Talent Program(No.2017000020124G133)+1 种基金the Fundamental Research Funds for the Central Universities(Nos.2022SKNY01,2022YJSNY04)The suggestions from the Workshop of the Chinese Academy of Engineering are also appreciated.
文摘With policy incentives for the coalbed methane in energy industry,coalbed methane from coal production has been effectively improved by technology innovations in coalbed methane extraction and utilization.The progress of coalbed methane promotes the clean construction of energy system and contributes to carbon neutrality target.To quantitatively measure the contributions of the coalbed methane in energy industry,this paper builds a carbon emissions accounting system for coalbed methane in China and assesses the historical co-benefits of coalbed methane utilization from the aspects of emissions reduction,safety and economy.By using the parameters of gas content,raw coal production,gas extraction rate and utilization rate over the years,emissions reduction potential and economic viability of coal seam gas are estimated and the safety benefits of coal mine gas extraction are analyzed by using data for gas accidents and economic losses.The results reveal that with the increase in raw coal production,the great emission reduction potential of coalbed methane is expected to benefit clean energy system and the development of carbon neutrality by means of policy incentives and technology innovations.The co-benefit evaluation indicates the huge profitability of coalbed methane from 2012 to 2015 and the significance of emissions reduction and safety gain internalization.Safety benefits are obvious in the negative exponential function between the annual drainage quantities of coalbed methane and annual death tolls from coal mine gas accidents.Based on these results,relevant suggestions are put forward for sustainable development of the coalbed methane in energy industry.
文摘An electricity generation planning model of the six major Chinese power grids was developed based on the General Algebraic Modeling System to evaluate and analyze the CDM (clean development mechanism), including consideration of the environmental co-benefits of reductions in air pollutants (SO~, NO~ and particulate matter) achieved by advanced electricity generation technologies incorporating CCS (carbon capture and storage). An objective function was developed that included revenue from sales of electric power, total system cost, the cost of CO2 transport and storage, and emissions reduction co-benefits for SOx, NO~, and particulate matter. The objective function was minimized using an optimization model. We also developed a method for evaluating and analyzing the potential for transferring advanced power generation technologies into the Chinese power system through the CDM. We found that: (1) thermal power generation is predominant in the Chinese electricity system and will remain so for a long time; (2) advanced thermal plants are being installed as a result of the CDM, which contribute to decreasing emissions of CO2 and other air pollutants; and (3) CCS projects have significant potential to reduce substantial and sustained CO2 emissions from the Chinese power and industrial sectors.
文摘This study examines the effects of the inclusion of co-benefits on the potential capacity of advanced thermal plants with a linear programming model in the CDM (clean development mechanism) in India's power sector. It investigates how different marginal damage costs of air pollutants affect the potential capacity of NGCC (natural gas combined cycle) and IGCC (integrated gasification combined cycle) by CDM projects with a scenario analysis. Three results are found from this analysis. First, IGCC and NGCC are installed at lower CER (certified emission reductions) prices when the marginal damage costs of air pollutants are added to the CER prices. Second, the CER prices of $1/tCO2 correspond with the sum of marginal damage costs of air pollutants of $150/t for NGCC and $30/t for IGCC in India's power sector. Thus, including the co-benefits into CDM attracts developing countries such as India where coal resource is redundant. Third, the SOx and NOx reduction benefits attained from the CDM projects become large in a grid where IGCC is installed.