Ni-rich layered oxide cathodes have shown promise for high-energy lithium-ion batteries(LIBs)but are usually limited to mild environments because of their rapid performance degradation under extreme temperature condit...Ni-rich layered oxide cathodes have shown promise for high-energy lithium-ion batteries(LIBs)but are usually limited to mild environments because of their rapid performance degradation under extreme temperature conditions(below0°C and above 50 °C).Here,we report the design of F/Mo co-doped LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(FMNCM)cathode for high-performance LIBs from-20 to 60°C.F^(-) doping with high electronegativity into the cathode surface is found to enhance the stability of surface lattice structure and protect the interface from side reactions with the electrolyte by generating a LiF-rich surface layer.Concurrently,the Mo^(6+) doping suppresses phase transition,which blocks Li^(+)/Ni^(2+) mixing,and stabilizes lithium-ion diffusion pathway.Remarkably,the FMNCM cathode demonstrates excellent cycling stability at a high cutoff voltage of 4.4 V,even at 60°C,maintaining 90.6%capacity retention at 3 C after 150 cycles.Additionally,at temperatures as low as-20°C,it retains 77.1%of its room temperature capacity,achieving an impressive 97.5%capacity retention after 500 cycles.Such stable operation under wide temperatures has been further validated in practical Ah-level pouch-cells.This study sheds light on both fundamental mechanisms and practical implications for the design of advanced cathode materials for wide-temperature LIBs,presenting a promising path towards high-energy and long-cycling LIBs with temperatureadaptability.展开更多
Layered LiCoO_(2)(LCO)acts as a dominant cathode material for lithium-ion batteries(LIBs)in 3C products because of its high compacted density and volumetric energy density.Although improving the high cutoff voltage is...Layered LiCoO_(2)(LCO)acts as a dominant cathode material for lithium-ion batteries(LIBs)in 3C products because of its high compacted density and volumetric energy density.Although improving the high cutoff voltage is an effective strategy to increase its capacity,such behavior would trigger rapid capacity decay due to the surface or/and structure degradation.Herein,we propose a bi-functional surface strategy involving constructing a robust spinel-like phase coating layer with great integrity and compatibility to LiCoO_(2) and modulating crystal lattice by anion and cation gradient co-doping at the subsurface.As a result,the modified LiCoO_(2)(AFM-LCO)shows a capacity retention of 80.9%after 500 cycles between 3.0and 4.6 V.The Al,F,Mg enriched spinel-like phase coating layer serves as a robust physical barrier to effectively inhibit the undesired side reactions between the electrolyte and the cathode.Meanwhile,the Al,F,Mg gradient co-doping significantly enhances the surficial structure stability,suppresses Co dissolution and oxygen release,providing a stable path for Li-ions mobility all through the long-term cycles.Thus,the surface bi-functional strategy is an effective method to synergistically improve the electrochemical performances of LCO at a high cut-off voltage of 4.6 V.展开更多
S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB...S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB)degradation.The effects of two different mixing routes were identified on the MB degradation performance.Particularly,the catalyst obtained by the alcohol solvent evaporation(MOF-AEP)mixing route could degrade 95.60%MB(50 mg/L)within 4 min(degradation rate:K=0.78 min^(-1)),which was faster than that derived from the direct grinding method(MOF-DGP,80.97%,K=0.39 min^(-1)).X-ray photoelectron spectroscopy revealed that the Co-S content of MOF-AEP(43.39at%)was less than that of MOF-DGP(54.73at%),and the proportion of C-S-C in MOF-AEP(13.56at%)was higher than that of MOF-DGP(10.67at%).Density functional theory calculations revealed that the adsorption energy of Co for PMS was -2.94 eV when sulfur was doped as C-S-C on the carbon skeleton,which was higher than that when sulfur was doped next to cobalt in the form of Co-S bond(-2.86 eV).Thus,the C-S-C sites might provide more contributions to activate PMS compared with Co-S.Furthermore,the degradation parameters,including pH and MOF-AEP dosage,were investigated.Finally,radical quenching experiments and electron paramagnetic resonance(EPR)measurements revealed that ^(1)O_(2)might be the primary catalytic species,whereas·O~(2-)might be the secondary one in degrading MB.展开更多
Lithium (Li) metal batteries have attracted much attention owing to its ultra-high energy density.However,as important part of Li metal batteries,Li anodes still face many challenges,mainly including uncontrolled dend...Lithium (Li) metal batteries have attracted much attention owing to its ultra-high energy density.However,as important part of Li metal batteries,Li anodes still face many challenges,mainly including uncontrolled dendritic Li formation,dramatical volume variation and serious pulverization.Herein,manganese dioxide (MnO_(2)) nanosheet modified nitrogen (N),phosphorus (P) co-doping carbon nanofibers(NPC) on carbon cloth (CC)(MnO_(2)@NPC-CC) is successfully fabricated through electrodeposition approach and further treated with Li by the molten-infusion method to prepare Li based Mn@NPC-CC(Li-Mn@NPC-CC) electrode.The synergy of MnO_(2) and NPC obviously increases the reaction rate between MnO_(2)@NPC-CC and Li and guides even Li distribution over infusion process.Additionally,theoretical calculation,simulation and experimental results further indicate that N,P,Mn multi-doping effectively improves the superior lithiophilicity of Li-Mn@NPC-CC,which induces uniform Li deposition/dissolution to suppress dendrite growth over cycles.Moreover,conductive and porous NPC matrix not only effectively improves the stability of Li-Mn@NPC-CC,but also provides abundant spaces to accelerate the transfer of ion/electron and buffer electrode dimension variation during cycling.Hence,Li-Mn@NPC-CC-based symmetric cells exhibit extra-long cycling life (over 2200 h) with small hysteresis of 20 mV.When the LiMn@NPC-CC anode couples with air,Li iron phosphate (LiFePO_(4)),or hard carbon (C) cathode,the assembled full cells exhibit outstanding performance with low hysteresis and stable cycling properties.Especially,the corresponding pouch-typed Li–air cells also exhibit good performance at different bending angles and even power a series of electronic devices.展开更多
(La, N) co-doped TiO2 photocatalysts were synthesized using TiC14 sol-gel autoignidng synthesis (SAS) starting from a complex compound system of TiCl4-La(NO3)3-citric acid-NH4NO3-NHyH2O, in which the (La, N) c...(La, N) co-doped TiO2 photocatalysts were synthesized using TiC14 sol-gel autoignidng synthesis (SAS) starting from a complex compound system of TiCl4-La(NO3)3-citric acid-NH4NO3-NHyH2O, in which the (La, N) co-doped process was accompushed in the formation of TiO2 nanocrystals. The prepared samples were characterized by using X-ray diffraction (XRD), X-ray photoemission spectroscopy (XPS) and UV-vis diffuse reflectance spectra. The results indicated that nitrogen and lanthanum were incorporated into the lattice and interstices of titania nanocrystals, which resulted in narrowing the band gap and promoting the separation of photoexcited hole-electron pairs, respectively, and showing expected red-shifts and enhanced photocatalytic activity under visible light. The mechanism on nitrogen doping and enhancement in photocatalyfic activity of (La, N) co-doped titania by SAS was discussed in detail.展开更多
Carbonaceous materials have drawn much attention in potassium-ion batteries (PIBs) due to their low price and superior physicochemical properties. However, the application of carbonaceous materials in PIB anodes is hi...Carbonaceous materials have drawn much attention in potassium-ion batteries (PIBs) due to their low price and superior physicochemical properties. However, the application of carbonaceous materials in PIB anodes is hindered by sluggish kinetics and large volume expansion. Herein, N/S co-doped carbon nanocapsule (NSCN) is constructed for superior K+ storage. The NSCN possesses 3D nanocapsule framework with abundant meso/macropores, which guarantees structural robustness and accelerates ions/electrons transportation. The high-level N/S co-doping in carbon matrix not only generates ample defects and active sites for K+ adsorption, but also expands interlayer distance for facile K+ intercalation/deintercalation. As a result, the NSCN electrode delivers a high reversible capacity (408 mAh g^(−1) at 0.05 A g^(−1)), outstanding rate capability (149 mAh g^(−1) at 5 A g^(−1)) and favorable cycle stability (150m Ah g^(−1) at 2 A g^(−1) after 2000 cycles). Ex situ TEM, Raman and XPS measurements demonstrate the excellent stability and reversibility of NSCN electrode during potassiation/depotassiation process. This work provides inspiration for the optimization of energy storage materials by structure and doping engineering.展开更多
The geometric structure, band structure and density of states of pure, Ag-doped, N-doped, and N-Ag codoped wurtzite ZnO have been investigated by the first-principles ultra-soft pseudopotential method based on the den...The geometric structure, band structure and density of states of pure, Ag-doped, N-doped, and N-Ag codoped wurtzite ZnO have been investigated by the first-principles ultra-soft pseudopotential method based on the density functional theory. The calculated results show that the carrier concentration is increased in the ZnO crystal codoped by N and Ag, and the codoped structure is stable and is more in favour of the formation of p-type ZnO.展开更多
The development of simple and effective strategies to prepare electrocatalysts,which possess unique and stable structures comprised of metal/nonmetallic atoms for oxygen reduction reaction(ORR)and oxygen evolution rea...The development of simple and effective strategies to prepare electrocatalysts,which possess unique and stable structures comprised of metal/nonmetallic atoms for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER),is currently an urgent issue.Herein,an efficient bifunctional electrocatalyst featured by ultralong N,S-doped carbon nano-hollow-sphere chains about 1300 nm with encapsulated Co nanoparticles(Co-CNHSCs)is developed.The multifunctional catalytic properties of Co together with the heteroatom-induced charge redistribution(i.e.,modulating the electronic structure of the active site)result in superior catalytic activities toward OER and ORR in alkaline media.The optimized catalyst Co-CNHSC-3 displays an outstanding electrocatalytic ability for ORR and OER,a high specific capacity of 1023.6 mAh gZn^(-1),and excellent reversibility after 80 h at 10mA cm^(-2)in a Zn-air battery system.This work presents a new strategy for the design and synthesis of efficient multifunctional carbon-based catalysts for energy storage and conversion devices.展开更多
Although CoO is a promising electrode material for supercapacitors due to its high theoretical capacitance,the practical applications still suffering from inferior electrochemical activity owing to its low electrical ...Although CoO is a promising electrode material for supercapacitors due to its high theoretical capacitance,the practical applications still suffering from inferior electrochemical activity owing to its low electrical conductivity,poor structural stability and inefficient nanostructure.Herein,we report a novel Cu0/Cu+co-doped CoO composite with adjustable metallic Cu0 and ion Cu+via a facile strategy.Through interior(Cu+)and exterior(Cu0)decoration of CoO,the electrochemical performance of CoO electrode has been significantly improved due to both the beneficial flower-like nanostructure and the synergetic effect of Cu0/Cu+co-doping,which results in a significantly enhanced specific capacitance(695 F g^(-1) at 1 A g^(-1))and high cyclic stability(93.4%retention over 10,000 cycles)than pristine CoO.Furthermore,this co-doping strategy is also applicable to other transition metal oxide(NiO)with enhanced electrochemical performance.In addition,an asymmetric hybrid supercapacitor was assembled using the Cu0/Cu+co-doped CoO electrode and active carbon,which delivers a remarkable maximal energy density(35 Wh kg^(-1)),exceptional power density(16 kW kg^(-1))and ultralong cycle life(91.5%retention over 10,000 cycles).Theoretical calculations further verify that the co-doping of Cu^(0)/Cu^(+)can tune the electronic structure of CoO and improve the conductivity and electron transport.This study demonstrates a facile and favorable strategy to enhance the electrochemical performance of transition metal oxide electrode materials.展开更多
Green light-emitting Ba2SiO4:Eu^2+ phosphors co-doped with La or Y were synthesized by conventional solid-state reaction technique in reductive atmosphere(a mixture of 5% H2 and 95% N2).The results showed that the...Green light-emitting Ba2SiO4:Eu^2+ phosphors co-doped with La or Y were synthesized by conventional solid-state reaction technique in reductive atmosphere(a mixture of 5% H2 and 95% N2).The results showed that the co-doping of La and Y could greatly enhance the fluorescence intensity of Ba2SiO4:Eu2+ phosphors.The optimum doping concentration expressed by the x value in(Ba0.985-1.5xREx)2SiO4:0.03Eu^2+(RE=La or Y) was determined to be of 0.05.The excitation and emission peaks of all as-synthesized phosphors were wide bands.The excitation bands ranged from 250 to 400 nm, which matched well with the wavelength of near ultraviolet white light-emitting diodes(LED) chip and could be used as a potential candidate for the fabrication of white LED.The emission bands from 450 to 550 nm were typical 5d-4f transition emission of Eu^2+ and displayed un-symmetry profiles because of the two substitution sites of Ba^2+ with Eu^2+.展开更多
Hydrodeoxygenation of furfural(FF)into 2-methylfuran(MF)is a significant biomass utilization route.However,designing efficient and stable non-noble metal catalyst is still a huge challenge.Herein,we reported the N,O c...Hydrodeoxygenation of furfural(FF)into 2-methylfuran(MF)is a significant biomass utilization route.However,designing efficient and stable non-noble metal catalyst is still a huge challenge.Herein,we reported the N,O co-doped carbon anchored with Co nanoparticles(Co-SFB)synthesized by employing the organic ligands with the target heteroatoms.Raman,electron paramagnetic resonance(EPR),electrochemical impedance spectroscopy(EIS),and X-ray photoelectron spectroscopy(XPS)characterizations showed that the co-doping of N and O heteroatoms in the carbon support endows Co-SFB with enriched lone pair electrons,fast electron transfer ability,and strong metal-support interaction.These electronic properties resulted in strong FF adsorption as well as lower apparent reaction activation energy.At last,the obtained N,O co-doped Co/C catalyst showed excellent catalytic activity(nearly 100 mol%FF conversion and 94.6 mol%MF yield)and stability for in-situ dehydrogenation of FF into MF.This N,O co-doping strategy for the synthesis of highly efficient catalytic materials with controllable electronic state will provide an excellent opportunity to better understand the structure-function relationship.展开更多
Hollow nanostructures with external shells and inner voids have been proved to greatly shorten the transport distance of ions/electrons and buffer volume change,especially for the large-sized potassium-ions in seconda...Hollow nanostructures with external shells and inner voids have been proved to greatly shorten the transport distance of ions/electrons and buffer volume change,especially for the large-sized potassium-ions in secondary batteries.In this work,hollow carbon(HC) nanospheres embedded with S,P co-doped NiSe_(2)nanoparticles are fabricated by "drop and dry" and "dissolving and precipitation" processes to form Ni(OH)2nanocrystals followed by annealing with S and P dopants to form nanoparticles.The resultant S,P-NiSe_(2)/HC composite exhibits excellent cyclic performance with 131.6 mA h g^(-1)at1000 mA g^(-1)after 3000 cycles for K^(+)storage and a capacity of 417.1 mA h g^(-1)at 1000 mA g^(-1)after1000 cycles for Li^(+)storage.K-ion full cells are assembled and deliver superior cycling stability with a ca pacity of 72.5 mA h g^(-1)at 200 mA g^(-1)after 500 cycles.The hollow carbon shell with excellent electrical conductivity effectively promotes the transporta tion and tolerates large volume variation for both K^(+)and Li^(+).Density functional theory calculations confirm that the S and P co-doping NiSe_(2) enables stronger adsorption of K^(+)ions and higher electrical conductivity that contributes to the improved electrochemical performance.展开更多
Electrochemical reduction of CO_(2)(CERR)to value-added chemicals is an attractive strategy for greenhouse gas mitigation,and carbon recycles utilization.Conventional metal catalysts suffered from low durability and s...Electrochemical reduction of CO_(2)(CERR)to value-added chemicals is an attractive strategy for greenhouse gas mitigation,and carbon recycles utilization.Conventional metal catalysts suffered from low durability and sluggish kinetics impede the practical application.On the other hand,doped carbon materials recently demonstrate superior catalytic performance in CERR,which shows the potential to diminish the problems of metal catalysts to some extent.Herein,we present the design and fabrication of nitrogen(N),phosphorus(P)co-doped metal-free carbon materials as an efficient and stable electrocatalyst for reduction of CO_(2) to CO,which exhibits an excellent performance with a high faradaic efficiency of 92%(-0.55 V vs.RHE)and up to 24 h stability.A series of characterizations including TEM and XPS verified that nitrogen and phosphorous are successfully incorporated into the carbon matrix.Moreover,the comparisons between co-doping and single doping catalysts reveal that co-doping can significantly increase CERR performance.The improved catalytic activity is attributed to the synergetic effects between nitrogen and phosphorous dopants,which effectively modulate properties of the active site.The density functional theory(DFT)calculations were also performed to understand the synergy effects of dopants.It is revealed that the phosphorous doping can significantly lower the Gibbs free energy of COOH^(*)formation.Moreover,the introduction of the second dopants phosphorous can reduce the reaction barrier along the reaction path and cause polarization of density of states at the Fermi level.These changes can greatly enhance the activity of the catalysts.From a combined experimental and computational exploration,current work provides valuable insights into the reaction mechanism of CERR on N,P co-doped carbon catalysts,and the influence from synergy effects between dopants,which paves the way for the rational design of novel metal-free catalysts for CO2 electro-reduction.展开更多
Development of efficient and promising bifunctional electrocatalysts for oxygen reduction and evolutionreactions is desirable. Herein, cobalt nanoparticles embedded in nitrogen and sulfur co-doped carbonnanotubes(Co@N...Development of efficient and promising bifunctional electrocatalysts for oxygen reduction and evolutionreactions is desirable. Herein, cobalt nanoparticles embedded in nitrogen and sulfur co-doped carbonnanotubes(Co@NSCNT) were prepared by a facile pyrolytic treatment. The cobalt nanoparticles and co-doping of nitrogen and sulfur can improve the electron donor-acceptor characteristics of the carbon nan-otubes and provide more active sites for catalytic oxygen reduction and evolution reactions. The preparedCo@NSCNT, annealed at 900℃, showed excellent electrocatalytic performance and better durability thancommercial platinum catalysts. Additionally, Co@NSCNT-900 catalysts exhibited comparable onset poten-tials and Tafel slopes to ruthenium oxide. Overall, Co@NSCNT showed high activity and improved dura-bility for both oxygen evolution and reduction reactions.展开更多
基金the financial support from the National Natural Science Foundation of China(51972156,52072378,52102054 and 51927803)the National Key R&D Program of China(2022YFB3803400,2021YFB3800301)+2 种基金the Shenyang Science and Technology Program(22-322-3-19)the Youth Fund of the Education Department of Liaoning Province(LJKQZ20222324)the Outstanding Youth Fund of University of Science and Technology Liaoning(2023YQ11).
文摘Ni-rich layered oxide cathodes have shown promise for high-energy lithium-ion batteries(LIBs)but are usually limited to mild environments because of their rapid performance degradation under extreme temperature conditions(below0°C and above 50 °C).Here,we report the design of F/Mo co-doped LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(FMNCM)cathode for high-performance LIBs from-20 to 60°C.F^(-) doping with high electronegativity into the cathode surface is found to enhance the stability of surface lattice structure and protect the interface from side reactions with the electrolyte by generating a LiF-rich surface layer.Concurrently,the Mo^(6+) doping suppresses phase transition,which blocks Li^(+)/Ni^(2+) mixing,and stabilizes lithium-ion diffusion pathway.Remarkably,the FMNCM cathode demonstrates excellent cycling stability at a high cutoff voltage of 4.4 V,even at 60°C,maintaining 90.6%capacity retention at 3 C after 150 cycles.Additionally,at temperatures as low as-20°C,it retains 77.1%of its room temperature capacity,achieving an impressive 97.5%capacity retention after 500 cycles.Such stable operation under wide temperatures has been further validated in practical Ah-level pouch-cells.This study sheds light on both fundamental mechanisms and practical implications for the design of advanced cathode materials for wide-temperature LIBs,presenting a promising path towards high-energy and long-cycling LIBs with temperatureadaptability.
基金supported by the National Natural Science Foundation of China(22075170,52072233)the Beijing National Laboratory for Condensed Matter Physics。
文摘Layered LiCoO_(2)(LCO)acts as a dominant cathode material for lithium-ion batteries(LIBs)in 3C products because of its high compacted density and volumetric energy density.Although improving the high cutoff voltage is an effective strategy to increase its capacity,such behavior would trigger rapid capacity decay due to the surface or/and structure degradation.Herein,we propose a bi-functional surface strategy involving constructing a robust spinel-like phase coating layer with great integrity and compatibility to LiCoO_(2) and modulating crystal lattice by anion and cation gradient co-doping at the subsurface.As a result,the modified LiCoO_(2)(AFM-LCO)shows a capacity retention of 80.9%after 500 cycles between 3.0and 4.6 V.The Al,F,Mg enriched spinel-like phase coating layer serves as a robust physical barrier to effectively inhibit the undesired side reactions between the electrolyte and the cathode.Meanwhile,the Al,F,Mg gradient co-doping significantly enhances the surficial structure stability,suppresses Co dissolution and oxygen release,providing a stable path for Li-ions mobility all through the long-term cycles.Thus,the surface bi-functional strategy is an effective method to synergistically improve the electrochemical performances of LCO at a high cut-off voltage of 4.6 V.
基金financially supported by the National Natural Science Foundation of China(Nos.51602018 and 51902018)the Natural Science Foundation of Beijing Municipality(No.2154052)+3 种基金the China Postdoctoral Science Foundation(No.2014M560044)the Fundamental Research Funds for the Central Universities(No.FRF-MP-20-22)USTB Research Center for International People-to-people Exchange in Science,Technology and Civilization(No.2022KFYB007)Education and Teaching Reform Foundation at University of Science and Technology Beijing(Nos.2023JGC027,KC2022QYW06,and KC2022TS09)。
文摘S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB)degradation.The effects of two different mixing routes were identified on the MB degradation performance.Particularly,the catalyst obtained by the alcohol solvent evaporation(MOF-AEP)mixing route could degrade 95.60%MB(50 mg/L)within 4 min(degradation rate:K=0.78 min^(-1)),which was faster than that derived from the direct grinding method(MOF-DGP,80.97%,K=0.39 min^(-1)).X-ray photoelectron spectroscopy revealed that the Co-S content of MOF-AEP(43.39at%)was less than that of MOF-DGP(54.73at%),and the proportion of C-S-C in MOF-AEP(13.56at%)was higher than that of MOF-DGP(10.67at%).Density functional theory calculations revealed that the adsorption energy of Co for PMS was -2.94 eV when sulfur was doped as C-S-C on the carbon skeleton,which was higher than that when sulfur was doped next to cobalt in the form of Co-S bond(-2.86 eV).Thus,the C-S-C sites might provide more contributions to activate PMS compared with Co-S.Furthermore,the degradation parameters,including pH and MOF-AEP dosage,were investigated.Finally,radical quenching experiments and electron paramagnetic resonance(EPR)measurements revealed that ^(1)O_(2)might be the primary catalytic species,whereas·O~(2-)might be the secondary one in degrading MB.
基金funding support from the National Natural Science Foundation of China (21905151 and 51772162)the Youth Innovation and Technology Foundation of Shandong Higher Education Institutions, China (2019KJC004)+1 种基金the Outstanding Youth Foundation of Shandong Province, China (ZR2019JQ14)the Taishan Scholar Young Talent Program, Major Scientific and Technological Innovation Project (2019JZZY020405)。
文摘Lithium (Li) metal batteries have attracted much attention owing to its ultra-high energy density.However,as important part of Li metal batteries,Li anodes still face many challenges,mainly including uncontrolled dendritic Li formation,dramatical volume variation and serious pulverization.Herein,manganese dioxide (MnO_(2)) nanosheet modified nitrogen (N),phosphorus (P) co-doping carbon nanofibers(NPC) on carbon cloth (CC)(MnO_(2)@NPC-CC) is successfully fabricated through electrodeposition approach and further treated with Li by the molten-infusion method to prepare Li based Mn@NPC-CC(Li-Mn@NPC-CC) electrode.The synergy of MnO_(2) and NPC obviously increases the reaction rate between MnO_(2)@NPC-CC and Li and guides even Li distribution over infusion process.Additionally,theoretical calculation,simulation and experimental results further indicate that N,P,Mn multi-doping effectively improves the superior lithiophilicity of Li-Mn@NPC-CC,which induces uniform Li deposition/dissolution to suppress dendrite growth over cycles.Moreover,conductive and porous NPC matrix not only effectively improves the stability of Li-Mn@NPC-CC,but also provides abundant spaces to accelerate the transfer of ion/electron and buffer electrode dimension variation during cycling.Hence,Li-Mn@NPC-CC-based symmetric cells exhibit extra-long cycling life (over 2200 h) with small hysteresis of 20 mV.When the LiMn@NPC-CC anode couples with air,Li iron phosphate (LiFePO_(4)),or hard carbon (C) cathode,the assembled full cells exhibit outstanding performance with low hysteresis and stable cycling properties.Especially,the corresponding pouch-typed Li–air cells also exhibit good performance at different bending angles and even power a series of electronic devices.
文摘(La, N) co-doped TiO2 photocatalysts were synthesized using TiC14 sol-gel autoignidng synthesis (SAS) starting from a complex compound system of TiCl4-La(NO3)3-citric acid-NH4NO3-NHyH2O, in which the (La, N) co-doped process was accompushed in the formation of TiO2 nanocrystals. The prepared samples were characterized by using X-ray diffraction (XRD), X-ray photoemission spectroscopy (XPS) and UV-vis diffuse reflectance spectra. The results indicated that nitrogen and lanthanum were incorporated into the lattice and interstices of titania nanocrystals, which resulted in narrowing the band gap and promoting the separation of photoexcited hole-electron pairs, respectively, and showing expected red-shifts and enhanced photocatalytic activity under visible light. The mechanism on nitrogen doping and enhancement in photocatalyfic activity of (La, N) co-doped titania by SAS was discussed in detail.
基金the financial supports from the National Natural Science Foundation of China(Grant Nos.51872005,U1508201,52072002)。
文摘Carbonaceous materials have drawn much attention in potassium-ion batteries (PIBs) due to their low price and superior physicochemical properties. However, the application of carbonaceous materials in PIB anodes is hindered by sluggish kinetics and large volume expansion. Herein, N/S co-doped carbon nanocapsule (NSCN) is constructed for superior K+ storage. The NSCN possesses 3D nanocapsule framework with abundant meso/macropores, which guarantees structural robustness and accelerates ions/electrons transportation. The high-level N/S co-doping in carbon matrix not only generates ample defects and active sites for K+ adsorption, but also expands interlayer distance for facile K+ intercalation/deintercalation. As a result, the NSCN electrode delivers a high reversible capacity (408 mAh g^(−1) at 0.05 A g^(−1)), outstanding rate capability (149 mAh g^(−1) at 5 A g^(−1)) and favorable cycle stability (150m Ah g^(−1) at 2 A g^(−1) after 2000 cycles). Ex situ TEM, Raman and XPS measurements demonstrate the excellent stability and reversibility of NSCN electrode during potassiation/depotassiation process. This work provides inspiration for the optimization of energy storage materials by structure and doping engineering.
文摘The geometric structure, band structure and density of states of pure, Ag-doped, N-doped, and N-Ag codoped wurtzite ZnO have been investigated by the first-principles ultra-soft pseudopotential method based on the density functional theory. The calculated results show that the carrier concentration is increased in the ZnO crystal codoped by N and Ag, and the codoped structure is stable and is more in favour of the formation of p-type ZnO.
基金Collaborative Innovation Center of Suzhou Nano Science and TechnologyNational Natural Science Foundation of China,Grant/Award Numbers:21773163,22271203+3 种基金EPSRC for an Overseas Travel Grant,Grant/Award Number:EP/R023816/1State Key Laboratory of Organometallic Chemistry of Shanghai Institute of Organic Chemistry,Grant/Award Number:KF2021005Priority Academic Program Development of Jiangsu Higher Education InstitutionsProject of Scientific and Technologic Infrastructure of Suzhou,Grant/Award Number:SZS201905。
文摘The development of simple and effective strategies to prepare electrocatalysts,which possess unique and stable structures comprised of metal/nonmetallic atoms for oxygen reduction reaction(ORR)and oxygen evolution reaction(OER),is currently an urgent issue.Herein,an efficient bifunctional electrocatalyst featured by ultralong N,S-doped carbon nano-hollow-sphere chains about 1300 nm with encapsulated Co nanoparticles(Co-CNHSCs)is developed.The multifunctional catalytic properties of Co together with the heteroatom-induced charge redistribution(i.e.,modulating the electronic structure of the active site)result in superior catalytic activities toward OER and ORR in alkaline media.The optimized catalyst Co-CNHSC-3 displays an outstanding electrocatalytic ability for ORR and OER,a high specific capacity of 1023.6 mAh gZn^(-1),and excellent reversibility after 80 h at 10mA cm^(-2)in a Zn-air battery system.This work presents a new strategy for the design and synthesis of efficient multifunctional carbon-based catalysts for energy storage and conversion devices.
基金financially supported by the National Science Foundation of China(Grant No.11804106)。
文摘Although CoO is a promising electrode material for supercapacitors due to its high theoretical capacitance,the practical applications still suffering from inferior electrochemical activity owing to its low electrical conductivity,poor structural stability and inefficient nanostructure.Herein,we report a novel Cu0/Cu+co-doped CoO composite with adjustable metallic Cu0 and ion Cu+via a facile strategy.Through interior(Cu+)and exterior(Cu0)decoration of CoO,the electrochemical performance of CoO electrode has been significantly improved due to both the beneficial flower-like nanostructure and the synergetic effect of Cu0/Cu+co-doping,which results in a significantly enhanced specific capacitance(695 F g^(-1) at 1 A g^(-1))and high cyclic stability(93.4%retention over 10,000 cycles)than pristine CoO.Furthermore,this co-doping strategy is also applicable to other transition metal oxide(NiO)with enhanced electrochemical performance.In addition,an asymmetric hybrid supercapacitor was assembled using the Cu0/Cu+co-doped CoO electrode and active carbon,which delivers a remarkable maximal energy density(35 Wh kg^(-1)),exceptional power density(16 kW kg^(-1))and ultralong cycle life(91.5%retention over 10,000 cycles).Theoretical calculations further verify that the co-doping of Cu^(0)/Cu^(+)can tune the electronic structure of CoO and improve the conductivity and electron transport.This study demonstrates a facile and favorable strategy to enhance the electrochemical performance of transition metal oxide electrode materials.
基金Program for Changjiang Scholars and Innovative Research Team in University (IRT0730)the Key Project of Department of Science and Technology of Jiangxi ProvinceProject of Education Department of Jiangxi
文摘Green light-emitting Ba2SiO4:Eu^2+ phosphors co-doped with La or Y were synthesized by conventional solid-state reaction technique in reductive atmosphere(a mixture of 5% H2 and 95% N2).The results showed that the co-doping of La and Y could greatly enhance the fluorescence intensity of Ba2SiO4:Eu2+ phosphors.The optimum doping concentration expressed by the x value in(Ba0.985-1.5xREx)2SiO4:0.03Eu^2+(RE=La or Y) was determined to be of 0.05.The excitation and emission peaks of all as-synthesized phosphors were wide bands.The excitation bands ranged from 250 to 400 nm, which matched well with the wavelength of near ultraviolet white light-emitting diodes(LED) chip and could be used as a potential candidate for the fabrication of white LED.The emission bands from 450 to 550 nm were typical 5d-4f transition emission of Eu^2+ and displayed un-symmetry profiles because of the two substitution sites of Ba^2+ with Eu^2+.
基金supported by the National Key R&D Program of China(2021YFC2103704)the National Natural Science Foundation of China(22022812,21978259)+1 种基金Key R&D Program of Zhejiang(2022C01208)Institute of Zhejiang University-Quzhou S&T Planed Projects(IZQ2021KJ1001)。
文摘Hydrodeoxygenation of furfural(FF)into 2-methylfuran(MF)is a significant biomass utilization route.However,designing efficient and stable non-noble metal catalyst is still a huge challenge.Herein,we reported the N,O co-doped carbon anchored with Co nanoparticles(Co-SFB)synthesized by employing the organic ligands with the target heteroatoms.Raman,electron paramagnetic resonance(EPR),electrochemical impedance spectroscopy(EIS),and X-ray photoelectron spectroscopy(XPS)characterizations showed that the co-doping of N and O heteroatoms in the carbon support endows Co-SFB with enriched lone pair electrons,fast electron transfer ability,and strong metal-support interaction.These electronic properties resulted in strong FF adsorption as well as lower apparent reaction activation energy.At last,the obtained N,O co-doped Co/C catalyst showed excellent catalytic activity(nearly 100 mol%FF conversion and 94.6 mol%MF yield)and stability for in-situ dehydrogenation of FF into MF.This N,O co-doping strategy for the synthesis of highly efficient catalytic materials with controllable electronic state will provide an excellent opportunity to better understand the structure-function relationship.
基金financially supported by the Shenzhen Science and Technology Program(JCYJ20220530141012028),ChinaThe National Natural Science Foundation of China(22005178),China+2 种基金The Key Research and Development Program of Shandong Province(2021ZLGX01),ChianThe fellowship of China Postdoctoral Science Foundation(2022M722333),Chianthe Jiangsu Funding Program for Excellent Postdoctoral Talent,Chian。
文摘Hollow nanostructures with external shells and inner voids have been proved to greatly shorten the transport distance of ions/electrons and buffer volume change,especially for the large-sized potassium-ions in secondary batteries.In this work,hollow carbon(HC) nanospheres embedded with S,P co-doped NiSe_(2)nanoparticles are fabricated by "drop and dry" and "dissolving and precipitation" processes to form Ni(OH)2nanocrystals followed by annealing with S and P dopants to form nanoparticles.The resultant S,P-NiSe_(2)/HC composite exhibits excellent cyclic performance with 131.6 mA h g^(-1)at1000 mA g^(-1)after 3000 cycles for K^(+)storage and a capacity of 417.1 mA h g^(-1)at 1000 mA g^(-1)after1000 cycles for Li^(+)storage.K-ion full cells are assembled and deliver superior cycling stability with a ca pacity of 72.5 mA h g^(-1)at 200 mA g^(-1)after 500 cycles.The hollow carbon shell with excellent electrical conductivity effectively promotes the transporta tion and tolerates large volume variation for both K^(+)and Li^(+).Density functional theory calculations confirm that the S and P co-doping NiSe_(2) enables stronger adsorption of K^(+)ions and higher electrical conductivity that contributes to the improved electrochemical performance.
基金supported by the National Natural Science Foundation of China(21573255,21573062)Natural Science Foundation of Liao Ning Province(20180510014)+1 种基金supported by Joint Research Fund Liaoning-Shenyang National Laboratory for Materials Science and the State Key Laboratory of Catalytic Materials and Reaction Engineering(RIPP,SINOPEC)supported by the Special Program for Applied Research on Super Computation of the NSFC Guangdong Joint Fund(the second phase)under Grant No.U1501501。
文摘Electrochemical reduction of CO_(2)(CERR)to value-added chemicals is an attractive strategy for greenhouse gas mitigation,and carbon recycles utilization.Conventional metal catalysts suffered from low durability and sluggish kinetics impede the practical application.On the other hand,doped carbon materials recently demonstrate superior catalytic performance in CERR,which shows the potential to diminish the problems of metal catalysts to some extent.Herein,we present the design and fabrication of nitrogen(N),phosphorus(P)co-doped metal-free carbon materials as an efficient and stable electrocatalyst for reduction of CO_(2) to CO,which exhibits an excellent performance with a high faradaic efficiency of 92%(-0.55 V vs.RHE)and up to 24 h stability.A series of characterizations including TEM and XPS verified that nitrogen and phosphorous are successfully incorporated into the carbon matrix.Moreover,the comparisons between co-doping and single doping catalysts reveal that co-doping can significantly increase CERR performance.The improved catalytic activity is attributed to the synergetic effects between nitrogen and phosphorous dopants,which effectively modulate properties of the active site.The density functional theory(DFT)calculations were also performed to understand the synergy effects of dopants.It is revealed that the phosphorous doping can significantly lower the Gibbs free energy of COOH^(*)formation.Moreover,the introduction of the second dopants phosphorous can reduce the reaction barrier along the reaction path and cause polarization of density of states at the Fermi level.These changes can greatly enhance the activity of the catalysts.From a combined experimental and computational exploration,current work provides valuable insights into the reaction mechanism of CERR on N,P co-doped carbon catalysts,and the influence from synergy effects between dopants,which paves the way for the rational design of novel metal-free catalysts for CO2 electro-reduction.
基金supported by the Human Resources Development(No.20184030202070) of the Korea Institute of Energy Technology Evaluation and Planning(KETEP) grant funded by the Korea government Ministry of Trade, Industry and Energy
文摘Development of efficient and promising bifunctional electrocatalysts for oxygen reduction and evolutionreactions is desirable. Herein, cobalt nanoparticles embedded in nitrogen and sulfur co-doped carbonnanotubes(Co@NSCNT) were prepared by a facile pyrolytic treatment. The cobalt nanoparticles and co-doping of nitrogen and sulfur can improve the electron donor-acceptor characteristics of the carbon nan-otubes and provide more active sites for catalytic oxygen reduction and evolution reactions. The preparedCo@NSCNT, annealed at 900℃, showed excellent electrocatalytic performance and better durability thancommercial platinum catalysts. Additionally, Co@NSCNT-900 catalysts exhibited comparable onset poten-tials and Tafel slopes to ruthenium oxide. Overall, Co@NSCNT showed high activity and improved dura-bility for both oxygen evolution and reduction reactions.