The steel industry is a major source of CO_(2) emissions,and thus,the mitigation of carbon emissions is the most pressing challenge in this sector.In this paper,international environmental governance in the steel indu...The steel industry is a major source of CO_(2) emissions,and thus,the mitigation of carbon emissions is the most pressing challenge in this sector.In this paper,international environmental governance in the steel industry is reviewed,and the current state of development of low-carbon technologies is discussed.Additionally,low-carbon pathways for the steel industry at the current time are proposed,emphasizing prevention and treatment strategies.Furthermore,the prospects of low-carbon technologies are explored from the perspective of transitioning the energy structure to a“carbon-electricity-hydrogen”relationship.Overall,steel enterprises should adopt hydrogen-rich metallurgical technologies that are compatible with current needs and process flows in the short term,based on the carbon substitution with hydrogen(prevention)and the CCU(CO_(2) capture and utilization)concepts(treatment).Additionally,the capture and utilization of CO_(2) for steelmaking,which can assist in achieving short-term emission reduction targets but is not a long-term solution,is discussed.In conclusion,in the long term,the carbon metallurgical process should be gradually supplanted by a hydrogen-electric synergistic approach,thus transforming the energy structure of existing steelmaking processes and attaining near-zero carbon emission steelmaking technology.展开更多
Against the backdrop of global climate change and China’s“dual carbon”goals,the green transformation of the construction industry is imperative,and completing the transformation requires many dual carbon talents to...Against the backdrop of global climate change and China’s“dual carbon”goals,the green transformation of the construction industry is imperative,and completing the transformation requires many dual carbon talents to support it.This article focuses on the construction engineering technology major in higher vocational education.It explores in depth the specific requirements for construction engineering technology talents in terms of professional knowledge,vocational skills,and literacy under the dual carbon mode.Based on this,corresponding dual carbon talent training courses are proposed,aiming to provide theoretical support and practical guidance for cultivating high-quality dual carbon talents that meet the needs of the new era.展开更多
The comprehensive improvement strategy of intra-county environment pollution in the city and countryside was searched.By the research method which combined the microscopic view,the macroscopic view with the dynamic pe...The comprehensive improvement strategy of intra-county environment pollution in the city and countryside was searched.By the research method which combined the microscopic view,the macroscopic view with the dynamic perspective,the seriousness of rural water quality,soil and atmospheric pollution in Xiangxiang,Xiangtan and the surrounding areas in Shaoshan irrigated area was revealed.The control measure which was 'four-dimensional pollution in the city and countryside'—— low-carbon-high-value agriculture and the technology innovation was proposed.The low-carbon-high-value technology innovation industrialization demonstration in three parts which included the pre-production,mid-production and post-production deep-processing of cultivation and breeding industry in the ecological cyclic agricultural garden in Shaoshan irrigated area was the driving force.We tried to propel the low-carbon ecological cultivation and breeding industry which included the paddy rice,grass,tree,medicinal herbs and pig,cow,chick,duck,fish.We wanted to relieve the structural unbalance of previous cultivation and breeding industry,'cheap grain hurting the farmers' and the short-leg problem of social-economic-ecological benefit.The results showed that the low-carbon-high-value agricultural system was a poly-generation technology system which promoted the multi-level and grading utilization,saved the energy,reduced the consumption and cleaned the production based on the ecology.展开更多
Carbon emission is the current hot issue of global concern. How to assess various contributing factors for carbon emission is of great importance to find out the key factors and promote carbon emission reduction. In t...Carbon emission is the current hot issue of global concern. How to assess various contributing factors for carbon emission is of great importance to find out the key factors and promote carbon emission reduction. In this paper, the author constructs an identical equation for carbon emission, based on the economic aggregate, the economic structure, the efficiency of energy utilization, the structure of energy consumption, and the coefficient of carbon emission; by applying to LMDI decomposition technology, the author analyzes the carbon emission of China from 1995 to 2007 at industrial level and regional level. The results show that the expansion of economic aggregate is the main reason for China' s rapidly increasing carbon emission and the increase of energy utilization efficiency is the key factor that can hold back the increase of carbon emission. In addition, the change of industrial structure or regional structure and the change of traditional energy structure have limited influence on the carbon emission, and their potentials have not yet been exploited. At the end of this paper, the author proposes the efforts that China should make to reduce carbon emission.展开更多
Marine carbon sequestration is an important component of carbon dioxide capture, utilization and storage(CCUS) technology. It is crucial for achieving carbon peaking and carbon neutralization in China. However, CO_(2)...Marine carbon sequestration is an important component of carbon dioxide capture, utilization and storage(CCUS) technology. It is crucial for achieving carbon peaking and carbon neutralization in China. However, CO_(2) leakage may lead to seabed geological disasters and threaten the safety of marine engineering. Therefore, it is of great significance to study the safety monitoring technology of marine carbon sequestration.Zhanjiang is industrially developed and rich in carbon sources. Owing to the good physical properties and reservoirs and trap characteristics,Zhanjiang has huge storage potential. This paper explores the disaster mechanism associated with CO_(2) leakage in marine carbon sequestration areas. Based on the analysis of the development of Zhanjiang industry and relevant domestic monitoring technologies, several suggestions for safety monitoring of marine carbon sequestration are proposed: application of offshore aquaculture platforms, expansion and application of ocean observation networks, carbon sequestration safety monitoring and sensing system. Intended to build a comprehensive and multi-level safety monitoring system for marine carbon sequestration, the outcome of this study provides assistance for the development of marine carbon sequestration in China's offshore areas.展开更多
In this study,an integrated technology is proposed for the absorption and utilization of CO_(2)in alkanolamine solution for the preparation of BaCO_(3)in a high-gravity environment.The effects of absorbent type,high-g...In this study,an integrated technology is proposed for the absorption and utilization of CO_(2)in alkanolamine solution for the preparation of BaCO_(3)in a high-gravity environment.The effects of absorbent type,high-gravity factor,gas/liquid ratio,and initial BaCl2concentration on the absorption rate and amount of CO_(2)and the preparation of BaCO_(3)are investigated.The results reveal that the absorption rate and amount of CO_(2)follow the order of ethyl alkanolamine(MEA)>diethanol amine(DEA)>N-methyldiethanolamine(MDEA),and thus MEA is the most effective absorbent for CO_(2)absorption.The absorption rate and amount of CO_(2)under high gravity are higher than that under normal gravity.Notably,the absorption rate at 75 min under high gravity is approximately 2 times that under normal gravity.This is because the centrifugal force resulting from the high-speed rotation of the packing can greatly increase gas-liquid mass transfer and micromixing.The particle size of BaCO_(3)prepared in the rotating packed bed is in the range of 57.2—89 nm,which is much smaller than that prepared in the bubbling reactor(>100.3 nm),and it also has higher purity(99.6%)and larger specific surface area(14.119 m^(2)·g^(-1)).It is concluded that the high-gravity technology has the potential to increase the absorption and utilization of CO_(2)in alkanolamine solution for the preparation of BaCO_(3).This study provides new insights into carbon emissions reduction and carbon utilization.展开更多
The agricultural energy consumption per unit of GDP is selected as an indicator for measuring the development level of low-carbon agriculture. Using gray relational theory, I analyze the relationship between developme...The agricultural energy consumption per unit of GDP is selected as an indicator for measuring the development level of low-carbon agriculture. Using gray relational theory, I analyze the relationship between development level of agricultural science and technology and development level of low-carbon agriculture in China. The results show that the correlation between the two is prominent; the number of agricultural science and technology talents, the number of agricultural science and technology patents, and the number of agricultural science and technology input are three major factors influencing the development of low-carbon agriculture. On this basis, I propose to take further effective measures, and put forth corresponding recommendations, in order to improve the level of agricultural science and technology.展开更多
It is essential that China follows a low carbon pathway, in which technology plays a key role in the future economy and social development. Based on the Integrated Policy Assessment Model for China, this paper analyze...It is essential that China follows a low carbon pathway, in which technology plays a key role in the future economy and social development. Based on the Integrated Policy Assessment Model for China, this paper analyzes a technology development roadmap for China to achieve a low carbon scenario. The results show that there are plenty of potential and opportunities for China to move towards a low carbon society when given enhanced and accelerated applications and expansions of key low carbon technologies. Strong policy and measure supports from all sectors in China are needed to achieve this goal.展开更多
Space technology is a powerful tool for climate research. Satellite data improve knowledge of the human impact on the Planet’s physical geography. Similarly, remote sensing technology enhances understanding of the hu...Space technology is a powerful tool for climate research. Satellite data improve knowledge of the human impact on the Planet’s physical geography. Similarly, remote sensing technology enhances understanding of the human impact on rising global carbon emissions. However, so far satellites have been principally limited to measuring the carbon emissions of cities from space. Standing alone, satellite technology is incapable of advancing the goal of decarbonisation. This will be achieved only if cities create local methodologies that significantly enhance the carbon reduction process. There exists enormous potential to bridge remote sensing for earth observation and global environmental change with local action towards decarbonised urban renewal and redevelopment. Satellite remote sensing has the ability to demonstrate if local remedial strategies are succeeding, and assist with planning, developing, and monitoring low and zero carbon infrastructure systems. Satellite-derived data can facilitate informed discussion and decision-making between community stakeholders to deliver low carbon outcomes at the precinct scale. Satellite-based systems can be integrated within the urban fabric to assist climate change mitigation. This paper is based on current work implemented jointly with municipalities to ascertain where within city precincts carbon emissions originate and how they can ultimately be reduced. It presents space technology as an instrumental tool for understanding the carbon impact of cities—in terms of the carbon intensive patterns and processes that shape human society, as well as having great potential for providing end-user products to communities to enhance the process of decarbonising city precincts.展开更多
Zhang Zhuying,45,is now chief engineer in No.1 Carbon Plant un-der the Guizhou Aluminum Smelter.Graduated from Central South University of Technology in 1969,shewas assigned to Anode Paste Workshop belong to No.2 Bran...Zhang Zhuying,45,is now chief engineer in No.1 Carbon Plant un-der the Guizhou Aluminum Smelter.Graduated from Central South University of Technology in 1969,shewas assigned to Anode Paste Workshop belong to No.2 Branch under Gui-展开更多
China's technological efforts to tackle climate change have lasted for many years. It is necessary to test the effect of these efforts with quantitative method. To be exact, whether and how China's low-carbon ...China's technological efforts to tackle climate change have lasted for many years. It is necessary to test the effect of these efforts with quantitative method. To be exact, whether and how China's low-carbon technology innovation responds to climate change should be tested. Based on the2004-2015 panel data of 30 provinces in China, we use the method of ESDA analyzing the spatial correlation of China's low-carbon innovation technology. Furthermore, we use the spatial Durbin model empirically analyzing the spatial spillover effects. The results obtained are as follows: first,supply and demand of Chinese low-carbon innovation has some deviation in the spatial distribution. The low-carbon technology innovation as the supply factor shows the characteristics of expanding from the east to the west. Innovation in eastern China has always been the most active, but innovative activities in the middle and western China are gradually decreased.However, carbon emissions have the characteristics of moving westward, implying the change of technology demand different from technology supply. Second, China's low-carbon innovation actively responds to the trend of climate change, indicating China's technological efforts have paid off. However, the spatial spillover effects are not significant, showing that the efforts in each region of China still work for himself. Third, environmental regulation and market pull are important factors for low-carbon technology innovation. Among them, both supporting policy and inhibitory policy have significant impact on the local low-carbon technology innovation, but no significant spatial spillover effects. It shows that environmental policies in different regions are competitive and lack of demonstration effects. Economic growth and export as market pull have higher level of effect on low-carbon technology innovation for both local and adjacent areas.Some policy implications are proposed based on these results finally.展开更多
The demand on low-carbon emission fabrication technologies for energy storage materials is increasing dramatically with the global interest on carbon neutrality.As a promising active material for metal-sulfur batterie...The demand on low-carbon emission fabrication technologies for energy storage materials is increasing dramatically with the global interest on carbon neutrality.As a promising active material for metal-sulfur batteries,sulfur is of great interest due to its high-energy-density and abundance.However,there is a lack of industry-friendly and low-carbon fabrication strategies for high-performance sulfur-based active particles,which,however,is in critical need by their practical success.Herein,based on a hail-inspired sulfur nano-storm(HSN)technology developed in our lab,we report an energy-saving,solvent-free strategy for producing core-shell sulfur/carbon electrode particles(CNT@AC-S)in minutes.The fabrication of the CNT@AC-S electrode particles only involves low-cost sulfur blocks,commercial carbon nanotubes(CNT)and activated carbon(AC)micro-particles with high specific surface area.Based on the above core-shell CNT@AC-S particles,sulfur cathode with a high sulfur-loading of 9.2 mg cm^(-2) delivers a stable area capacity of 6.6 mAh cm^(-2) over 100 cycles.Furthermore,even for sulfur cathode with a super-high sulfur content(72 wt%over the whole electrode),it still delivers a high area capacity of 9 mAh cm^(-2) over50 cycles in a quasi-lean electrolyte condition.In a nutshell,this study brings a green and industryfriendly fabrication strategy for cost-effective production of rationally designed S-rich electrode particles.展开更多
After the reform and opening up,China's economy has developed rapidly.But in the process of economic development,the ecological environment has also paid a huge price.The destruction of the ecological environment ...After the reform and opening up,China's economy has developed rapidly.But in the process of economic development,the ecological environment has also paid a huge price.The destruction of the ecological environment directly affects survival and development of people.Therefore,it is necessary to strengthen environmental governance.Everyone has also begun to focus on low-carbon development.The construction industry is a serious waste of building materials with large energy dissipation.Therefore it is also a key industry for low-carbon transformation.This article mainly analyzes low-carbon building design technology and studies specific development strategies.展开更多
The world is experiencing global climate change, and most scientists attribute it to the accumulation in the atmosphere of carbon dioxide, methane, nitrous oxide, and chlorofluorocarbons. Because of its enormous emiss...The world is experiencing global climate change, and most scientists attribute it to the accumulation in the atmosphere of carbon dioxide, methane, nitrous oxide, and chlorofluorocarbons. Because of its enormous emission rate, carbon dioxide (CO2) is the main culprit. Almost all the anthropogenic CO2 emissions come from the burning of fossil fuels for electricity, heat, and transportation. Emissions of COg can be reduced by conservation, increased use of renewable energy sources, and increased efficiencies in both the production of electrical power and the transportation sector. Capture of CO2 can be accomplished with wet scrubbing, dry sorption, or biogenic fixation. After CO2 is captured, it must be transported either as a liquid or a supercritical fluid, which realistically can only be accomplished by pipeline or ship. Final disposal of CO2 will either be to underground reservoirs or to the ocean; at present, the underground option seems to be the only viable one. Various strategies and technologies involved with reduction of CO2 emissions and carbon capture and sequestration (CCS) are briefly reviewed in this paper.展开更多
With the issue of climate change increasingly restricting the sustainable development of society, people must realize that we must control atmospheric concentrations of greenhouse gases at a certain level. However, th...With the issue of climate change increasingly restricting the sustainable development of society, people must realize that we must control atmospheric concentrations of greenhouse gases at a certain level. However, the traditional model of economic development will lead to human demand for energy continuing to grow, followed by a growth in emissions of carbon dioxide. Obviously we must ensure that there is rapid economic development, but also to protect the human living environment, which is a very sharp contradiction. A good solution to this conflict is to take a new model of development --- a low-carbon economy. The so-called low-carbon economy refers to the reduction of greenhouse gas emissions, the application of new technologies, new materials and new practices, etc., through improvements, optimization or innovative production and business activities, to achieve the maximum degree of reduction of greenhouse gas emissions, and the formation of a new economic development model, the goal is to mitigate climate change and promote sustainable human development. On how to develop a low-carbon economy, domestic and foreign scholars have been studied from many angles, one of which is a consensus to reduce greenhouse gas emissions through the development and use of low-carbon technologies.展开更多
Carbon sequestration and emission reduction in the construction industry plays an important role in China’s goal of achieving carbon neutrality.Research in Zhuzhou city scored 42 since the assessment of the green bui...Carbon sequestration and emission reduction in the construction industry plays an important role in China’s goal of achieving carbon neutrality.Research in Zhuzhou city scored 42 since the assessment of the green building project situation as the research object,in hot summer and cold winter areas of analysis and evaluation on the development of green building technology,and then sums up the carbon neutral background the priority areas and tasks for the development of green building techniques,optimization of the construction industry into a new era under the background of green development to provide the reference.展开更多
The paper introduced low-carbon economy and low-carbon technology, and proposed the de-tailed technical measures of low-carbon build-ing technology. Moreover, it has quantitatively calculated the “implicit” CO2 emis...The paper introduced low-carbon economy and low-carbon technology, and proposed the de-tailed technical measures of low-carbon build-ing technology. Moreover, it has quantitatively calculated the “implicit” CO2 emission of C40 and C50 concrete columns, aluminium curtain wall, wall paintings and common floor decora-tion materials. The calculation results show that it is preferable to use high strength concrete, reduce the usage of aluminium materials and use wooden floor according to location. The paper can be a reference for quantitative meas-urement to the low-carbon technology and en-ergy efficiency.展开更多
It is an important and unique approach of achieving sustainable urban development to save and use energy intensively, reduce carbon emission, and take the low-carbon development road. Taking Gaochun Zijin Science and ...It is an important and unique approach of achieving sustainable urban development to save and use energy intensively, reduce carbon emission, and take the low-carbon development road. Taking Gaochun Zijin Science and Technology Special Community for example, this paper introduced planning measures for building a low-carbon city, including building a green network, compound utilization of urban spaces, establishing green transportation, using renewable resources, development of green architecture, so as to provide references for the future researches on the low-carbon urban development.展开更多
On basis of analysis on agroforestry-animal husbandry ecosystem characters, the research explored nutrient flow model of material cycle and carbon cycle and agroforestry-animal husbandry mutualism model and supporting...On basis of analysis on agroforestry-animal husbandry ecosystem characters, the research explored nutrient flow model of material cycle and carbon cycle and agroforestry-animal husbandry mutualism model and supporting technology in Yangtze-Huaihe Region, taking Robinia pseudoacacia stand and rubber garden as an example.展开更多
Co-hydrothermal carbonization(co-HTC)of phosphorus rock(PR)and corn straw(CS)was investigated to prepare hydrochar-based materials as soil conditioners,focusing on the morphological transformation and solid-liquid mig...Co-hydrothermal carbonization(co-HTC)of phosphorus rock(PR)and corn straw(CS)was investigated to prepare hydrochar-based materials as soil conditioners,focusing on the morphological transformation and solid-liquid migration of carbon and phosphorus.Various analytical methods,including elemental analysis,chemical quantification,FT-IR,XRD,3D-EEM,TG,and XANES,were used to understand the synergistic interactions of PR and CS during co-HTC and determine the properties of the resultant products.The results indicated the acidic solution and humic acidlike substances produced by HTC of CS reduced the crystallinity of the PR and served as the activating agent for PR,allowing the PR to be easily dissolved and reconstituted,producing calcium carbonate and apatite-like materials,and the formation of C-O-PO_(3),C-PO_(3),C=O,and O=C-O chemical bonds.At 220°C,adding 5%PR significantly promoted a 10.3%rise in the yield of CS hydrochar,a 4.3%rise in carbon recovery of CS,and a 4.8%rise in carbon sequestration potential of CS.The formation of Ca-P was notably promoted and the content of AP in co-HTC hydrochar was up to 89.9%,with 39%Hydro-P and 33%CaHPO_(4).In the case of artificial humic acid(HAa),its content was also remarkably increased by 5.9%in the hydrochar by co-HTC.In addition,the hydrochar produced by co-HTC of CS and PR was composed of carbon with an increased aromatic degree,rich organic matter,and biologically effective mineral nutrient elements and exhibited high stability.The present study provided a promising approach for value-added utilization of waste biomass and low-grade PR towards soil application.展开更多
文摘The steel industry is a major source of CO_(2) emissions,and thus,the mitigation of carbon emissions is the most pressing challenge in this sector.In this paper,international environmental governance in the steel industry is reviewed,and the current state of development of low-carbon technologies is discussed.Additionally,low-carbon pathways for the steel industry at the current time are proposed,emphasizing prevention and treatment strategies.Furthermore,the prospects of low-carbon technologies are explored from the perspective of transitioning the energy structure to a“carbon-electricity-hydrogen”relationship.Overall,steel enterprises should adopt hydrogen-rich metallurgical technologies that are compatible with current needs and process flows in the short term,based on the carbon substitution with hydrogen(prevention)and the CCU(CO_(2) capture and utilization)concepts(treatment).Additionally,the capture and utilization of CO_(2) for steelmaking,which can assist in achieving short-term emission reduction targets but is not a long-term solution,is discussed.In conclusion,in the long term,the carbon metallurgical process should be gradually supplanted by a hydrogen-electric synergistic approach,thus transforming the energy structure of existing steelmaking processes and attaining near-zero carbon emission steelmaking technology.
基金Reform and Practice of Talent Training Mode for Construction Engineering Technology Majors Serving the National Dual Carbon Strategy(Project No.Z233314)。
文摘Against the backdrop of global climate change and China’s“dual carbon”goals,the green transformation of the construction industry is imperative,and completing the transformation requires many dual carbon talents to support it.This article focuses on the construction engineering technology major in higher vocational education.It explores in depth the specific requirements for construction engineering technology talents in terms of professional knowledge,vocational skills,and literacy under the dual carbon mode.Based on this,corresponding dual carbon talent training courses are proposed,aiming to provide theoretical support and practical guidance for cultivating high-quality dual carbon talents that meet the needs of the new era.
基金Supported by " Research on The Control Technology of Subtropical Agriculture Pollution System" Special Project of National Environment Protection Public Welfare Industry Science Research "Research on The Construction Strategy of Ecological Civilization" Development Plan Research Project of State Development and Reform Commission+1 种基金Xiangxiang " High-output and Efficient Cultivation of High Quality Rice and Processing Technology Industrialization Demonstration " in The Plan Test Site of National Science and Technology Enriching People and Developing County Special Project Action" Xiangxiang Middle and Long-term Development Plan of Modern Agriculture" of Subtropical Agriculture Ecology Institute in Chinese Academy of Science
文摘The comprehensive improvement strategy of intra-county environment pollution in the city and countryside was searched.By the research method which combined the microscopic view,the macroscopic view with the dynamic perspective,the seriousness of rural water quality,soil and atmospheric pollution in Xiangxiang,Xiangtan and the surrounding areas in Shaoshan irrigated area was revealed.The control measure which was 'four-dimensional pollution in the city and countryside'—— low-carbon-high-value agriculture and the technology innovation was proposed.The low-carbon-high-value technology innovation industrialization demonstration in three parts which included the pre-production,mid-production and post-production deep-processing of cultivation and breeding industry in the ecological cyclic agricultural garden in Shaoshan irrigated area was the driving force.We tried to propel the low-carbon ecological cultivation and breeding industry which included the paddy rice,grass,tree,medicinal herbs and pig,cow,chick,duck,fish.We wanted to relieve the structural unbalance of previous cultivation and breeding industry,'cheap grain hurting the farmers' and the short-leg problem of social-economic-ecological benefit.The results showed that the low-carbon-high-value agricultural system was a poly-generation technology system which promoted the multi-level and grading utilization,saved the energy,reduced the consumption and cleaned the production based on the ecology.
文摘Carbon emission is the current hot issue of global concern. How to assess various contributing factors for carbon emission is of great importance to find out the key factors and promote carbon emission reduction. In this paper, the author constructs an identical equation for carbon emission, based on the economic aggregate, the economic structure, the efficiency of energy utilization, the structure of energy consumption, and the coefficient of carbon emission; by applying to LMDI decomposition technology, the author analyzes the carbon emission of China from 1995 to 2007 at industrial level and regional level. The results show that the expansion of economic aggregate is the main reason for China' s rapidly increasing carbon emission and the increase of energy utilization efficiency is the key factor that can hold back the increase of carbon emission. In addition, the change of industrial structure or regional structure and the change of traditional energy structure have limited influence on the carbon emission, and their potentials have not yet been exploited. At the end of this paper, the author proposes the efforts that China should make to reduce carbon emission.
文摘Marine carbon sequestration is an important component of carbon dioxide capture, utilization and storage(CCUS) technology. It is crucial for achieving carbon peaking and carbon neutralization in China. However, CO_(2) leakage may lead to seabed geological disasters and threaten the safety of marine engineering. Therefore, it is of great significance to study the safety monitoring technology of marine carbon sequestration.Zhanjiang is industrially developed and rich in carbon sources. Owing to the good physical properties and reservoirs and trap characteristics,Zhanjiang has huge storage potential. This paper explores the disaster mechanism associated with CO_(2) leakage in marine carbon sequestration areas. Based on the analysis of the development of Zhanjiang industry and relevant domestic monitoring technologies, several suggestions for safety monitoring of marine carbon sequestration are proposed: application of offshore aquaculture platforms, expansion and application of ocean observation networks, carbon sequestration safety monitoring and sensing system. Intended to build a comprehensive and multi-level safety monitoring system for marine carbon sequestration, the outcome of this study provides assistance for the development of marine carbon sequestration in China's offshore areas.
基金supported by Research Project Supported by Horizon Europe Framework Programme(101183092)Shanxi Scholarship Council of China(2023-128)+2 种基金National Natural Science Foundation of China(22208328)Fundamental Research Program of Shanxi Province(20210302124618)Small and mediumsized oriented scientific and technological enterprises innovation ability improvement project of Shandong Province(2023TSGC0004)。
文摘In this study,an integrated technology is proposed for the absorption and utilization of CO_(2)in alkanolamine solution for the preparation of BaCO_(3)in a high-gravity environment.The effects of absorbent type,high-gravity factor,gas/liquid ratio,and initial BaCl2concentration on the absorption rate and amount of CO_(2)and the preparation of BaCO_(3)are investigated.The results reveal that the absorption rate and amount of CO_(2)follow the order of ethyl alkanolamine(MEA)>diethanol amine(DEA)>N-methyldiethanolamine(MDEA),and thus MEA is the most effective absorbent for CO_(2)absorption.The absorption rate and amount of CO_(2)under high gravity are higher than that under normal gravity.Notably,the absorption rate at 75 min under high gravity is approximately 2 times that under normal gravity.This is because the centrifugal force resulting from the high-speed rotation of the packing can greatly increase gas-liquid mass transfer and micromixing.The particle size of BaCO_(3)prepared in the rotating packed bed is in the range of 57.2—89 nm,which is much smaller than that prepared in the bubbling reactor(>100.3 nm),and it also has higher purity(99.6%)and larger specific surface area(14.119 m^(2)·g^(-1)).It is concluded that the high-gravity technology has the potential to increase the absorption and utilization of CO_(2)in alkanolamine solution for the preparation of BaCO_(3).This study provides new insights into carbon emissions reduction and carbon utilization.
基金Supported by the Project of Jiangsu Provincial Department of Education (2011SJD630046)the Project of Huai'an Federation of Social Sciences (C-11-15)
文摘The agricultural energy consumption per unit of GDP is selected as an indicator for measuring the development level of low-carbon agriculture. Using gray relational theory, I analyze the relationship between development level of agricultural science and technology and development level of low-carbon agriculture in China. The results show that the correlation between the two is prominent; the number of agricultural science and technology talents, the number of agricultural science and technology patents, and the number of agricultural science and technology input are three major factors influencing the development of low-carbon agriculture. On this basis, I propose to take further effective measures, and put forth corresponding recommendations, in order to improve the level of agricultural science and technology.
文摘It is essential that China follows a low carbon pathway, in which technology plays a key role in the future economy and social development. Based on the Integrated Policy Assessment Model for China, this paper analyzes a technology development roadmap for China to achieve a low carbon scenario. The results show that there are plenty of potential and opportunities for China to move towards a low carbon society when given enhanced and accelerated applications and expansions of key low carbon technologies. Strong policy and measure supports from all sectors in China are needed to achieve this goal.
文摘Space technology is a powerful tool for climate research. Satellite data improve knowledge of the human impact on the Planet’s physical geography. Similarly, remote sensing technology enhances understanding of the human impact on rising global carbon emissions. However, so far satellites have been principally limited to measuring the carbon emissions of cities from space. Standing alone, satellite technology is incapable of advancing the goal of decarbonisation. This will be achieved only if cities create local methodologies that significantly enhance the carbon reduction process. There exists enormous potential to bridge remote sensing for earth observation and global environmental change with local action towards decarbonised urban renewal and redevelopment. Satellite remote sensing has the ability to demonstrate if local remedial strategies are succeeding, and assist with planning, developing, and monitoring low and zero carbon infrastructure systems. Satellite-derived data can facilitate informed discussion and decision-making between community stakeholders to deliver low carbon outcomes at the precinct scale. Satellite-based systems can be integrated within the urban fabric to assist climate change mitigation. This paper is based on current work implemented jointly with municipalities to ascertain where within city precincts carbon emissions originate and how they can ultimately be reduced. It presents space technology as an instrumental tool for understanding the carbon impact of cities—in terms of the carbon intensive patterns and processes that shape human society, as well as having great potential for providing end-user products to communities to enhance the process of decarbonising city precincts.
文摘Zhang Zhuying,45,is now chief engineer in No.1 Carbon Plant un-der the Guizhou Aluminum Smelter.Graduated from Central South University of Technology in 1969,shewas assigned to Anode Paste Workshop belong to No.2 Branch under Gui-
基金supported by the Major Tender Projects of National Social Science Foundation of China "Study on Optimization and Operation Mechanism of Industrial Eco Economic System in China"[grant number 12&ZD207]National Natural Science Foundation of China "Research on Value Chain Structure and Firm Embeddedness of Emerging Industries Driven by Technology Convergence"[grant number 71704069]+2 种基金MOE(Ministry of Education in China)Liberal Arts and Social Sciences Foundation "Research on the Formation Mechanism of Dynamic Capability of China's Manufacturing Clusters for Sustainable Eco-innovation"[grant number 16YJC630125]Social Science Foundation of Jiangsu Province "Research on Eco-innovation and New Competitive Advantages of Jiangsu Manufacturing Industrial Clusters"[grant number17GLB020]Natural Science Foundation of the Jiangsu Higher Education Institutions "Spatial Pattern Evolution and Influencing Factors of Carbon Emissions Efficiency of Construction Industry in China"[grant number17KJB170004]
文摘China's technological efforts to tackle climate change have lasted for many years. It is necessary to test the effect of these efforts with quantitative method. To be exact, whether and how China's low-carbon technology innovation responds to climate change should be tested. Based on the2004-2015 panel data of 30 provinces in China, we use the method of ESDA analyzing the spatial correlation of China's low-carbon innovation technology. Furthermore, we use the spatial Durbin model empirically analyzing the spatial spillover effects. The results obtained are as follows: first,supply and demand of Chinese low-carbon innovation has some deviation in the spatial distribution. The low-carbon technology innovation as the supply factor shows the characteristics of expanding from the east to the west. Innovation in eastern China has always been the most active, but innovative activities in the middle and western China are gradually decreased.However, carbon emissions have the characteristics of moving westward, implying the change of technology demand different from technology supply. Second, China's low-carbon innovation actively responds to the trend of climate change, indicating China's technological efforts have paid off. However, the spatial spillover effects are not significant, showing that the efforts in each region of China still work for himself. Third, environmental regulation and market pull are important factors for low-carbon technology innovation. Among them, both supporting policy and inhibitory policy have significant impact on the local low-carbon technology innovation, but no significant spatial spillover effects. It shows that environmental policies in different regions are competitive and lack of demonstration effects. Economic growth and export as market pull have higher level of effect on low-carbon technology innovation for both local and adjacent areas.Some policy implications are proposed based on these results finally.
基金supported by the Double First-Class Construction Funds of Sichuan University and National Natural Science Foundation of China(NNSFC)financial support from the National Science Foundation of China(51873126,51422305,51721091)。
文摘The demand on low-carbon emission fabrication technologies for energy storage materials is increasing dramatically with the global interest on carbon neutrality.As a promising active material for metal-sulfur batteries,sulfur is of great interest due to its high-energy-density and abundance.However,there is a lack of industry-friendly and low-carbon fabrication strategies for high-performance sulfur-based active particles,which,however,is in critical need by their practical success.Herein,based on a hail-inspired sulfur nano-storm(HSN)technology developed in our lab,we report an energy-saving,solvent-free strategy for producing core-shell sulfur/carbon electrode particles(CNT@AC-S)in minutes.The fabrication of the CNT@AC-S electrode particles only involves low-cost sulfur blocks,commercial carbon nanotubes(CNT)and activated carbon(AC)micro-particles with high specific surface area.Based on the above core-shell CNT@AC-S particles,sulfur cathode with a high sulfur-loading of 9.2 mg cm^(-2) delivers a stable area capacity of 6.6 mAh cm^(-2) over 100 cycles.Furthermore,even for sulfur cathode with a super-high sulfur content(72 wt%over the whole electrode),it still delivers a high area capacity of 9 mAh cm^(-2) over50 cycles in a quasi-lean electrolyte condition.In a nutshell,this study brings a green and industryfriendly fabrication strategy for cost-effective production of rationally designed S-rich electrode particles.
文摘After the reform and opening up,China's economy has developed rapidly.But in the process of economic development,the ecological environment has also paid a huge price.The destruction of the ecological environment directly affects survival and development of people.Therefore,it is necessary to strengthen environmental governance.Everyone has also begun to focus on low-carbon development.The construction industry is a serious waste of building materials with large energy dissipation.Therefore it is also a key industry for low-carbon transformation.This article mainly analyzes low-carbon building design technology and studies specific development strategies.
文摘The world is experiencing global climate change, and most scientists attribute it to the accumulation in the atmosphere of carbon dioxide, methane, nitrous oxide, and chlorofluorocarbons. Because of its enormous emission rate, carbon dioxide (CO2) is the main culprit. Almost all the anthropogenic CO2 emissions come from the burning of fossil fuels for electricity, heat, and transportation. Emissions of COg can be reduced by conservation, increased use of renewable energy sources, and increased efficiencies in both the production of electrical power and the transportation sector. Capture of CO2 can be accomplished with wet scrubbing, dry sorption, or biogenic fixation. After CO2 is captured, it must be transported either as a liquid or a supercritical fluid, which realistically can only be accomplished by pipeline or ship. Final disposal of CO2 will either be to underground reservoirs or to the ocean; at present, the underground option seems to be the only viable one. Various strategies and technologies involved with reduction of CO2 emissions and carbon capture and sequestration (CCS) are briefly reviewed in this paper.
文摘With the issue of climate change increasingly restricting the sustainable development of society, people must realize that we must control atmospheric concentrations of greenhouse gases at a certain level. However, the traditional model of economic development will lead to human demand for energy continuing to grow, followed by a growth in emissions of carbon dioxide. Obviously we must ensure that there is rapid economic development, but also to protect the human living environment, which is a very sharp contradiction. A good solution to this conflict is to take a new model of development --- a low-carbon economy. The so-called low-carbon economy refers to the reduction of greenhouse gas emissions, the application of new technologies, new materials and new practices, etc., through improvements, optimization or innovative production and business activities, to achieve the maximum degree of reduction of greenhouse gas emissions, and the formation of a new economic development model, the goal is to mitigate climate change and promote sustainable human development. On how to develop a low-carbon economy, domestic and foreign scholars have been studied from many angles, one of which is a consensus to reduce greenhouse gas emissions through the development and use of low-carbon technologies.
基金supported by the Hunan Provincial and Municipal Joint Fund(No.2022JJ50069).
文摘Carbon sequestration and emission reduction in the construction industry plays an important role in China’s goal of achieving carbon neutrality.Research in Zhuzhou city scored 42 since the assessment of the green building project situation as the research object,in hot summer and cold winter areas of analysis and evaluation on the development of green building technology,and then sums up the carbon neutral background the priority areas and tasks for the development of green building techniques,optimization of the construction industry into a new era under the background of green development to provide the reference.
文摘The paper introduced low-carbon economy and low-carbon technology, and proposed the de-tailed technical measures of low-carbon build-ing technology. Moreover, it has quantitatively calculated the “implicit” CO2 emission of C40 and C50 concrete columns, aluminium curtain wall, wall paintings and common floor decora-tion materials. The calculation results show that it is preferable to use high strength concrete, reduce the usage of aluminium materials and use wooden floor according to location. The paper can be a reference for quantitative meas-urement to the low-carbon technology and en-ergy efficiency.
文摘It is an important and unique approach of achieving sustainable urban development to save and use energy intensively, reduce carbon emission, and take the low-carbon development road. Taking Gaochun Zijin Science and Technology Special Community for example, this paper introduced planning measures for building a low-carbon city, including building a green network, compound utilization of urban spaces, establishing green transportation, using renewable resources, development of green architecture, so as to provide references for the future researches on the low-carbon urban development.
基金Supported by the National S&T Support Program during the Twelfth Five-year Pla Period(2012BAD14B13)~~
文摘On basis of analysis on agroforestry-animal husbandry ecosystem characters, the research explored nutrient flow model of material cycle and carbon cycle and agroforestry-animal husbandry mutualism model and supporting technology in Yangtze-Huaihe Region, taking Robinia pseudoacacia stand and rubber garden as an example.
基金funded by Department of Science and Technology of Shandong Province(2021CXGC010803.
文摘Co-hydrothermal carbonization(co-HTC)of phosphorus rock(PR)and corn straw(CS)was investigated to prepare hydrochar-based materials as soil conditioners,focusing on the morphological transformation and solid-liquid migration of carbon and phosphorus.Various analytical methods,including elemental analysis,chemical quantification,FT-IR,XRD,3D-EEM,TG,and XANES,were used to understand the synergistic interactions of PR and CS during co-HTC and determine the properties of the resultant products.The results indicated the acidic solution and humic acidlike substances produced by HTC of CS reduced the crystallinity of the PR and served as the activating agent for PR,allowing the PR to be easily dissolved and reconstituted,producing calcium carbonate and apatite-like materials,and the formation of C-O-PO_(3),C-PO_(3),C=O,and O=C-O chemical bonds.At 220°C,adding 5%PR significantly promoted a 10.3%rise in the yield of CS hydrochar,a 4.3%rise in carbon recovery of CS,and a 4.8%rise in carbon sequestration potential of CS.The formation of Ca-P was notably promoted and the content of AP in co-HTC hydrochar was up to 89.9%,with 39%Hydro-P and 33%CaHPO_(4).In the case of artificial humic acid(HAa),its content was also remarkably increased by 5.9%in the hydrochar by co-HTC.In addition,the hydrochar produced by co-HTC of CS and PR was composed of carbon with an increased aromatic degree,rich organic matter,and biologically effective mineral nutrient elements and exhibited high stability.The present study provided a promising approach for value-added utilization of waste biomass and low-grade PR towards soil application.