期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Interlayer and intralayer co-modified flexible V_(2)CT_(X) MXene@SWCNT films for high-power Li-ion capacitors
1
作者 Wanli Wang Min Feng +6 位作者 Enze Hu Zhaowei Hu Cheng Fan Huifang Li Peng Wang Xiaojun Wang Zhiming Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期101-109,共9页
As an emerging member of the two-dimensional(2D)material family,V_(2)CT_(X)MXene shows great potential in the application of lithium-ion capacitors(LICs)due to its unique structure and excellent electrical conductivit... As an emerging member of the two-dimensional(2D)material family,V_(2)CT_(X)MXene shows great potential in the application of lithium-ion capacitors(LICs)due to its unique structure and excellent electrical conductivity.However,severe nanosheets stacking and intra-layer transport barriers have limited the further development of V_(2)CT_(X)MXene-based materials.Herein,we prepared Kions and–O functional group co-modified V_(2)CT_(X)MXene(VCT-K)and further incorporated it with single-walled carbon nanotube(SWCNT),obtaining freestanding V_(2)CT_(X)composite films(VCT-K@C)with the 3D conductive network.Significantly,K+ions were introduced into V_(2)CT_(X)MXene to stabilize the interlayer structure and prevent the aggregation of nanosheets,the terminal group of–O was controllably modified on the surface of MXene to improve the Li+ions storage reversible capacities and the SWCNT acted as the bridge between MXene nanosheets to opens up the channels for ion/electron transportation in the longitudinal direction.Benefited from the synergistic effect of VCT-K and SWCNT,the VCT-K@C exhibits superior reversible specific capacities of 671.8 mA h g^(-1)at 0.1 A g^(-1)and 318 mA h g^(-1)at 1.0 A g^(-1).Furthermore,the assembled LICs with VCT-K@C anode coupling activated carbon(AC)cathode deliver an outstanding power density of 19.0 kW kg^(-1)at 67.4 Wh kg^(-1),a high energy density of 140.5 Wh kg^(-1)at 94.8 W kg^(-1)and a stable capacitance retention of 86%after 6000 cycles at 10 A g^(-1).Such unique structures and excellent electrochemical properties are expected to pave the way for the large-scale application in LICs of MXene-based materials. 展开更多
关键词 Interlayer and intralayer co-modification MXene SWCNT Flexible self-supported anodes Lithium-ion capacitors
下载PDF
Enhanced stability and electrochemical properties of lanthanum and cerium co-modified LiVOPO_(4) cathode materials for Li-ion batteries
2
作者 Zishan Ahsan Zhenfei Cai +7 位作者 Shuai Wang Haichuan Wang Yangzhou Ma Guangsheng Song Shihong Zhang Weidong Yang Muhammad Imran Cuie Wen 《Journal of Rare Earths》 SCIE EI CAS CSCD 2023年第10期1590-1596,I0005,共8页
A facile and efficient ball-milling assisted sol-gel synthesis route was developed to prepare triclinic e-LiVOPO_(4)(LVOP)material with lanthanum(La)and cerium(Ce)modification individually as well as simultaneously.An... A facile and efficient ball-milling assisted sol-gel synthesis route was developed to prepare triclinic e-LiVOPO_(4)(LVOP)material with lanthanum(La)and cerium(Ce)modification individually as well as simultaneously.An LVOP/LaPO_(4)/CePO_(4)composite cathode material was successfully synthesized and results show that La and Ce co-modification noticeably improves the electrochemical performance by enhancing the high voltage capacity upon cycling,which indicates contributions from the good ionic conductors LaPO_(4)and CePO_(4).The simultaneous La and Ce modification improves the high voltage performance significantly with an increase of 50%in high voltage capacity after 20 cycles compared to pure LVOP.It also shows stabilized cycling perfo rmance with 91%capacity rete ntion after 50 cycles at 0.1 C rate,along with high-rate capability with a capacity of 83.1 mAh/g compared to the pristine sample showing the capacity of 51.6 mAh/g at a high rate of 5C.This can be attributed to the good conductivity of LaPO_(4)and CePO_(4).In addition,the LVOP/LaPO_(4)/CePO_(4)composite and the pristine LVOP give a charge transfer resistance of-105 and-212Ω,respectively,showing much lower impedance due to a combination of La and Ce addition. 展开更多
关键词 Li-ion bateries ε-LiVOP04 Cathode materials La Ce co-modification Enhanced stability Rare earths
原文传递
Improved Photocatalytic Activity of Porous In2O3 by co-Modifying Nanosized CuO and Ag with Synergistic Effects
3
作者 LI Xianglin ZHANG Qingyang +3 位作者 LI Bin LI Zhijun ZHANG Ziqing JING Liqiang 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2020年第6期1116-1121,共6页
Charge separation and oxygen activation are two crucial factors in the photocatalytic oxidation of pollutants.and it is meaningful to simultaneously enhance charge separation and promote O2 activation.Herein,it is dem... Charge separation and oxygen activation are two crucial factors in the photocatalytic oxidation of pollutants.and it is meaningful to simultaneously enhance charge separation and promote O2 activation.Herein,it is demonstrated that the photocatalytic activity of porous In2O3is greatly improved after co-modifying nanosized CuO and Ag for oxidizing 2,4-dichlorophenol(2.4-DCP)and Co compared with that of individual In203.Based on the surface.photovoltage spectroscopy,02 temperature-programmed desorption,electron paramagnetic resonance spectroscopy and electrochemical results,the improved photoactivity is mainly attributed to the synergistic effects of enhancing photogenerated charge separation and promoting oxygen activation by respectively coupled nanosized CuO and Ag It is confirmed that the produced·O2^-radicals are dominant to induce the photocatalvtic oxidation of 2.4-DCP.This work offers an effective way to develop high-activity In203-based nanophotocatalysts for oxidizing pollutants. 展开更多
关键词 Porous In2O3 Nanosized CuO and Ag co-modification Charge separation Oxygen activation Photocatalytic pollutant oxidation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部