An MW6.6 earthquake occurred in eastern Hokkaido,Japan on September 6th,2018.Based on the pre-earthquake image from Google Earth and the post-earthquake image from high resolution(3 m)planet satellite,we manually inte...An MW6.6 earthquake occurred in eastern Hokkaido,Japan on September 6th,2018.Based on the pre-earthquake image from Google Earth and the post-earthquake image from high resolution(3 m)planet satellite,we manually interpret 9293 coseismic landslides and select 7 influencing factors of seismic landslide,such as elevation,slope,slope direction,road distance,flow distance,peak ground acceleration(PGA)and lithology.Then,9293 landslide points are randomly divided into training samples and validation samples with a proportion of 7:3.In detail,the training sample has 6505 landslide points and the validation sample has 2788 landslide points.The hazard risk assessment of seismic landslide is conducted by using the information value method and the study area is further divided into five risk grades,including very low risk area,low risk area,moderate risk area high risk area and very high risk area.The results show that there are 7576 landslides in high risk area and very high risk area,accounting for81.52%of the total landslide number,and the landslide area is 22.93 km^2,accounting for 74.35%of the total area.The hazard zoning is in high accordance with the actual situation.The evaluation results are tested by using the curve of cumulative percentage of hazardous area and cumulative percentage of landslides number.The results show that the success rate of the information value method is 78.50%and the prediction rate is 78.43%.The evaluation results are satisfactory,indicating that the hazard risk assessment results based on information value method may provide scientific reference for landslide hazard risk assessment as well as the disaster prevention and mitigation in the study area.展开更多
The Ms 8.0 May 12,2008 Wenchuan earthquake triggered tens of thousands of landslides.The widespread landslides have caused serious casualties and property losses,and posed a great threat to post-earthquake reconstruct...The Ms 8.0 May 12,2008 Wenchuan earthquake triggered tens of thousands of landslides.The widespread landslides have caused serious casualties and property losses,and posed a great threat to post-earthquake reconstruction.A spatial database,inventoried 43,842 landslides with a total area of 632 km 2,was developed by interpretation of multi-resolution remote sensing images.The landslides can be classified into three categories:swallow,disrupted slides and falls;deep-seated slides and falls,and rock avalanches.The correlation between landslides distribution and the influencing parameters including distance from co-seismic fault,lithology,slope gradient,elevation,peak ground acceleration(PGA) and distance from drainage were analyzed.The distance from co-seismic fault was the most significant parameter followed by slope gradient and PGA was the least significant one.A logistic regression model combined with bivariate statistical analysis(BSA) was adopted for landslide susceptibility mapping.The study area was classified into five categories of landslide susceptibility:very low,low,medium,high and very high.92.0% of the study area belongs to low and very low categories with corresponding 9.0% of the total inventoried landslides.Medium susceptible zones make up 4.2% of the area with 17.7% of the total landslides.The rest of the area was classified into high and very high categories,which makes up 3.9% of the area with corresponding 73.3% of the total landslides.Although the susceptibility map can reveal the likelihood of future landslides and debris flows,and it is helpful for the rebuilding process and future zoning issues.展开更多
The primary objective of landslide susceptibility mapping is the prediction of potential landslides in landslide-prone areas. The predictive power of a landslide susceptibility mapping model could be tested in an adja...The primary objective of landslide susceptibility mapping is the prediction of potential landslides in landslide-prone areas. The predictive power of a landslide susceptibility mapping model could be tested in an adjacent area of similar geo- environmental conditions to find out the reliability. Both the 2oo8 Wenchuan Earthquake and the 2o13 Lushan Earthquake occurred in the Longmen Mountain seismic zone, with similar topographical and geological conditions. The two earthquakes are both featured by thrust fault and similar seismic mechanism This paper adopted the susceptibility mapping model of co-seismic landslides triggered by Wenchuan earthquake to predict the spatial distribution of landslides induced by Lushan earthquake. Six influencing parameters were taken into consideration: distance from the seismic fault, slope gradient, lithology, distance from drainage, elevation and Peak Ground Acceleration (PGA). The preliminary results suggested that the zones with high susceptibility of co- seismic landslides were mainly distributed in the mountainous areas of Lushan, Baoxing and Tianquan counties. The co-seismic landslide susceptibility map was completed in two days after the quake and sent to the field investigators to provide guidance for rescue and relief work. The predictive power of the susceptibility map was validated by ROC curve analysis method using 2o37 co-seismic landslides in the epicenter area. The AUC value of o.71o indicated that the susceptibility model derived from Wenchuan Earthquake landslides showed good accuracy inpredicting the landslides triggered by Lushan earthquake.展开更多
Analyzing the spatial distribution characteristics of earthquake-induced secondary disasters based on advanced techniques is significantly important,especially in understanding the process of strong earthquakes in the...Analyzing the spatial distribution characteristics of earthquake-induced secondary disasters based on advanced techniques is significantly important,especially in understanding the process of strong earthquakes in the Loess Pateau.Using ArcGIS,this study interprets multi-temporal high-resolution satellite images,field investigation data,and historical seismic records.Major conclusions are obtained as follows:①Landslides induced by the Haiyuan earthquake are mainly distributed in the intersection area of the end of the Haiyuan fault and Liupanshan fault,as indicated by multiple dense distribution centers;②The landslide distribution of the Haiyuan Earthquake is determined by the distance to the fault,topographic relief,slope,lithology,and other factors.In detail,the closer the distance to the fault,the greater the density of the landslide.The greater the slope and relief of the terrain,the greater the density and the smaller the average area of a landslide.Compared with tertiary strata,Quaternary strata has a larger average area,and the density of the landslides is smaller;③The density curve of the death toll in the Haiyuan earthquake can be used as a reference for the distribution of co-seismic landslides.Several Haiyuan co-seismic landslides are distributed in the Tongwei landslide area;however,the major landslides here are induced by the 1718 Tongwei earthquake rather than the 1920 Haiyuan earthquake;④The co-seismic landslides of the Haiyuan earthquake exhibits the“slope effect”in the south-west plate of Haiyuan fault,presenting the dominant sliding direction towards the fault and epicenter;however,the“slope effect”is not evident in the northeast plate of the fault.展开更多
Co-seismic landslide detection is essential for post-disaster rescue and risk assessment after an earthquake event.However,a variety of ground objects,including roads and bare land,have spectral characteristics simila...Co-seismic landslide detection is essential for post-disaster rescue and risk assessment after an earthquake event.However,a variety of ground objects,including roads and bare land,have spectral characteristics similar to those of co-seismic landslides,making it difficult to gather information and assess their impact rapidly and accurately.Therefore,an automatic detection method based on a deep learning model,named ENVINet5,with multiple features(ENVINet5_MF)was proposed to solve this problem and improve the detection accuracy of co-seismic landslides.The ENVINet5_MF method is advantageous for co-seismic landslide detection because it features a landslide gain index(LGI)that effectively eliminates the spectral interference of bare land and roads.We conducted two experiments using multi-temporal PlanetScope images acquired in Hokkaido,Japan,and Mainling,China.The accuracy evaluation and rationality analysis show that ENVINet5_MF performed better than comparative methods and that the co-seismic landslide areas detected by ENVINet5_MF were the most consistent with ground reference data.The findings of this study suggest that ENVINet5_MF can provide an efficient and accurate method for coseismic landslide detection to ensure a rapid response to co-seismic landslide disasters.展开更多
This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble lear...This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble learning techniques:DAGGING(DG),MULTIBOOST(MB),and ADABOOST(AB).This combination resulted in three distinct ensemble models:DG-RBFN,MB-RBFN,and AB-RBFN.Additionally,a traditional weighted method,Information Value(IV),and a benchmark machine learning(ML)model,Multilayer Perceptron Neural Network(MLP),were employed for comparison and validation.The models were developed using ten landslide conditioning factors,which included slope,aspect,elevation,curvature,land cover,geomorphology,overburden depth,lithology,distance to rivers and distance to roads.These factors were instrumental in predicting the output variable,which was the probability of landslide occurrence.Statistical analysis of the models’performance indicated that the DG-RBFN model,with an Area Under ROC Curve(AUC)of 0.931,outperformed the other models.The AB-RBFN model achieved an AUC of 0.929,the MB-RBFN model had an AUC of 0.913,and the MLP model recorded an AUC of 0.926.These results suggest that the advanced ensemble ML model DG-RBFN was more accurate than traditional statistical model,single MLP model,and other ensemble models in preparing trustworthy landslide susceptibility maps,thereby enhancing land use planning and decision-making.展开更多
Influenced by complex external factors,the displacement-time curve of reservoir landslides demonstrates both short-term and long-term diversity and dynamic complexity.It is difficult for existing methods,including Reg...Influenced by complex external factors,the displacement-time curve of reservoir landslides demonstrates both short-term and long-term diversity and dynamic complexity.It is difficult for existing methods,including Regression models and Neural network models,to perform multi-characteristic coupled displacement prediction because they fail to consider landslide creep characteristics.This paper integrates the creep characteristics of landslides with non-linear intelligent algorithms and proposes a dynamic intelligent landslide displacement prediction method based on a combination of the Biological Growth model(BG),Convolutional Neural Network(CNN),and Long ShortTerm Memory Network(LSTM).This prediction approach improves three different biological growth models,thereby effectively extracting landslide creep characteristic parameters.Simultaneously,it integrates external factors(rainfall and reservoir water level)to construct an internal and external comprehensive dataset for data augmentation,which is input into the improved CNN-LSTM model.Thereafter,harnessing the robust feature extraction capabilities and spatial translation invariance of CNN,the model autonomously captures short-term local fluctuation characteristics of landslide displacement,and combines LSTM's efficient handling of long-term nonlinear temporal data to improve prediction performance.An evaluation of the Liangshuijing landslide in the Three Gorges Reservoir Area indicates that BG-CNN-LSTM exhibits high prediction accuracy,excellent generalization capabilities when dealing with various types of landslides.The research provides an innovative approach to achieving the whole-process,realtime,high-precision displacement predictions for multicharacteristic coupled landslides.展开更多
Landslide dams,as frequent natural hazards,pose significant risks to human lives,property,and ecological environments.The grading characteristics and density of dam materials play a crucial role in determining the sta...Landslide dams,as frequent natural hazards,pose significant risks to human lives,property,and ecological environments.The grading characteristics and density of dam materials play a crucial role in determining the stability of landslide dams and the potential for dam breaches.To explore the failure mechanisms and evolutionary processes of landslide dams with varying soil properties,this study conducted a series of flume experiments,considering different grain compositions and material densities.The results demonstrated that grading characteristics significantly influence landslide dam stability,affecting failure patterns,breach processes,and final breach morphologies.Fine-graded materials exhibited a sequence of surface erosion,head-cut erosion,and subsequent surface erosion during the breach process,while well-graded materials typically experienced head-cut erosion followed by surface erosion.In coarse-graded dams,the high permeability of coarse particles allowed the dam to remain stable,as inflows matched outflows.The dam breach model experiments also showed that increasing material density effectively delayed the breach and reduced peak breach flow discharge.Furthermore,higher fine particle content led to a reduction in the residual dam height and the base slope of the final breach profile,although the relationship between peak breach discharge and the content of fine and coarse particles was nonlinear.To better understand breach morphology evolution under different soil characteristics and hydraulic conditions,three key points were identified—erosion point,control point,and scouring point.This study,by examining the evolution of failure patterns,breach processes,and breach flow discharges under various grading and density conditions,offers valuable insights into the mechanisms behind landslide dam failures.展开更多
The Kumaun Himalaya is well-known as a geologically and tectonically complex region that amplifies mass wasting processes,particularly landslides.This study attempts to investigate the interplay between landslide dist...The Kumaun Himalaya is well-known as a geologically and tectonically complex region that amplifies mass wasting processes,particularly landslides.This study attempts to investigate the interplay between landslide distribution and the lithotectonic regime of Darma Valley,Kumaun Himalaya.A landslide inventory comprising 295 landslides in the area has been prepared and several morphotectonic proxies such as valley floor width to height ratio(Vf),stream length gradient index(SL),and hypsometric integral(HI)have been used to infer tectonic regime.Morphometric analysis,including basic,linear,aerial,and relief aspects,of 59 fourth-order sub-basins,has been carried out to estimate erosion potential in the study area.The result demonstrates that 46.77%of the landslides lie in very high,20.32%in high,21.29%in medium,and 11.61%in low erosion potential zones respectively.In order to determine the key parameters controlling erosion potential,two multivariate statistical methods namely Principal Component Analysis(PCA)and Agglomerative Hierarchical Clustering(AHC)were utilized.PCA reveals that the Higher Himalayan Zone(HHZ)has the highest erosion potential due to the presence of elongated sub-basins characterized by steep slopes and high relief.The clusters created through AHC exhibit positive PCA values,indicating a robust correlation between PCA and AHC.Furthermore,the landslide density map shows two major landslide hotspots.One of these hotspots lies in the vicinity of highly active Munsiyari Thrust(MT),while the other is in the Pandukeshwar formation within the MT's hanging wall,characterized by a high exhumation rate.High SL and low Vf values along these hotspots further corroborate that the occurrence of landslides in the study area is influenced by tectonic activity.This study,by identifying erosionprone areas and elucidating the implications of tectonic activity on landslide distribution,empowers policymakers and government agencies to develop strategies for hazard assessment and effective landslide risk mitigation,consequently safeguarding lives and communities.展开更多
Loess-mudstone landslides are common in the Loess Plateau.Investigations into the mechanical theory of loess-mudstone landslides have become a challenging undertaking due to the distinctive interfacial properties of l...Loess-mudstone landslides are common in the Loess Plateau.Investigations into the mechanical theory of loess-mudstone landslides have become a challenging undertaking due to the distinctive interfacial properties of loess-mudstone and the unique water sensitivity characteristics of mudstone.Hence,it is imperative to develop innovative mechanical models and mathematical equations specifically tailored to loess-mudstone landslides.In this study,we analyze the fracture mechanism of the loess-mudstone sliding zone using plastic fracture mechanics and develop a unique fracture yield model.To calculate the energy release rate during the expansion of the loess-mudstone interface tip region,the shear fracture energy G is applied,which reflects both the yield failure criterion and the fracture failure criterion.To better understand the instability mechanism of loess-mudstone landslides,equilibrium equations based on G are established for tractive,compressive,and tensile loess-mudstone landslides.Based on the equilibrium equation,the critical length Lc of the sliding zone can be used for the safety evaluation of loess-mudstone landslides.In this way,this study proposes a new method for determining the failure mechanism and equilibrium equation of loessmudstone landslides,which resolves their starting mechanism,mechanical equilibrium equations,and safety evaluation indicators,thus justifying the scientific significance and practical value of this research.展开更多
Large-scale deep-seated landslides pose a significant threat to human life and infrastructure.Therefore,closely monitoring these landslides is crucial for assessing and mitigating their associated risks.In this paper,...Large-scale deep-seated landslides pose a significant threat to human life and infrastructure.Therefore,closely monitoring these landslides is crucial for assessing and mitigating their associated risks.In this paper,the authors introduce the So Lo Mon framework,a comprehensive monitoring system developed for three large-scale landslides in the Autonomous Province of Bolzano,Italy.A web-based platform integrates various monitoring data(GNSS,topographic data,in-place inclinometer),providing a user-friendly interface for visualizing and analyzing the collected data.This facilitates the identification of trends and patterns in landslide behaviour,enabling the triggering of warnings and the implementation of appropriate mitigation measures.The So Lo Mon platform has proven to be an invaluable tool for managing the risks associated with large-scale landslides through non-structural measures and driving countermeasure works design.It serves as a centralized data repository,offering visualization and analysis tools.This information empowers decisionmakers to make informed choices regarding risk mitigation,ultimately ensuring the safety of communities and infrastructures.展开更多
Shotcrete is one of the common solutions for shallow sliding.It works by forming a protective layer with high strength and cementing the loose soil particles on the slope surface to prevent shallow sliding.However,the...Shotcrete is one of the common solutions for shallow sliding.It works by forming a protective layer with high strength and cementing the loose soil particles on the slope surface to prevent shallow sliding.However,the solidification time of conventional cement paste is long when shotcrete is used to treat cohesionless soil landslide.The idea of reinforcing slope with polyurethane solidified soil(i.e.,mixture of polyurethane and sand)was proposed.Model tests and finite element analysis were carried out to study the effectiveness of the proposed new method on the emergency treatment of cohesionless soil landslide.Surcharge loading on the crest of the slope was applied step by step until landslide was triggered so as to test and compare the stability and bearing capacity of slope models with different conditions.The simulated slope displacements were relatively close to the measured results,and the simulated slope deformation characteristics were in good agreement with the observed phenomena,which verifies the accuracy of the numerical method.Under the condition of surcharge loading on the crest of the slope,the unreinforced slope slid when the surcharge loading exceeded 30 k Pa,which presented a failure mode of local instability and collapse at the shallow layer of slope top.The reinforced slope remained stable even when the surcharge loading reached 48 k Pa.The displacement of the reinforced slope was reduced by more than 95%.Overall,this study verifies the effectiveness of polyurethane in the emergency treatment of cohesionless soil landslide and should have broad application prospects in the field of geological disasters concerning the safety of people's live.展开更多
The precision of landslide displacement prediction is crucial for effective landslide prevention and mitigation strategies.However,the role of surface monitoring frequency in influencing prediction accuracy has been l...The precision of landslide displacement prediction is crucial for effective landslide prevention and mitigation strategies.However,the role of surface monitoring frequency in influencing prediction accuracy has been largely neglected.This study examined the effect of varying monitoring frequencies on the accuracy of displacement predictions by using the Baijiabao landslide in the Three Gorges Reservoir Area(TGRA)as a case study.We collected surface automatic monitoring data at different intervals,ranging from daily to monthly.The Ensemble Empirical Mode Decomposition(EEMD)algorithm was utilized to dissect the accumulated displacements into periodic and trend components at each monitoring frequency.Polynomial fitting was applied to forecast the trend component while the periodic component was predicted with two state-of-the-art neural network models:Long Short-Term Memory(LSTM)and Gated Recurrent Unit(GRU).The predictions from these models were integrated to derive cumulative displacement forecasts,enabling a comparative analysis of prediction accuracy across different monitoring frequencies.The results demonstrate that the proposed models achieve high accuracy in landslide displacement forecasting,with optimal performance observed at moderate monitoring intervals.Intriguingly,the daily mean average error(MAE)decreases sharply with increasing monitoring frequency,reaching a plateau.These findings were corroborated by a parallel analysis of the Bazimen landslide,suggesting that moderate monitoring intervals of approximately 7 to 15 days are most conducive to achieving enhanced prediction accuracy compared to both daily and monthly intervals.展开更多
Kathmandu Kyirong Highway(KKH)is one of the most strategic Sino-Nepal highways.Lowcost mitigation measures are common in Nepalese highways,however,they are not even applied sufficiently to control slope instability si...Kathmandu Kyirong Highway(KKH)is one of the most strategic Sino-Nepal highways.Lowcost mitigation measures are common in Nepalese highways,however,they are not even applied sufficiently to control slope instability since the major part of this highway falls still under the category of feeder road,and thus less resources are made available for its maintenance.It is subjected to frequent landslide events in an annual basis,especially during monsoon season.The Gorkha earthquake,2015 further mobilized substantial hillslope materials and damaged the road in several locations.The aim of this research is to access the dynamic landslide susceptibility considering pre,co and post seismic mass failures.We mapped 5,349 multi-temporal landslides of 15 years(2004-2018),using high resolution satellite images and field data,and grouped them in aforementioned three time periods.Landslide susceptibility was assessed with the application of’certainty factor’(CF).Seventy percent landslides were used for susceptibility modelling and 30%for validation.The obtained results were evaluated by plotting’receiver operative characteristic’(ROC)curves.The CF performed well with the’area under curve’(AUC)0.820,0.875 and 0.817 for the success rates,and 0.809,0.890 and 0.760 for the prediction rates for respective pre,co and post seismic landslide susceptibility.The accuracy for seismic landslide susceptibility was better than pre and post-quake ones.It might be because of the differences on completeness of the landslide inventory,which might have been possibly done better for the single event based co-seismic landslide mapping in comparison with multitemporal inventories in pre and post-quake situations.The results obtained in this study provide insights on dynamic spatial probability of landslide occurrences in the changing condition of triggering agents.This work can be a good contribution to the methodologies for the evaluation of the dynamic landslide hazard and risk,which will further help to design the efficient mitigation measures along the mountain highways.展开更多
On September 5,2022,a strong earthquake with a magnitude of MS6.8 struck Luding County in Sichuan Province,China,triggering thousands of landslides along the Dadu River in the northwest-southeast(NW-SE)direction.We in...On September 5,2022,a strong earthquake with a magnitude of MS6.8 struck Luding County in Sichuan Province,China,triggering thousands of landslides along the Dadu River in the northwest-southeast(NW-SE)direction.We investigated the reactivation characteristics of historical landslides within the epicentral area of the Luding earthquake to identify the initiation mechanism of earthquake-induced landslides.Records of the two newly triggered and historical landslides were analyzed using manual and threshold methods;the spatial distribution of landslides was assessed in relation to topographical and geological factors using remote sensing images.This study sheds light on the spatial distribution patterns of landslides,especially those that occur above historical landslide areas.Our results revealed a similarity in the spatial distribution trends between historical landslides and new ones induced by earthquakes.These landslides tend to be concentrated within a range of 0.2 km from the river and 2 km from the fault.Notably,both rivers and faults predominantly influenced the reactivation of historical landslides.Remarkably,the reactivated landslides are characterized by their small to medium size and are predominantly situated in historical landslide zones.The number of reactivated landslides surpassed that of previously documented historical landslides within the study area.We provide insights into the critical factors responsible for historical landslides during the 2022 Luding earthquake,thereby enhancing our understanding of the potential implications for future co-seismic hazard assessments and mitigation strategies.展开更多
The accuracy of landslide susceptibility prediction(LSP)mainly depends on the precision of the landslide spatial position.However,the spatial position error of landslide survey is inevitable,resulting in considerable ...The accuracy of landslide susceptibility prediction(LSP)mainly depends on the precision of the landslide spatial position.However,the spatial position error of landslide survey is inevitable,resulting in considerable uncertainties in LSP modeling.To overcome this drawback,this study explores the influence of positional errors of landslide spatial position on LSP uncertainties,and then innovatively proposes a semi-supervised machine learning model to reduce the landslide spatial position error.This paper collected 16 environmental factors and 337 landslides with accurate spatial positions taking Shangyou County of China as an example.The 30e110 m error-based multilayer perceptron(MLP)and random forest(RF)models for LSP are established by randomly offsetting the original landslide by 30,50,70,90 and 110 m.The LSP uncertainties are analyzed by the LSP accuracy and distribution characteristics.Finally,a semi-supervised model is proposed to relieve the LSP uncertainties.Results show that:(1)The LSP accuracies of error-based RF/MLP models decrease with the increase of landslide position errors,and are lower than those of original data-based models;(2)70 m error-based models can still reflect the overall distribution characteristics of landslide susceptibility indices,thus original landslides with certain position errors are acceptable for LSP;(3)Semi-supervised machine learning model can efficiently reduce the landslide position errors and thus improve the LSP accuracies.展开更多
The aim of this study is to investigate the impacts of the sampling strategy of landslide and non-landslide on the performance of landslide susceptibility assessment(LSA).The study area is the Feiyun catchment in Wenz...The aim of this study is to investigate the impacts of the sampling strategy of landslide and non-landslide on the performance of landslide susceptibility assessment(LSA).The study area is the Feiyun catchment in Wenzhou City,Southeast China.Two types of landslides samples,combined with seven non-landslide sampling strategies,resulted in a total of 14 scenarios.The corresponding landslide susceptibility map(LSM)for each scenario was generated using the random forest model.The receiver operating characteristic(ROC)curve and statistical indicators were calculated and used to assess the impact of the dataset sampling strategy.The results showed that higher accuracies were achieved when using the landslide core as positive samples,combined with non-landslide sampling from the very low zone or buffer zone.The results reveal the influence of landslide and non-landslide sampling strategies on the accuracy of LSA,which provides a reference for subsequent researchers aiming to obtain a more reasonable LSM.展开更多
In recent years, the coastal region of Southeast China has witnessed a significant increase in the frequency and intensity of extreme rainfall events associated with landfalling typhoons. The hilly and mountainous ter...In recent years, the coastal region of Southeast China has witnessed a significant increase in the frequency and intensity of extreme rainfall events associated with landfalling typhoons. The hilly and mountainous terrain of this area, combined with rapid rainfall accumulation, has led to a surge in flash floods and severe geological hazards. On August 10, 2019, Typhoon Lekima made landfall in Zhejiang Province, China, and its torrential rainfall triggered extensive landslides, resulting in substantial damage and economic losses. Utilizing high-resolution satellite images, we compiled a landslide inventory of the affected area, which comprises a total of 2,774 rainfallinduced landslides over an area of 2965 km2. The majority of these landslides were small to mediumsized and exhibited elongated, clustered patterns. Some landslides displayed characteristics of high-level initiation, obstructing or partially blocking rivers, leading to the formation of debris dams. We used the inventory to analyze the distribution pattern of the landslides and their relationship with topographical, geological, and hydrological factors. The results showed that landslide abundance was closely related to elevation, slope angle, faults, and road density. The landslides were predominantly located in hilly and low mountainous areas, with elevations ranging from 150 to 300 m, slopes of 20 to 30 degrees, and a NE-SE aspect. Notably, we observed the highest Landslide Number Density(LND) and Landslide Area Percentage(LAP) in the rhyolite region. Landslides were concentrated within approximately 4 km on either side of fault zones, with their size and frequency negatively correlated with distances to faults, roads, and river systems. Furthermore, under the influence of typhoons, regions with denser vegetation cover exhibited higher landslide density, reaching maximum values in shrubland areas. In areas experiencing significantly increased concentrated rainfall, landslide density also showed a corresponding rise. In terms of spatial distribution, the rainfall-triggered landslides primarily occurred in the northeastern part of the study area, particularly in regions characterized by complex topography such as Shanzao Village in Yantan Town, Xixia Township, and Shangzhang Township. The research findings offer crucial data on the rainfallinduced landslides triggered by Typhoon Lekima, shedding light on their spatial distribution patterns. These findings provide valuable references for mitigating risks and planning reconstruction in typhoon-affected area.展开更多
Since the impoundment of Three Gorges Reservoir(TGR)in 2003,numerous slopes have experienced noticeable movement or destabilization owing to reservoir level changes and seasonal rainfall.One case is the Outang landsli...Since the impoundment of Three Gorges Reservoir(TGR)in 2003,numerous slopes have experienced noticeable movement or destabilization owing to reservoir level changes and seasonal rainfall.One case is the Outang landslide,a large-scale and active landslide,on the south bank of the Yangtze River.The latest monitoring data and site investigations available are analyzed to establish spatial and temporal landslide deformation characteristics.Data mining technology,including the two-step clustering and Apriori algorithm,is then used to identify the dominant triggers of landslide movement.In the data mining process,the two-step clustering method clusters the candidate triggers and displacement rate into several groups,and the Apriori algorithm generates correlation criteria for the cause-and-effect.The analysis considers multiple locations of the landslide and incorporates two types of time scales:longterm deformation on a monthly basis and short-term deformation on a daily basis.This analysis shows that the deformations of the Outang landslide are driven by both rainfall and reservoir water while its deformation varies spatiotemporally mainly due to the difference in local responses to hydrological factors.The data mining results reveal different dominant triggering factors depending on the monitoring frequency:the monthly and bi-monthly cumulative rainfall control the monthly deformation,and the 10-d cumulative rainfall and the 5-d cumulative drop of water level in the reservoir dominate the daily deformation of the landslide.It is concluded that the spatiotemporal deformation pattern and data mining rules associated with precipitation and reservoir water level have the potential to be broadly implemented for improving landslide prevention and control in the dam reservoirs and other landslideprone areas.展开更多
Thermo-poro-mechanical responses along sliding zone/surface have been extensively studied.However,it has not been recognized that the potential contribution of other crucial engineering geological interfaces beyond th...Thermo-poro-mechanical responses along sliding zone/surface have been extensively studied.However,it has not been recognized that the potential contribution of other crucial engineering geological interfaces beyond the slip surface to progressive failure.Here,we aim to investigate the subsurface multiphysics of reservoir landslides under two extreme hydrologic conditions(i.e.wet and dry),particularly within sliding masses.Based on ultra-weak fiber Bragg grating(UWFBG)technology,we employ specialpurpose fiber optic sensing cables that can be implanted into boreholes as“nerves of the Earth”to collect data on soil temperature,water content,pore water pressure,and strain.The Xinpu landslide in the middle reach of the Three Gorges Reservoir Area in China was selected as a case study to establish a paradigm for in situ thermo-hydro-poro-mechanical monitoring.These UWFBG-based sensing cables were vertically buried in a 31 m-deep borehole at the foot of the landslide,with a resolution of 1 m except for the pressure sensor.We reported field measurements covering the period 2021 and 2022 and produced the spatiotemporal profiles throughout the borehole.Results show that wet years are more likely to motivate landslide motions than dry years.The annual thermally active layer of the landslide has a critical depth of roughly 9 m and might move downward in warmer years.The dynamic groundwater table is located at depths of 9e15 m,where the peaked strain undergoes a periodical response of leap and withdrawal to annual hydrometeorological cycles.These interface behaviors may support the interpretation of the contribution of reservoir regulation to slope stability,allowing us to correlate them to local damage events and potential global destabilization.This paper also offers a natural framework for interpreting thermo-hydro-poro-mechanical signatures from creeping reservoir bank slopes,which may form the basis for a landslide monitoring and early warning system.展开更多
基金supported by the BasicScientific Fund of the Institute of Geology,China Earthquake Administration(IGCEA1604)。
文摘An MW6.6 earthquake occurred in eastern Hokkaido,Japan on September 6th,2018.Based on the pre-earthquake image from Google Earth and the post-earthquake image from high resolution(3 m)planet satellite,we manually interpret 9293 coseismic landslides and select 7 influencing factors of seismic landslide,such as elevation,slope,slope direction,road distance,flow distance,peak ground acceleration(PGA)and lithology.Then,9293 landslide points are randomly divided into training samples and validation samples with a proportion of 7:3.In detail,the training sample has 6505 landslide points and the validation sample has 2788 landslide points.The hazard risk assessment of seismic landslide is conducted by using the information value method and the study area is further divided into five risk grades,including very low risk area,low risk area,moderate risk area high risk area and very high risk area.The results show that there are 7576 landslides in high risk area and very high risk area,accounting for81.52%of the total landslide number,and the landslide area is 22.93 km^2,accounting for 74.35%of the total area.The hazard zoning is in high accordance with the actual situation.The evaluation results are tested by using the curve of cumulative percentage of hazardous area and cumulative percentage of landslides number.The results show that the success rate of the information value method is 78.50%and the prediction rate is 78.43%.The evaluation results are satisfactory,indicating that the hazard risk assessment results based on information value method may provide scientific reference for landslide hazard risk assessment as well as the disaster prevention and mitigation in the study area.
基金supported by the National Key Technology R&D Program(Grant No. 2011BAK12B01)the Young Foundation of National Natural Science of China(Grant No.41202210)+1 种基金the Education Department Innovation Research Team Program(Grant No.IRT0812)the Young Foundation of Chengdu University of Technology and the Education Department of Sichuan Province (Grant Nos.2010QJ15 and 11ZB262)
文摘The Ms 8.0 May 12,2008 Wenchuan earthquake triggered tens of thousands of landslides.The widespread landslides have caused serious casualties and property losses,and posed a great threat to post-earthquake reconstruction.A spatial database,inventoried 43,842 landslides with a total area of 632 km 2,was developed by interpretation of multi-resolution remote sensing images.The landslides can be classified into three categories:swallow,disrupted slides and falls;deep-seated slides and falls,and rock avalanches.The correlation between landslides distribution and the influencing parameters including distance from co-seismic fault,lithology,slope gradient,elevation,peak ground acceleration(PGA) and distance from drainage were analyzed.The distance from co-seismic fault was the most significant parameter followed by slope gradient and PGA was the least significant one.A logistic regression model combined with bivariate statistical analysis(BSA) was adopted for landslide susceptibility mapping.The study area was classified into five categories of landslide susceptibility:very low,low,medium,high and very high.92.0% of the study area belongs to low and very low categories with corresponding 9.0% of the total inventoried landslides.Medium susceptible zones make up 4.2% of the area with 17.7% of the total landslides.The rest of the area was classified into high and very high categories,which makes up 3.9% of the area with corresponding 73.3% of the total landslides.Although the susceptibility map can reveal the likelihood of future landslides and debris flows,and it is helpful for the rebuilding process and future zoning issues.
基金supported by the National Basic Research Program"973"Project of the Ministry of Science and Technology of the People’s Republic of China(GrantNo.2013CB733202)theNational Key Technology R&D Program(Grant No.2011BAK12B01)+1 种基金the Young Foundation of NationalNatural Science of China(Grant No.41202210)the National Science Fund for DistinguishedYoung Scholars(Grant No.41225011)
文摘The primary objective of landslide susceptibility mapping is the prediction of potential landslides in landslide-prone areas. The predictive power of a landslide susceptibility mapping model could be tested in an adjacent area of similar geo- environmental conditions to find out the reliability. Both the 2oo8 Wenchuan Earthquake and the 2o13 Lushan Earthquake occurred in the Longmen Mountain seismic zone, with similar topographical and geological conditions. The two earthquakes are both featured by thrust fault and similar seismic mechanism This paper adopted the susceptibility mapping model of co-seismic landslides triggered by Wenchuan earthquake to predict the spatial distribution of landslides induced by Lushan earthquake. Six influencing parameters were taken into consideration: distance from the seismic fault, slope gradient, lithology, distance from drainage, elevation and Peak Ground Acceleration (PGA). The preliminary results suggested that the zones with high susceptibility of co- seismic landslides were mainly distributed in the mountainous areas of Lushan, Baoxing and Tianquan counties. The co-seismic landslide susceptibility map was completed in two days after the quake and sent to the field investigators to provide guidance for rescue and relief work. The predictive power of the susceptibility map was validated by ROC curve analysis method using 2o37 co-seismic landslides in the epicenter area. The AUC value of o.71o indicated that the susceptibility model derived from Wenchuan Earthquake landslides showed good accuracy inpredicting the landslides triggered by Lushan earthquake.
基金Received on April 20th,2020revised on August 14th,2020.This project is jointly sponsored by Fundamental Scientific Research Fund in the IEF,CEA(2017IES010102,2019IEF0201,2017IES010101,)+1 种基金the National Natural Science Foundation of China(42072248)the Seismic Active Fault Exploration Project based on High-resolution Remote Sensing Interpretation Technology by Department of Earthquake Damage Defense,CEA(15230003).
文摘Analyzing the spatial distribution characteristics of earthquake-induced secondary disasters based on advanced techniques is significantly important,especially in understanding the process of strong earthquakes in the Loess Pateau.Using ArcGIS,this study interprets multi-temporal high-resolution satellite images,field investigation data,and historical seismic records.Major conclusions are obtained as follows:①Landslides induced by the Haiyuan earthquake are mainly distributed in the intersection area of the end of the Haiyuan fault and Liupanshan fault,as indicated by multiple dense distribution centers;②The landslide distribution of the Haiyuan Earthquake is determined by the distance to the fault,topographic relief,slope,lithology,and other factors.In detail,the closer the distance to the fault,the greater the density of the landslide.The greater the slope and relief of the terrain,the greater the density and the smaller the average area of a landslide.Compared with tertiary strata,Quaternary strata has a larger average area,and the density of the landslides is smaller;③The density curve of the death toll in the Haiyuan earthquake can be used as a reference for the distribution of co-seismic landslides.Several Haiyuan co-seismic landslides are distributed in the Tongwei landslide area;however,the major landslides here are induced by the 1718 Tongwei earthquake rather than the 1920 Haiyuan earthquake;④The co-seismic landslides of the Haiyuan earthquake exhibits the“slope effect”in the south-west plate of Haiyuan fault,presenting the dominant sliding direction towards the fault and epicenter;however,the“slope effect”is not evident in the northeast plate of the fault.
基金supported by the National Natural Science Foundation of China(Grant No.42271078)the Key Research and Development Program of Shaanxi(Grant No.2024SF-YBXM669)the Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(Grant No.2019QZKK0902)。
文摘Co-seismic landslide detection is essential for post-disaster rescue and risk assessment after an earthquake event.However,a variety of ground objects,including roads and bare land,have spectral characteristics similar to those of co-seismic landslides,making it difficult to gather information and assess their impact rapidly and accurately.Therefore,an automatic detection method based on a deep learning model,named ENVINet5,with multiple features(ENVINet5_MF)was proposed to solve this problem and improve the detection accuracy of co-seismic landslides.The ENVINet5_MF method is advantageous for co-seismic landslide detection because it features a landslide gain index(LGI)that effectively eliminates the spectral interference of bare land and roads.We conducted two experiments using multi-temporal PlanetScope images acquired in Hokkaido,Japan,and Mainling,China.The accuracy evaluation and rationality analysis show that ENVINet5_MF performed better than comparative methods and that the co-seismic landslide areas detected by ENVINet5_MF were the most consistent with ground reference data.The findings of this study suggest that ENVINet5_MF can provide an efficient and accurate method for coseismic landslide detection to ensure a rapid response to co-seismic landslide disasters.
基金the University of Transport Technology under the project entitled“Application of Machine Learning Algorithms in Landslide Susceptibility Mapping in Mountainous Areas”with grant number DTTD2022-16.
文摘This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble learning techniques:DAGGING(DG),MULTIBOOST(MB),and ADABOOST(AB).This combination resulted in three distinct ensemble models:DG-RBFN,MB-RBFN,and AB-RBFN.Additionally,a traditional weighted method,Information Value(IV),and a benchmark machine learning(ML)model,Multilayer Perceptron Neural Network(MLP),were employed for comparison and validation.The models were developed using ten landslide conditioning factors,which included slope,aspect,elevation,curvature,land cover,geomorphology,overburden depth,lithology,distance to rivers and distance to roads.These factors were instrumental in predicting the output variable,which was the probability of landslide occurrence.Statistical analysis of the models’performance indicated that the DG-RBFN model,with an Area Under ROC Curve(AUC)of 0.931,outperformed the other models.The AB-RBFN model achieved an AUC of 0.929,the MB-RBFN model had an AUC of 0.913,and the MLP model recorded an AUC of 0.926.These results suggest that the advanced ensemble ML model DG-RBFN was more accurate than traditional statistical model,single MLP model,and other ensemble models in preparing trustworthy landslide susceptibility maps,thereby enhancing land use planning and decision-making.
基金the funding support from the National Natural Science Foundation of China(Grant No.52308340)Chongqing Talent Innovation and Entrepreneurship Demonstration Team Project(Grant No.cstc2024ycjh-bgzxm0012)the Science and Technology Projects supported by China Coal Technology and Engineering Chongqing Design and Research Institute(Group)Co.,Ltd..(Grant No.H20230317)。
文摘Influenced by complex external factors,the displacement-time curve of reservoir landslides demonstrates both short-term and long-term diversity and dynamic complexity.It is difficult for existing methods,including Regression models and Neural network models,to perform multi-characteristic coupled displacement prediction because they fail to consider landslide creep characteristics.This paper integrates the creep characteristics of landslides with non-linear intelligent algorithms and proposes a dynamic intelligent landslide displacement prediction method based on a combination of the Biological Growth model(BG),Convolutional Neural Network(CNN),and Long ShortTerm Memory Network(LSTM).This prediction approach improves three different biological growth models,thereby effectively extracting landslide creep characteristic parameters.Simultaneously,it integrates external factors(rainfall and reservoir water level)to construct an internal and external comprehensive dataset for data augmentation,which is input into the improved CNN-LSTM model.Thereafter,harnessing the robust feature extraction capabilities and spatial translation invariance of CNN,the model autonomously captures short-term local fluctuation characteristics of landslide displacement,and combines LSTM's efficient handling of long-term nonlinear temporal data to improve prediction performance.An evaluation of the Liangshuijing landslide in the Three Gorges Reservoir Area indicates that BG-CNN-LSTM exhibits high prediction accuracy,excellent generalization capabilities when dealing with various types of landslides.The research provides an innovative approach to achieving the whole-process,realtime,high-precision displacement predictions for multicharacteristic coupled landslides.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.U22A20602,U2040221,and 42207228)the Sichuan Science and Technology Program(2022NSFSC1060)the Fundamental Research Funds for Central Public Research Institutes(Grant No.Y324006)。
文摘Landslide dams,as frequent natural hazards,pose significant risks to human lives,property,and ecological environments.The grading characteristics and density of dam materials play a crucial role in determining the stability of landslide dams and the potential for dam breaches.To explore the failure mechanisms and evolutionary processes of landslide dams with varying soil properties,this study conducted a series of flume experiments,considering different grain compositions and material densities.The results demonstrated that grading characteristics significantly influence landslide dam stability,affecting failure patterns,breach processes,and final breach morphologies.Fine-graded materials exhibited a sequence of surface erosion,head-cut erosion,and subsequent surface erosion during the breach process,while well-graded materials typically experienced head-cut erosion followed by surface erosion.In coarse-graded dams,the high permeability of coarse particles allowed the dam to remain stable,as inflows matched outflows.The dam breach model experiments also showed that increasing material density effectively delayed the breach and reduced peak breach flow discharge.Furthermore,higher fine particle content led to a reduction in the residual dam height and the base slope of the final breach profile,although the relationship between peak breach discharge and the content of fine and coarse particles was nonlinear.To better understand breach morphology evolution under different soil characteristics and hydraulic conditions,three key points were identified—erosion point,control point,and scouring point.This study,by examining the evolution of failure patterns,breach processes,and breach flow discharges under various grading and density conditions,offers valuable insights into the mechanisms behind landslide dam failures.
基金CSIR for providing financial assistance(09/0420(11800)/2021EMR-I)。
文摘The Kumaun Himalaya is well-known as a geologically and tectonically complex region that amplifies mass wasting processes,particularly landslides.This study attempts to investigate the interplay between landslide distribution and the lithotectonic regime of Darma Valley,Kumaun Himalaya.A landslide inventory comprising 295 landslides in the area has been prepared and several morphotectonic proxies such as valley floor width to height ratio(Vf),stream length gradient index(SL),and hypsometric integral(HI)have been used to infer tectonic regime.Morphometric analysis,including basic,linear,aerial,and relief aspects,of 59 fourth-order sub-basins,has been carried out to estimate erosion potential in the study area.The result demonstrates that 46.77%of the landslides lie in very high,20.32%in high,21.29%in medium,and 11.61%in low erosion potential zones respectively.In order to determine the key parameters controlling erosion potential,two multivariate statistical methods namely Principal Component Analysis(PCA)and Agglomerative Hierarchical Clustering(AHC)were utilized.PCA reveals that the Higher Himalayan Zone(HHZ)has the highest erosion potential due to the presence of elongated sub-basins characterized by steep slopes and high relief.The clusters created through AHC exhibit positive PCA values,indicating a robust correlation between PCA and AHC.Furthermore,the landslide density map shows two major landslide hotspots.One of these hotspots lies in the vicinity of highly active Munsiyari Thrust(MT),while the other is in the Pandukeshwar formation within the MT's hanging wall,characterized by a high exhumation rate.High SL and low Vf values along these hotspots further corroborate that the occurrence of landslides in the study area is influenced by tectonic activity.This study,by identifying erosionprone areas and elucidating the implications of tectonic activity on landslide distribution,empowers policymakers and government agencies to develop strategies for hazard assessment and effective landslide risk mitigation,consequently safeguarding lives and communities.
基金supported by The National Natural Science Foundation of China(Grant No.12362034)The Scientific Research Project of Inner Mongolia University of Technology(Grant Nos.DC2200000913+1 种基金DC2300001439)The Science and Technology Plan Project of Inner Mongolia Autonomous Region(Grant No.2022YFSH0047)。
文摘Loess-mudstone landslides are common in the Loess Plateau.Investigations into the mechanical theory of loess-mudstone landslides have become a challenging undertaking due to the distinctive interfacial properties of loess-mudstone and the unique water sensitivity characteristics of mudstone.Hence,it is imperative to develop innovative mechanical models and mathematical equations specifically tailored to loess-mudstone landslides.In this study,we analyze the fracture mechanism of the loess-mudstone sliding zone using plastic fracture mechanics and develop a unique fracture yield model.To calculate the energy release rate during the expansion of the loess-mudstone interface tip region,the shear fracture energy G is applied,which reflects both the yield failure criterion and the fracture failure criterion.To better understand the instability mechanism of loess-mudstone landslides,equilibrium equations based on G are established for tractive,compressive,and tensile loess-mudstone landslides.Based on the equilibrium equation,the critical length Lc of the sliding zone can be used for the safety evaluation of loess-mudstone landslides.In this way,this study proposes a new method for determining the failure mechanism and equilibrium equation of loessmudstone landslides,which resolves their starting mechanism,mechanical equilibrium equations,and safety evaluation indicators,thus justifying the scientific significance and practical value of this research.
基金funded by the So Lo Mon project“Monitoraggio a Lungo Termine di Grandi Frane basato su Sistemi Integrati di Sensori e Reti”(Longterm monitoring of large-scale landslides based on integrated systems of sensors and networks),Program EFRE-FESR 2014–2020,Project EFRE-FESR4008 South Tyrol–Person in charge:V.Mair。
文摘Large-scale deep-seated landslides pose a significant threat to human life and infrastructure.Therefore,closely monitoring these landslides is crucial for assessing and mitigating their associated risks.In this paper,the authors introduce the So Lo Mon framework,a comprehensive monitoring system developed for three large-scale landslides in the Autonomous Province of Bolzano,Italy.A web-based platform integrates various monitoring data(GNSS,topographic data,in-place inclinometer),providing a user-friendly interface for visualizing and analyzing the collected data.This facilitates the identification of trends and patterns in landslide behaviour,enabling the triggering of warnings and the implementation of appropriate mitigation measures.The So Lo Mon platform has proven to be an invaluable tool for managing the risks associated with large-scale landslides through non-structural measures and driving countermeasure works design.It serves as a centralized data repository,offering visualization and analysis tools.This information empowers decisionmakers to make informed choices regarding risk mitigation,ultimately ensuring the safety of communities and infrastructures.
基金the financial support from the Fujian Science Foundation for Outstanding Youth(2023J06039)the National Natural Science Foundation of China(Grant No.41977259,U2005205,41972268)the Independent Research Project of Technology Innovation Center for Monitoring and Restoration Engineering of Ecological Fragile Zone in Southeast China(KY-090000-04-2022-019)。
文摘Shotcrete is one of the common solutions for shallow sliding.It works by forming a protective layer with high strength and cementing the loose soil particles on the slope surface to prevent shallow sliding.However,the solidification time of conventional cement paste is long when shotcrete is used to treat cohesionless soil landslide.The idea of reinforcing slope with polyurethane solidified soil(i.e.,mixture of polyurethane and sand)was proposed.Model tests and finite element analysis were carried out to study the effectiveness of the proposed new method on the emergency treatment of cohesionless soil landslide.Surcharge loading on the crest of the slope was applied step by step until landslide was triggered so as to test and compare the stability and bearing capacity of slope models with different conditions.The simulated slope displacements were relatively close to the measured results,and the simulated slope deformation characteristics were in good agreement with the observed phenomena,which verifies the accuracy of the numerical method.Under the condition of surcharge loading on the crest of the slope,the unreinforced slope slid when the surcharge loading exceeded 30 k Pa,which presented a failure mode of local instability and collapse at the shallow layer of slope top.The reinforced slope remained stable even when the surcharge loading reached 48 k Pa.The displacement of the reinforced slope was reduced by more than 95%.Overall,this study verifies the effectiveness of polyurethane in the emergency treatment of cohesionless soil landslide and should have broad application prospects in the field of geological disasters concerning the safety of people's live.
基金supported by the Open Fund of Key Laboratory of Geological Hazards on Three Gorges Reservoir Area(China Three Gorges University)of the Ministry of Education(Grant Nos.2022KDZ14 and 2022KDZ15)the Open Fund of Badong National Observation and Research Station of Geohazards(Grant No.BNORSG-202304)+3 种基金the Science and Technology Project of Department of Natural Resources of Hubei Province(Grant No.ZRZY2024KJ15)the Natural Science Foundation of Hubei Province(Grant No.2022CFB557)the National Natural Science Foundation of China(Grant No.42107489)the 111 Project of Hubei Province(Grant No.2021EJD026)。
文摘The precision of landslide displacement prediction is crucial for effective landslide prevention and mitigation strategies.However,the role of surface monitoring frequency in influencing prediction accuracy has been largely neglected.This study examined the effect of varying monitoring frequencies on the accuracy of displacement predictions by using the Baijiabao landslide in the Three Gorges Reservoir Area(TGRA)as a case study.We collected surface automatic monitoring data at different intervals,ranging from daily to monthly.The Ensemble Empirical Mode Decomposition(EEMD)algorithm was utilized to dissect the accumulated displacements into periodic and trend components at each monitoring frequency.Polynomial fitting was applied to forecast the trend component while the periodic component was predicted with two state-of-the-art neural network models:Long Short-Term Memory(LSTM)and Gated Recurrent Unit(GRU).The predictions from these models were integrated to derive cumulative displacement forecasts,enabling a comparative analysis of prediction accuracy across different monitoring frequencies.The results demonstrate that the proposed models achieve high accuracy in landslide displacement forecasting,with optimal performance observed at moderate monitoring intervals.Intriguingly,the daily mean average error(MAE)decreases sharply with increasing monitoring frequency,reaching a plateau.These findings were corroborated by a parallel analysis of the Bazimen landslide,suggesting that moderate monitoring intervals of approximately 7 to 15 days are most conducive to achieving enhanced prediction accuracy compared to both daily and monthly intervals.
基金financial support from major project of National Natural Science Foundation of China(Grant No.41941017 and 41790432)Key Research Program of Frontier Sciences,Chinese Academy of Sciences(Grant No.QYZDY-SSWDQC006)+3 种基金International Partnership Program,Chinese Academy of Sciences(Grant number131551KYSB20180042)Strategic Priority Research Program,Chinese Academy of Sciences(Grant No XDA20030301)Organization for women in Science for Developing World(OWSD)Swedish International Development Corporation Agency(SIDA)。
文摘Kathmandu Kyirong Highway(KKH)is one of the most strategic Sino-Nepal highways.Lowcost mitigation measures are common in Nepalese highways,however,they are not even applied sufficiently to control slope instability since the major part of this highway falls still under the category of feeder road,and thus less resources are made available for its maintenance.It is subjected to frequent landslide events in an annual basis,especially during monsoon season.The Gorkha earthquake,2015 further mobilized substantial hillslope materials and damaged the road in several locations.The aim of this research is to access the dynamic landslide susceptibility considering pre,co and post seismic mass failures.We mapped 5,349 multi-temporal landslides of 15 years(2004-2018),using high resolution satellite images and field data,and grouped them in aforementioned three time periods.Landslide susceptibility was assessed with the application of’certainty factor’(CF).Seventy percent landslides were used for susceptibility modelling and 30%for validation.The obtained results were evaluated by plotting’receiver operative characteristic’(ROC)curves.The CF performed well with the’area under curve’(AUC)0.820,0.875 and 0.817 for the success rates,and 0.809,0.890 and 0.760 for the prediction rates for respective pre,co and post seismic landslide susceptibility.The accuracy for seismic landslide susceptibility was better than pre and post-quake ones.It might be because of the differences on completeness of the landslide inventory,which might have been possibly done better for the single event based co-seismic landslide mapping in comparison with multitemporal inventories in pre and post-quake situations.The results obtained in this study provide insights on dynamic spatial probability of landslide occurrences in the changing condition of triggering agents.This work can be a good contribution to the methodologies for the evaluation of the dynamic landslide hazard and risk,which will further help to design the efficient mitigation measures along the mountain highways.
基金financially supported by the National Key R&D Program of China (No. 2022YFF0800604)the National Natural Science Foundation of China (No. 42207224)the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project (SKLGP2022Z021)
文摘On September 5,2022,a strong earthquake with a magnitude of MS6.8 struck Luding County in Sichuan Province,China,triggering thousands of landslides along the Dadu River in the northwest-southeast(NW-SE)direction.We investigated the reactivation characteristics of historical landslides within the epicentral area of the Luding earthquake to identify the initiation mechanism of earthquake-induced landslides.Records of the two newly triggered and historical landslides were analyzed using manual and threshold methods;the spatial distribution of landslides was assessed in relation to topographical and geological factors using remote sensing images.This study sheds light on the spatial distribution patterns of landslides,especially those that occur above historical landslide areas.Our results revealed a similarity in the spatial distribution trends between historical landslides and new ones induced by earthquakes.These landslides tend to be concentrated within a range of 0.2 km from the river and 2 km from the fault.Notably,both rivers and faults predominantly influenced the reactivation of historical landslides.Remarkably,the reactivated landslides are characterized by their small to medium size and are predominantly situated in historical landslide zones.The number of reactivated landslides surpassed that of previously documented historical landslides within the study area.We provide insights into the critical factors responsible for historical landslides during the 2022 Luding earthquake,thereby enhancing our understanding of the potential implications for future co-seismic hazard assessments and mitigation strategies.
基金the National Natural Science Foundation of China(Grant Nos.42377164 and 52079062)the Interdisciplinary Innovation Fund of Natural Science,Nanchang University(Grant No.9167-28220007-YB2107).
文摘The accuracy of landslide susceptibility prediction(LSP)mainly depends on the precision of the landslide spatial position.However,the spatial position error of landslide survey is inevitable,resulting in considerable uncertainties in LSP modeling.To overcome this drawback,this study explores the influence of positional errors of landslide spatial position on LSP uncertainties,and then innovatively proposes a semi-supervised machine learning model to reduce the landslide spatial position error.This paper collected 16 environmental factors and 337 landslides with accurate spatial positions taking Shangyou County of China as an example.The 30e110 m error-based multilayer perceptron(MLP)and random forest(RF)models for LSP are established by randomly offsetting the original landslide by 30,50,70,90 and 110 m.The LSP uncertainties are analyzed by the LSP accuracy and distribution characteristics.Finally,a semi-supervised model is proposed to relieve the LSP uncertainties.Results show that:(1)The LSP accuracies of error-based RF/MLP models decrease with the increase of landslide position errors,and are lower than those of original data-based models;(2)70 m error-based models can still reflect the overall distribution characteristics of landslide susceptibility indices,thus original landslides with certain position errors are acceptable for LSP;(3)Semi-supervised machine learning model can efficiently reduce the landslide position errors and thus improve the LSP accuracies.
文摘The aim of this study is to investigate the impacts of the sampling strategy of landslide and non-landslide on the performance of landslide susceptibility assessment(LSA).The study area is the Feiyun catchment in Wenzhou City,Southeast China.Two types of landslides samples,combined with seven non-landslide sampling strategies,resulted in a total of 14 scenarios.The corresponding landslide susceptibility map(LSM)for each scenario was generated using the random forest model.The receiver operating characteristic(ROC)curve and statistical indicators were calculated and used to assess the impact of the dataset sampling strategy.The results showed that higher accuracies were achieved when using the landslide core as positive samples,combined with non-landslide sampling from the very low zone or buffer zone.The results reveal the influence of landslide and non-landslide sampling strategies on the accuracy of LSA,which provides a reference for subsequent researchers aiming to obtain a more reasonable LSM.
基金supported by National Natural Science Foundation of China (42277136)Natural Science Research Project of Anhui Educational Committee (2023AH030041)National Key Research and Development Program of China (2021YFB3901205)。
文摘In recent years, the coastal region of Southeast China has witnessed a significant increase in the frequency and intensity of extreme rainfall events associated with landfalling typhoons. The hilly and mountainous terrain of this area, combined with rapid rainfall accumulation, has led to a surge in flash floods and severe geological hazards. On August 10, 2019, Typhoon Lekima made landfall in Zhejiang Province, China, and its torrential rainfall triggered extensive landslides, resulting in substantial damage and economic losses. Utilizing high-resolution satellite images, we compiled a landslide inventory of the affected area, which comprises a total of 2,774 rainfallinduced landslides over an area of 2965 km2. The majority of these landslides were small to mediumsized and exhibited elongated, clustered patterns. Some landslides displayed characteristics of high-level initiation, obstructing or partially blocking rivers, leading to the formation of debris dams. We used the inventory to analyze the distribution pattern of the landslides and their relationship with topographical, geological, and hydrological factors. The results showed that landslide abundance was closely related to elevation, slope angle, faults, and road density. The landslides were predominantly located in hilly and low mountainous areas, with elevations ranging from 150 to 300 m, slopes of 20 to 30 degrees, and a NE-SE aspect. Notably, we observed the highest Landslide Number Density(LND) and Landslide Area Percentage(LAP) in the rhyolite region. Landslides were concentrated within approximately 4 km on either side of fault zones, with their size and frequency negatively correlated with distances to faults, roads, and river systems. Furthermore, under the influence of typhoons, regions with denser vegetation cover exhibited higher landslide density, reaching maximum values in shrubland areas. In areas experiencing significantly increased concentrated rainfall, landslide density also showed a corresponding rise. In terms of spatial distribution, the rainfall-triggered landslides primarily occurred in the northeastern part of the study area, particularly in regions characterized by complex topography such as Shanzao Village in Yantan Town, Xixia Township, and Shangzhang Township. The research findings offer crucial data on the rainfallinduced landslides triggered by Typhoon Lekima, shedding light on their spatial distribution patterns. These findings provide valuable references for mitigating risks and planning reconstruction in typhoon-affected area.
基金supported by the Natural Science Foundation of Shandong Province,China(Grant No.ZR2021QD032)。
文摘Since the impoundment of Three Gorges Reservoir(TGR)in 2003,numerous slopes have experienced noticeable movement or destabilization owing to reservoir level changes and seasonal rainfall.One case is the Outang landslide,a large-scale and active landslide,on the south bank of the Yangtze River.The latest monitoring data and site investigations available are analyzed to establish spatial and temporal landslide deformation characteristics.Data mining technology,including the two-step clustering and Apriori algorithm,is then used to identify the dominant triggers of landslide movement.In the data mining process,the two-step clustering method clusters the candidate triggers and displacement rate into several groups,and the Apriori algorithm generates correlation criteria for the cause-and-effect.The analysis considers multiple locations of the landslide and incorporates two types of time scales:longterm deformation on a monthly basis and short-term deformation on a daily basis.This analysis shows that the deformations of the Outang landslide are driven by both rainfall and reservoir water while its deformation varies spatiotemporally mainly due to the difference in local responses to hydrological factors.The data mining results reveal different dominant triggering factors depending on the monitoring frequency:the monthly and bi-monthly cumulative rainfall control the monthly deformation,and the 10-d cumulative rainfall and the 5-d cumulative drop of water level in the reservoir dominate the daily deformation of the landslide.It is concluded that the spatiotemporal deformation pattern and data mining rules associated with precipitation and reservoir water level have the potential to be broadly implemented for improving landslide prevention and control in the dam reservoirs and other landslideprone areas.
基金We acknowledge the funding support from the National Science Fund for Distinguished Young Scholars of National Natural Science Foundation of China(Grant No.42225702)the National Natural Science Foundation of China(Grant No.42077235).
文摘Thermo-poro-mechanical responses along sliding zone/surface have been extensively studied.However,it has not been recognized that the potential contribution of other crucial engineering geological interfaces beyond the slip surface to progressive failure.Here,we aim to investigate the subsurface multiphysics of reservoir landslides under two extreme hydrologic conditions(i.e.wet and dry),particularly within sliding masses.Based on ultra-weak fiber Bragg grating(UWFBG)technology,we employ specialpurpose fiber optic sensing cables that can be implanted into boreholes as“nerves of the Earth”to collect data on soil temperature,water content,pore water pressure,and strain.The Xinpu landslide in the middle reach of the Three Gorges Reservoir Area in China was selected as a case study to establish a paradigm for in situ thermo-hydro-poro-mechanical monitoring.These UWFBG-based sensing cables were vertically buried in a 31 m-deep borehole at the foot of the landslide,with a resolution of 1 m except for the pressure sensor.We reported field measurements covering the period 2021 and 2022 and produced the spatiotemporal profiles throughout the borehole.Results show that wet years are more likely to motivate landslide motions than dry years.The annual thermally active layer of the landslide has a critical depth of roughly 9 m and might move downward in warmer years.The dynamic groundwater table is located at depths of 9e15 m,where the peaked strain undergoes a periodical response of leap and withdrawal to annual hydrometeorological cycles.These interface behaviors may support the interpretation of the contribution of reservoir regulation to slope stability,allowing us to correlate them to local damage events and potential global destabilization.This paper also offers a natural framework for interpreting thermo-hydro-poro-mechanical signatures from creeping reservoir bank slopes,which may form the basis for a landslide monitoring and early warning system.