With the development of wireless communication technology,an urgent problem to be solved is co-site broadband interference on independent communication platforms such as satellites,space stations,aircrafts and ships.A...With the development of wireless communication technology,an urgent problem to be solved is co-site broadband interference on independent communication platforms such as satellites,space stations,aircrafts and ships.Also,the problem of strong selfinterference rejection should be solved in the co-time co-frequency full duplex mode which realizes spectrum multiplication in 5G communication technology.In the research of such interference rejection,interference cancellation technology has been applied.In order to reject multipath interference,multitap double LMS(Least Mean Square)loop interference cancellation system is often used for cancelling RF(Radio Frequency)domain interference cancelling.However,more taps will lead to a more complex structure of the cancellation system.A novel tap single LMS loop adaptive interference cancellation system was proposed to improve the system compactness and reduce the cost.In addition,a mathematical model was built for the proposed cancellation system,the correlation function of CP2FSK(Continuous Phase Binary Frequency Shift Keying)signal was derived,and the quantitative relationship was established between the correlation function and the interference signal bandwidth and tap delay differential.The steadystate weights and the expression of the average interference cancellation ratio(ICR)were deduced in the scenes of LOS(Line of Sight)interference with antenna swaying on an independent communication platform and indoor multipath interference.The quantitative relationship was deeply analyzed between the interference cancellation performance and the parameters such as antenna swing,LMS loop gain,and interference signal bandwidth,which was verified by simulation experiment.And the performance of the proposed interference cancellation system was compared with that of the traditional double LMS loop cancellation system.The results showed that the compact single LMS loop cancellation system can achieve an average interference rejection capability comparable to the double LMS loop cancellation system.展开更多
The co-site interference exists in kinds of communication systems, especially in digital communication systems, also is one of the biggest threats "in electromagnetic compatibility (EMC) designation of the systems....The co-site interference exists in kinds of communication systems, especially in digital communication systems, also is one of the biggest threats "in electromagnetic compatibility (EMC) designation of the systems. Analyzing the co-site interference is an important process in achieving EMC performance of the system. Under the situation, the co-site interference simulation analysis of a vehicular digital communication system based on interference margin (IM) prediction method by bit error ratio (BER) was proposed in the paper. In the simulation analysis, some physical models of the vehicular communication system were established on SIMULINK environment, the upper limit of BER level for audio signals was defined as the IM, three different types of co-site interference was analyzed respectively, and the simulation results were obtained in the form of system interference bandwidth. From these results, the EMC performance evaluation of the vehicular communication system was predicted based on the IM prediction method. By comparing with the actual test results, the correctness of the simulation results was validated and the simulation analysis method can be used for reference by other communication systems was indicated.展开更多
An investigation on adsorption of NO on reduced Co-Mo/Al_2O_3 and Ru-Co-Mo/Al_2O_3 catalysts has been performed using FT-IR and MS spectroscopies. IR spectra of NO adsorption showed two bands at 1895 and 1800 cm_(-1),...An investigation on adsorption of NO on reduced Co-Mo/Al_2O_3 and Ru-Co-Mo/Al_2O_3 catalysts has been performed using FT-IR and MS spectroscopies. IR spectra of NO adsorption showed two bands at 1895 and 1800 cm_(-1), and NO--TPD profiles gave rise to several peaks at 353, 423 and 473 K, which are assigned to various Co-sites on the surface. Compared with Co-Mo/Al_2O_3, the adsorption rate, binding energy, and amount of NO adsorbed on Ru-Co-Mo/Al_2O_3 are very high.展开更多
After years of booming growth on renewable energy, the untapped land suitable for the wind farm becomes increasingly scarce in China. In order to make full use of the land, it became a realistic practice to construct ...After years of booming growth on renewable energy, the untapped land suitable for the wind farm becomes increasingly scarce in China. In order to make full use of the land, it became a realistic practice to construct wind farm together with PV station in those areas where both the wind resource and solar resource are rich. In this paper, based on the analysis of spatial distribution characteristics of wind and solar resources, the factors influencing on the layout of wind turbine and PV array and the interaction between wind turbine and PV array, a proposal for co-siting design wind farm and PV station is discussed.展开更多
锌-空气电池(ZAB)因其能量密度高、环境友好、成本低以及安全性高而备受关注.然而,空气电极上的氧还原反应(ORR)动力学缓慢,严重限制了ZAB的输出功率.尽管铂基催化剂展现出优异的ORR催化活性,但高昂的成本制约其大规模商业化应用.因此,...锌-空气电池(ZAB)因其能量密度高、环境友好、成本低以及安全性高而备受关注.然而,空气电极上的氧还原反应(ORR)动力学缓慢,严重限制了ZAB的输出功率.尽管铂基催化剂展现出优异的ORR催化活性,但高昂的成本制约其大规模商业化应用.因此,迫切需要开发高效、低成本的ORR电催化剂.研究表明,具有原子分散Co-N4活性位点的Co-N-C单原子催化剂是理想的ORR非贵金属催化剂,但其仍然存在与反应关键中间体结合能较高的难题.目前的研究主要通过调控单原子配位环境与增大活性位点密度来提高Co-N-C催化剂的活性,但如何精确控制中心金属电子结构以及避免高温下金属原子的团聚仍面临巨大挑战.除了单原子活性位点外,催化剂载体的键合结构、电荷分布状态亦会影响载体本身和单原子位点的催化活性.然而,现有的研究主要聚焦于单原子位点或无金属催化剂单方面活性的提升,关于它们之间的相互作用对于催化性能影响的研究相对很少.为了进一步提高Co单原子催化剂的催化活性,本文通过简单的模板法与NH3二次处理策略制备了氮掺杂缺陷碳负载的Co-N_(5)位点单原子催化剂.电感耦合等离子体发射光谱结果表明,单原子Co的金属负载量高达2.57 wt%.此外,相比于未经过NH3二次处理的Co-Nx/HC样品,Co-N_(5)/DHC样品在电子顺磁共振谱中g=2.003处呈现出更明显的共振信号,在C 1s高分辨谱中具有更低的C-C(sp2杂化)/C-N(sp3杂化)比例以及明显增加的吡啶氮信号,证实了Co-N_(5)/DHC显著提升的氮掺杂碳缺陷浓度并具有丰富的边界/缺陷位点.同时,X射线吸收谱与球差矫正透射电子显微镜结果表明所制备的样品为原子分散的Co-N_(5)结构,从而证明成功制备了缺陷氮掺杂碳耦合Co-N_(5)位点单原子催化剂.电化学测试结果表明,缺陷氮掺杂碳耦合Co-N_(5)位点后表现较好的ORR性能,半波电位达到0.877 V,明显高于Co-Nx/HC对比样品和商业化Pt/C催化剂.Koutecky-Levich曲线和旋转盘环电极测试结果表明,Co-N_(5)/DHC催化剂的高效4e-反应路径.且在10000次的加速老化测试中,Co-N_(5)/DHC半波电位仅降低了7 m V,稳定性优于Pt/C.以Co-N_(5)/DHC为阴极催化剂组装的ZAB开路电压为1.45 V,峰值输出功率密度能够达到160.7 m W cm^(-2),并能提供766.2 m A h gZn-1的比容量,展现出较高的应用前景.密度泛函理论计算表明,Co-N_(5)位点与缺陷氮掺杂碳的相互作用诱导Co中心位点电子的重新分布,降低了ORR反应能垒.综上,本文为设计与合成高性能的Co单原子催化剂,用于先进的可再生能源转换系统提供了一种新思路.展开更多
基金supported by the National Natural Science Foundation of China[Grant No.61771187]the Natural Science Foundation of Hubei Province[Grant No.2016CFB396]+1 种基金the Hubei Provincial Technology Innovation Special Major Project[Grant No.2019AAA018]the Major Project of Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar Energy[HBSKFZD2015002]。
文摘With the development of wireless communication technology,an urgent problem to be solved is co-site broadband interference on independent communication platforms such as satellites,space stations,aircrafts and ships.Also,the problem of strong selfinterference rejection should be solved in the co-time co-frequency full duplex mode which realizes spectrum multiplication in 5G communication technology.In the research of such interference rejection,interference cancellation technology has been applied.In order to reject multipath interference,multitap double LMS(Least Mean Square)loop interference cancellation system is often used for cancelling RF(Radio Frequency)domain interference cancelling.However,more taps will lead to a more complex structure of the cancellation system.A novel tap single LMS loop adaptive interference cancellation system was proposed to improve the system compactness and reduce the cost.In addition,a mathematical model was built for the proposed cancellation system,the correlation function of CP2FSK(Continuous Phase Binary Frequency Shift Keying)signal was derived,and the quantitative relationship was established between the correlation function and the interference signal bandwidth and tap delay differential.The steadystate weights and the expression of the average interference cancellation ratio(ICR)were deduced in the scenes of LOS(Line of Sight)interference with antenna swaying on an independent communication platform and indoor multipath interference.The quantitative relationship was deeply analyzed between the interference cancellation performance and the parameters such as antenna swing,LMS loop gain,and interference signal bandwidth,which was verified by simulation experiment.And the performance of the proposed interference cancellation system was compared with that of the traditional double LMS loop cancellation system.The results showed that the compact single LMS loop cancellation system can achieve an average interference rejection capability comparable to the double LMS loop cancellation system.
基金supported by EMC&EMB Lab of Beijing University of Posts and Telecommunications and Beijing Institute of Astronautic System Engineeringthe National Natural Science Foundation of China(61171051)
文摘The co-site interference exists in kinds of communication systems, especially in digital communication systems, also is one of the biggest threats "in electromagnetic compatibility (EMC) designation of the systems. Analyzing the co-site interference is an important process in achieving EMC performance of the system. Under the situation, the co-site interference simulation analysis of a vehicular digital communication system based on interference margin (IM) prediction method by bit error ratio (BER) was proposed in the paper. In the simulation analysis, some physical models of the vehicular communication system were established on SIMULINK environment, the upper limit of BER level for audio signals was defined as the IM, three different types of co-site interference was analyzed respectively, and the simulation results were obtained in the form of system interference bandwidth. From these results, the EMC performance evaluation of the vehicular communication system was predicted based on the IM prediction method. By comparing with the actual test results, the correctness of the simulation results was validated and the simulation analysis method can be used for reference by other communication systems was indicated.
基金Natural Science Foundation of Chinese Academy of Sciences.
文摘An investigation on adsorption of NO on reduced Co-Mo/Al_2O_3 and Ru-Co-Mo/Al_2O_3 catalysts has been performed using FT-IR and MS spectroscopies. IR spectra of NO adsorption showed two bands at 1895 and 1800 cm_(-1), and NO--TPD profiles gave rise to several peaks at 353, 423 and 473 K, which are assigned to various Co-sites on the surface. Compared with Co-Mo/Al_2O_3, the adsorption rate, binding energy, and amount of NO adsorbed on Ru-Co-Mo/Al_2O_3 are very high.
文摘After years of booming growth on renewable energy, the untapped land suitable for the wind farm becomes increasingly scarce in China. In order to make full use of the land, it became a realistic practice to construct wind farm together with PV station in those areas where both the wind resource and solar resource are rich. In this paper, based on the analysis of spatial distribution characteristics of wind and solar resources, the factors influencing on the layout of wind turbine and PV array and the interaction between wind turbine and PV array, a proposal for co-siting design wind farm and PV station is discussed.
文摘锌-空气电池(ZAB)因其能量密度高、环境友好、成本低以及安全性高而备受关注.然而,空气电极上的氧还原反应(ORR)动力学缓慢,严重限制了ZAB的输出功率.尽管铂基催化剂展现出优异的ORR催化活性,但高昂的成本制约其大规模商业化应用.因此,迫切需要开发高效、低成本的ORR电催化剂.研究表明,具有原子分散Co-N4活性位点的Co-N-C单原子催化剂是理想的ORR非贵金属催化剂,但其仍然存在与反应关键中间体结合能较高的难题.目前的研究主要通过调控单原子配位环境与增大活性位点密度来提高Co-N-C催化剂的活性,但如何精确控制中心金属电子结构以及避免高温下金属原子的团聚仍面临巨大挑战.除了单原子活性位点外,催化剂载体的键合结构、电荷分布状态亦会影响载体本身和单原子位点的催化活性.然而,现有的研究主要聚焦于单原子位点或无金属催化剂单方面活性的提升,关于它们之间的相互作用对于催化性能影响的研究相对很少.为了进一步提高Co单原子催化剂的催化活性,本文通过简单的模板法与NH3二次处理策略制备了氮掺杂缺陷碳负载的Co-N_(5)位点单原子催化剂.电感耦合等离子体发射光谱结果表明,单原子Co的金属负载量高达2.57 wt%.此外,相比于未经过NH3二次处理的Co-Nx/HC样品,Co-N_(5)/DHC样品在电子顺磁共振谱中g=2.003处呈现出更明显的共振信号,在C 1s高分辨谱中具有更低的C-C(sp2杂化)/C-N(sp3杂化)比例以及明显增加的吡啶氮信号,证实了Co-N_(5)/DHC显著提升的氮掺杂碳缺陷浓度并具有丰富的边界/缺陷位点.同时,X射线吸收谱与球差矫正透射电子显微镜结果表明所制备的样品为原子分散的Co-N_(5)结构,从而证明成功制备了缺陷氮掺杂碳耦合Co-N_(5)位点单原子催化剂.电化学测试结果表明,缺陷氮掺杂碳耦合Co-N_(5)位点后表现较好的ORR性能,半波电位达到0.877 V,明显高于Co-Nx/HC对比样品和商业化Pt/C催化剂.Koutecky-Levich曲线和旋转盘环电极测试结果表明,Co-N_(5)/DHC催化剂的高效4e-反应路径.且在10000次的加速老化测试中,Co-N_(5)/DHC半波电位仅降低了7 m V,稳定性优于Pt/C.以Co-N_(5)/DHC为阴极催化剂组装的ZAB开路电压为1.45 V,峰值输出功率密度能够达到160.7 m W cm^(-2),并能提供766.2 m A h gZn-1的比容量,展现出较高的应用前景.密度泛函理论计算表明,Co-N_(5)位点与缺陷氮掺杂碳的相互作用诱导Co中心位点电子的重新分布,降低了ORR反应能垒.综上,本文为设计与合成高性能的Co单原子催化剂,用于先进的可再生能源转换系统提供了一种新思路.