For the wastewater containing high-concentration Hg,the feasibility of high-concentration Hg in wastewater treated by coagulation sedimentation,adsorption and the combined process was studied. Research results showed ...For the wastewater containing high-concentration Hg,the feasibility of high-concentration Hg in wastewater treated by coagulation sedimentation,adsorption and the combined process was studied. Research results showed that if using the single coagulation sedimentation process,when FeSO_4·7H_2O dosage was 1. 39 g / L,and NaOH dosage was 0. 40 g / L,it could meet discharge requirement,but the reagent cost was 13. 1yuan / t,which was high. Because that there was subsequent adsorption process,it was selected 0. 28 g / L of FeSO_4·7H_2O and 0. 36 g / L of NaOH,and the estimated reagent cost was 2. 62 yuan / t. In selection process of adsorption materials,powdered activated carbon,granular activated carbon and diatomite all could effectively adsorb Hg,and the technology was feasible. When using the combined process of coagulation sedimentation + adsorption to treat the wastewater containing high-concentration Hg( 800 μg / L),removal rate could reach 99%,and operation cost was 2. 71 yuan. It could meet the requirement of sewage discharged into sewer( 20 μg / L) at the technology,and was acceptable at the economy.Therefore,treatment of wastewater containing high-concentration Hg by the combined process was feasible at the aspects of technology and economy.展开更多
In order to accelerate the sedimentation of super-large-scale argillized ultrafine tailings with bad features such as low settling velocity, muddy overflow water, and large flocculant dosage, a fly-ash-based magnetic ...In order to accelerate the sedimentation of super-large-scale argillized ultrafine tailings with bad features such as low settling velocity, muddy overflow water, and large flocculant dosage, a fly-ash-based magnetic coagulant (FAMC) was used in a dynamic experimental device. To obtain the best possible combination of the impact factors (magnetic intensity, FAMC dosage, flocculant dosage, and feed speed) for minimum overflow turbidity, a response surface methodology test coupled with a four-factor five-level central composite design was conducted. The synergy mechanism of FAMC and flocculant was analyzed based on the potential measurement and scanning electron microscopy. The results show that the flocculant dosage, overflow turbidity, and solid content can be reduced by 50%, 90%, and 80%, while the handling capacity per unit and efficiency of backfill and dry stacking can be promoted by 20%, 17%, and 13%, respectively, with a magnetic intensity of 0.3 T, FAMC dosage of 200 mL/t, flocculant dosage of 30 g/t, and feed speed of 0.6 t/(m^2·h). Therefore, synergy of FAMC and flocculant has obvious efficiency in saving energy and protecting the environment by allowing 70×10^6 t/a of argillized ultrafine tailings slurry to be disposed safely and efficiently with a cost saving of more than 53×106 Yuan/a, which gives it great promise for use in domestic and foreign mines.展开更多
In order to evaluate the processing efficiency of coagulation sedimentation on wastewater from dairy farm and to provide reference for wastewater treat- ment, an experimental study was carried out to investigate effec...In order to evaluate the processing efficiency of coagulation sedimentation on wastewater from dairy farm and to provide reference for wastewater treat- ment, an experimental study was carried out to investigate effects of coagulant dosage, types, pH, dosage of coagulant aids PAM on removal rate of COD, turbidity and SS in wastewater from dairy farm. The results showed that PAC displayed higher effectiveness in treatment; the removal rates of COD, turbidity and SS were 61.4%, 86.6% and 94.5% respectively when pH was 11.0, PAC dosage was 150 mg/L, and PAM dosage was 4 mg/L. The results indicated that coagulation sedimentation could reduce organic content of wastewater effectively and alleviate the load of subsequent biochemical treatment.展开更多
AIM: To investigate the molecular mechanisms involved in coagulation factor expression and/or function during direct hyperplasia (DH)-mediated liver regeneration. METHODS: Direct hyperplasia-mediated liver regener...AIM: To investigate the molecular mechanisms involved in coagulation factor expression and/or function during direct hyperplasia (DH)-mediated liver regeneration. METHODS: Direct hyperplasia-mediated liver regeneration was induced in female C57BL/6 mice by administering 1,4-bisr2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP), a representative hepatomitogen. Mice were weighed and sacrificed at various time points [Day 0 (D0: prior to injection), 3 h, D1, D2, D3, and D10] after TCPOBOP administration to obtain liver and blood samples. Using the RNA samples extracted from the liver, a comprehensive analysis was performed on the hepatic gene expression profiling of coagulation-related factors by real-time RT-PCR (fibrinogen, prothrombin, factors Ⅴ, Ⅶ, Ⅷ, Ⅸ, Ⅹ, Ⅺ, Ⅻ, ⅩⅢβ , plasminogen, antithrombin, protein C, protein S, ADAMTS13, and VWF). The corresponding plasma levels of coagulation factors (fibrinogen, prothrombin, factors Ⅴ, Ⅶ, Ⅷ, Ⅸ, Ⅹ, Ⅺ, Ⅻ, ⅩⅢ, and VWF) were also analyzed and compared with their mRNA levels. RESULTS: Gavage administration of TCPOBOP (3 mg/kg body weight) resulted in a marked and gradual increase in the weight of the mouse livers relative to the total body weight to 220% by D10 relative to the DO (control) ratios. At the peak of liver regeneration (D1 and D2), the gene expression levels for most of the coagulationrelated factors (fibrinogen, prothrombin, factors Ⅴ, Ⅶ, Ⅷ, Ⅸ,Ⅺ, Ⅻ, ⅩⅢβ, plasminogen, antithrombin, protein C, ADAMTS13, VWF) were found to be downregulated in a time-dependent manner, and gradually recovered by D10 to the basal levels. Only mRNA levels of factor X and protein S failed to show any decrease during the regenerative phase. As for the plasma levels, 5 clotting factors (prothrombin, factors Ⅷ, Ⅸ, Ⅺ, and Ⅻ) demonstrated a significant decrease (P 〈 0.05) during the regeneration phase compared with DO. Among these 5 factors, factor Ⅸ and factor Ⅺ showed the most dramatic decline in their activities by about 50% at D2 compared to the basal levels, and these reductions in plasma activity for both factors were consistent with our RT-PCR findings. In contrast, the plasma activities of the other coagulation factors (fibrinogen, factors Ⅴ, Ⅶ, ⅩⅢ, and VWF) were not significantly reduced, despite the reduction in the liver mRNA levels. Unlike the other factors, FX showed a temporal increase in its plasma activity, with significant increases (P 〈 0.05) detected at DI. CONCLUSION: Investigating the coagulation cascade protein profiles during liver regeneration by DH may help to better understand the basic biology of the liver under normal and pathological conditions.展开更多
Fluid catalytic cracking (FCC) salty wastewaters, containing quaternary ammonium compounds (QACs), are very difficult to treat by biochemical process. Anoxic/oxic (A/O) biochemical system, based on nitrification and d...Fluid catalytic cracking (FCC) salty wastewaters, containing quaternary ammonium compounds (QACs), are very difficult to treat by biochemical process. Anoxic/oxic (A/O) biochemical system, based on nitrification and denitrification reactions, was used to assess their possible biodegradation. Because of the negative effects of high salt concentration (3%), heavy metals and toxic organic matter on microorganisms’ activities, some techniques consisting of dilution, coagulation and flocculation, and ozonation pretreatments, were gradually tested to evaluate chemical oxygen demand (COD), ammonia-nitrogen (ammonia-N) and total nitrogen (TN) removal rates. In this process of FCC wastewater, starting with university-domesticated sludge, the ammonia-N and TN removal rates were worst. However, when using domesticated SBR’s sludge and operating with five-fold daily diluted influent (thus reducing salt concentration), the ammonia-N removal reached about 57% while the TN removal rate was less than 37% meaning an amelioration of the nitrification process. However, by reducing the dilution factors, these results were inflected after some days of operation, with ammonia-N removal decreasing and TN barely removed meaning a poor nitrification. Even by reducing heavy metals concentration with coagulation/flocculation process, the results never changed. Thereafter, by using ozonation pre-treatment to degrade the detected organic matter of di-tert-butylphenol and certain isoparaffins, COD, ammonia-N and TN removal rates reached 92%, 62% and 61%, respectively. These results showed that the activities of the microorganisms were increased, thus indicating a net denitrification and nitrification reactions improvement.展开更多
Microplastic is a new kind of pollutant.It exists widely in the aquatic environment and seriously endangers the aquatic ecosystem.In this study,the coagulating sedimentation method was used to remove microplastics in ...Microplastic is a new kind of pollutant.It exists widely in the aquatic environment and seriously endangers the aquatic ecosystem.In this study,the coagulating sedimentation method was used to remove microplastics in water.Polyethylene(PE)was selected as the representative of microplastics,polyferric sulfate(PFS),polyaluminum chloride(PAC)and aluminum sulfate(AS)were used as coagulant,and polyacrylamide(PAM)was used as coagulant aid to study the effects of pH,coagulant concentration and sedimentation time on the removal of PE by single and composite coagulant.The results showed that when the dosage of PFS was 0.5 g/L and pH was 5.0,the removal rate could reach 82.14%,which was better than PAC and AS,indicating that PFS had better coagulation and sedimentation performance for PE;the composite coagulant of PFS+PAC+AS(1 g/L+0.2 g/L+0.2 g/L,pH was 5.0)had the highest removal rate of PE,reaching 96.06%;the removal rate of PE increased with the increase in sedimentation time,but considering that the longer sedimentation time has less contribution to the improvement of removal rate,it is recommended that 4 h is appropriate.展开更多
Ammonium and nitrate concentrations were analyzed in near-bottom water and pore water collected from ten stations of the intertidal flat of the Changjiang Estuary during April, July, November and February. The magnitu...Ammonium and nitrate concentrations were analyzed in near-bottom water and pore water collected from ten stations of the intertidal flat of the Changjiang Estuary during April, July, November and February. The magnitudes of the benthic exchange fluxes were determined on the basis of concentration gradients of ammonium and nitrate at the near-bottom water and interstitial water interface in combination with calculations of a modified Fick' s first law. Ammonium fluxes varied from - 5.05 to 1.43 μg/( cm^2·d) and were greatly regulated by the production of ammonium in surface sediments, while nitrate fluxes ranged from - 0. 38 to 1.36 μg/ ( cm^2·d) and were dominated by nitrate concentrations in the tidal water. It was found that ammonium was mainly released from sediments into water columns at most of stations whereas nitrate was mostly diffused from overlying waters to intertidal sediments. In total, 823.75 t/a ammonium-N was passed from intertidal sediments to water while about 521.90 t/a nitrate-N was removed from overlying waters to intertidal sediments. This suggests that intertidal sediments had the significant influence on modulating inorganic nitrogen in the tidal water.展开更多
Numerical simulation of nanoparticle nucleation and coagulation in a mixing layer with sulfuric acid vapor binary system is performed using the large eddy simulation and the direct quadrature method of moment. The dis...Numerical simulation of nanoparticle nucleation and coagulation in a mixing layer with sulfuric acid vapor binary system is performed using the large eddy simulation and the direct quadrature method of moment. The distributions of number concentration, volume concentration, and average diameter of nanoparticles are obtained. The results show that the coherent structures have an important effect on the distributions of number concentration, volume concentration and average diameter of nanoparticles via continuously transporting and diffusing the nanoparticles to the area of low particle concentration. In the streamwise direction, the number concentration of nanoparticles decreases, while the volume concentration and the average diameter increase. The distributions of number concentration, volume concentration and average diameter of nanoparticles are spatially inhomogeneous. The characteristic time of nucleation is shorter than that of coagulation. The nucleation takes place more easily in the area of low temperature because where the number concentration of nanoparticles is high, while the intensity of coagulation is mainly affected by the number concentration. Both nucleation and coagulation result in the variation of average diameter of nanoparticles.展开更多
The Brownian coagulation of nanoparticles with initial bimodal size distribution, i.e., mode i and j, is numerically studied using the moment method. Evolutions of particle number concentration, geometric average diam...The Brownian coagulation of nanoparticles with initial bimodal size distribution, i.e., mode i and j, is numerically studied using the moment method. Evolutions of particle number concentration, geometric average diameter and geometric standard deviation are given in the free molecular regime, the continuum regime, the free molecular regime and transition regime, the free molecular regime and continuum regime, respectively. The results show that, both in the free molecular regime and the continuum regime, the num- ber concentration of mode i and j decreases with increasing time. The evolutions of particle geometric average diameter with different initial size distribution are quite different. Both intra-modal and inter-modal coagulation finally make the polydispersed size distribution become monodispersed. As time goes by, the size distribution with initial bimodal turns to be unimoda/and shifts to a larger particle size range. In the free molecular regime and transition regime, the inter- modal coagulation becomes dominant when the number concentrations of mode i and j are of the same order. The effects of the number concentration of mode i and mode j on the evolution of geometric average diameter of mode j are negligible, while the effects of the number concentration of mode j on the evolution of geometric average diameter of mode j is distinct. In the free molecular regime and continuum regime, the higher the initial number concentration of mode j, the more obvious the variation of the number concentration of mode i.展开更多
文摘For the wastewater containing high-concentration Hg,the feasibility of high-concentration Hg in wastewater treated by coagulation sedimentation,adsorption and the combined process was studied. Research results showed that if using the single coagulation sedimentation process,when FeSO_4·7H_2O dosage was 1. 39 g / L,and NaOH dosage was 0. 40 g / L,it could meet discharge requirement,but the reagent cost was 13. 1yuan / t,which was high. Because that there was subsequent adsorption process,it was selected 0. 28 g / L of FeSO_4·7H_2O and 0. 36 g / L of NaOH,and the estimated reagent cost was 2. 62 yuan / t. In selection process of adsorption materials,powdered activated carbon,granular activated carbon and diatomite all could effectively adsorb Hg,and the technology was feasible. When using the combined process of coagulation sedimentation + adsorption to treat the wastewater containing high-concentration Hg( 800 μg / L),removal rate could reach 99%,and operation cost was 2. 71 yuan. It could meet the requirement of sewage discharged into sewer( 20 μg / L) at the technology,and was acceptable at the economy.Therefore,treatment of wastewater containing high-concentration Hg by the combined process was feasible at the aspects of technology and economy.
基金Project(2012BAC09B02)supported by the 12th-Five Years Key Programs for Science and Technology Development of ChinaProject(2015zzts078)supported by the Fundamental Research Funds for the Central Universities of Central South University,ChinaProject(2015CX005)supported by Innovation Driven Plan of Central South University,China
文摘In order to accelerate the sedimentation of super-large-scale argillized ultrafine tailings with bad features such as low settling velocity, muddy overflow water, and large flocculant dosage, a fly-ash-based magnetic coagulant (FAMC) was used in a dynamic experimental device. To obtain the best possible combination of the impact factors (magnetic intensity, FAMC dosage, flocculant dosage, and feed speed) for minimum overflow turbidity, a response surface methodology test coupled with a four-factor five-level central composite design was conducted. The synergy mechanism of FAMC and flocculant was analyzed based on the potential measurement and scanning electron microscopy. The results show that the flocculant dosage, overflow turbidity, and solid content can be reduced by 50%, 90%, and 80%, while the handling capacity per unit and efficiency of backfill and dry stacking can be promoted by 20%, 17%, and 13%, respectively, with a magnetic intensity of 0.3 T, FAMC dosage of 200 mL/t, flocculant dosage of 30 g/t, and feed speed of 0.6 t/(m^2·h). Therefore, synergy of FAMC and flocculant has obvious efficiency in saving energy and protecting the environment by allowing 70×10^6 t/a of argillized ultrafine tailings slurry to be disposed safely and efficiently with a cost saving of more than 53×106 Yuan/a, which gives it great promise for use in domestic and foreign mines.
文摘In order to evaluate the processing efficiency of coagulation sedimentation on wastewater from dairy farm and to provide reference for wastewater treat- ment, an experimental study was carried out to investigate effects of coagulant dosage, types, pH, dosage of coagulant aids PAM on removal rate of COD, turbidity and SS in wastewater from dairy farm. The results showed that PAC displayed higher effectiveness in treatment; the removal rates of COD, turbidity and SS were 61.4%, 86.6% and 94.5% respectively when pH was 11.0, PAC dosage was 150 mg/L, and PAM dosage was 4 mg/L. The results indicated that coagulation sedimentation could reduce organic content of wastewater effectively and alleviate the load of subsequent biochemical treatment.
基金Supported by Grants for AIDS Research from the Ministry of HealthLabor and Welfare of Japan (Shima M),Special Coordination Funds for Promoting Science and Technology (Ohashi K and Okano T)+1 种基金Grant-in-Aid (Ohashi K,No.21300180) from the Ministry of Education,Culture,Sports and Science and Technology (MEXT) of Japan (Ohashi K and Okano T)Novartis Foundation Japan (Ohashi K),and Bayer Hemophilia Award Program (Ohashi K)
文摘AIM: To investigate the molecular mechanisms involved in coagulation factor expression and/or function during direct hyperplasia (DH)-mediated liver regeneration. METHODS: Direct hyperplasia-mediated liver regeneration was induced in female C57BL/6 mice by administering 1,4-bisr2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP), a representative hepatomitogen. Mice were weighed and sacrificed at various time points [Day 0 (D0: prior to injection), 3 h, D1, D2, D3, and D10] after TCPOBOP administration to obtain liver and blood samples. Using the RNA samples extracted from the liver, a comprehensive analysis was performed on the hepatic gene expression profiling of coagulation-related factors by real-time RT-PCR (fibrinogen, prothrombin, factors Ⅴ, Ⅶ, Ⅷ, Ⅸ, Ⅹ, Ⅺ, Ⅻ, ⅩⅢβ , plasminogen, antithrombin, protein C, protein S, ADAMTS13, and VWF). The corresponding plasma levels of coagulation factors (fibrinogen, prothrombin, factors Ⅴ, Ⅶ, Ⅷ, Ⅸ, Ⅹ, Ⅺ, Ⅻ, ⅩⅢ, and VWF) were also analyzed and compared with their mRNA levels. RESULTS: Gavage administration of TCPOBOP (3 mg/kg body weight) resulted in a marked and gradual increase in the weight of the mouse livers relative to the total body weight to 220% by D10 relative to the DO (control) ratios. At the peak of liver regeneration (D1 and D2), the gene expression levels for most of the coagulationrelated factors (fibrinogen, prothrombin, factors Ⅴ, Ⅶ, Ⅷ, Ⅸ,Ⅺ, Ⅻ, ⅩⅢβ, plasminogen, antithrombin, protein C, ADAMTS13, VWF) were found to be downregulated in a time-dependent manner, and gradually recovered by D10 to the basal levels. Only mRNA levels of factor X and protein S failed to show any decrease during the regenerative phase. As for the plasma levels, 5 clotting factors (prothrombin, factors Ⅷ, Ⅸ, Ⅺ, and Ⅻ) demonstrated a significant decrease (P 〈 0.05) during the regeneration phase compared with DO. Among these 5 factors, factor Ⅸ and factor Ⅺ showed the most dramatic decline in their activities by about 50% at D2 compared to the basal levels, and these reductions in plasma activity for both factors were consistent with our RT-PCR findings. In contrast, the plasma activities of the other coagulation factors (fibrinogen, factors Ⅴ, Ⅶ, ⅩⅢ, and VWF) were not significantly reduced, despite the reduction in the liver mRNA levels. Unlike the other factors, FX showed a temporal increase in its plasma activity, with significant increases (P 〈 0.05) detected at DI. CONCLUSION: Investigating the coagulation cascade protein profiles during liver regeneration by DH may help to better understand the basic biology of the liver under normal and pathological conditions.
文摘Fluid catalytic cracking (FCC) salty wastewaters, containing quaternary ammonium compounds (QACs), are very difficult to treat by biochemical process. Anoxic/oxic (A/O) biochemical system, based on nitrification and denitrification reactions, was used to assess their possible biodegradation. Because of the negative effects of high salt concentration (3%), heavy metals and toxic organic matter on microorganisms’ activities, some techniques consisting of dilution, coagulation and flocculation, and ozonation pretreatments, were gradually tested to evaluate chemical oxygen demand (COD), ammonia-nitrogen (ammonia-N) and total nitrogen (TN) removal rates. In this process of FCC wastewater, starting with university-domesticated sludge, the ammonia-N and TN removal rates were worst. However, when using domesticated SBR’s sludge and operating with five-fold daily diluted influent (thus reducing salt concentration), the ammonia-N removal reached about 57% while the TN removal rate was less than 37% meaning an amelioration of the nitrification process. However, by reducing the dilution factors, these results were inflected after some days of operation, with ammonia-N removal decreasing and TN barely removed meaning a poor nitrification. Even by reducing heavy metals concentration with coagulation/flocculation process, the results never changed. Thereafter, by using ozonation pre-treatment to degrade the detected organic matter of di-tert-butylphenol and certain isoparaffins, COD, ammonia-N and TN removal rates reached 92%, 62% and 61%, respectively. These results showed that the activities of the microorganisms were increased, thus indicating a net denitrification and nitrification reactions improvement.
基金Supported by Innovation and Entrepreneurship Training Program for College Students(202210580015).
文摘Microplastic is a new kind of pollutant.It exists widely in the aquatic environment and seriously endangers the aquatic ecosystem.In this study,the coagulating sedimentation method was used to remove microplastics in water.Polyethylene(PE)was selected as the representative of microplastics,polyferric sulfate(PFS),polyaluminum chloride(PAC)and aluminum sulfate(AS)were used as coagulant,and polyacrylamide(PAM)was used as coagulant aid to study the effects of pH,coagulant concentration and sedimentation time on the removal of PE by single and composite coagulant.The results showed that when the dosage of PFS was 0.5 g/L and pH was 5.0,the removal rate could reach 82.14%,which was better than PAC and AS,indicating that PFS had better coagulation and sedimentation performance for PE;the composite coagulant of PFS+PAC+AS(1 g/L+0.2 g/L+0.2 g/L,pH was 5.0)had the highest removal rate of PE,reaching 96.06%;the removal rate of PE increased with the increase in sedimentation time,but considering that the longer sedimentation time has less contribution to the improvement of removal rate,it is recommended that 4 h is appropriate.
基金This research is part of the project of the biogeochemical cycling of multi-materials in the Changjiang estuarine and coastal complex ecosystem supported by the National Natural Science Key Foundation of China under contract Nos 40131020 and 49801018 the Tidal Flat Project by Science and Technology Committee of Shanghai under contract No. 04DZ12049+1 种基金 China Postdoctoral Science Foundation under contract No. 2005037135 Shanghai Postdoctoral Science Foundation under contract No.04R214122.
文摘Ammonium and nitrate concentrations were analyzed in near-bottom water and pore water collected from ten stations of the intertidal flat of the Changjiang Estuary during April, July, November and February. The magnitudes of the benthic exchange fluxes were determined on the basis of concentration gradients of ammonium and nitrate at the near-bottom water and interstitial water interface in combination with calculations of a modified Fick' s first law. Ammonium fluxes varied from - 5.05 to 1.43 μg/( cm^2·d) and were greatly regulated by the production of ammonium in surface sediments, while nitrate fluxes ranged from - 0. 38 to 1.36 μg/ ( cm^2·d) and were dominated by nitrate concentrations in the tidal water. It was found that ammonium was mainly released from sediments into water columns at most of stations whereas nitrate was mostly diffused from overlying waters to intertidal sediments. In total, 823.75 t/a ammonium-N was passed from intertidal sediments to water while about 521.90 t/a nitrate-N was removed from overlying waters to intertidal sediments. This suggests that intertidal sediments had the significant influence on modulating inorganic nitrogen in the tidal water.
基金supported by the Major Program of National Natural Science Foundation of China (10632070)
文摘Numerical simulation of nanoparticle nucleation and coagulation in a mixing layer with sulfuric acid vapor binary system is performed using the large eddy simulation and the direct quadrature method of moment. The distributions of number concentration, volume concentration, and average diameter of nanoparticles are obtained. The results show that the coherent structures have an important effect on the distributions of number concentration, volume concentration and average diameter of nanoparticles via continuously transporting and diffusing the nanoparticles to the area of low particle concentration. In the streamwise direction, the number concentration of nanoparticles decreases, while the volume concentration and the average diameter increase. The distributions of number concentration, volume concentration and average diameter of nanoparticles are spatially inhomogeneous. The characteristic time of nucleation is shorter than that of coagulation. The nucleation takes place more easily in the area of low temperature because where the number concentration of nanoparticles is high, while the intensity of coagulation is mainly affected by the number concentration. Both nucleation and coagulation result in the variation of average diameter of nanoparticles.
基金supported by the Major Program of National Natural Science Foundation of China (11132008)
文摘The Brownian coagulation of nanoparticles with initial bimodal size distribution, i.e., mode i and j, is numerically studied using the moment method. Evolutions of particle number concentration, geometric average diameter and geometric standard deviation are given in the free molecular regime, the continuum regime, the free molecular regime and transition regime, the free molecular regime and continuum regime, respectively. The results show that, both in the free molecular regime and the continuum regime, the num- ber concentration of mode i and j decreases with increasing time. The evolutions of particle geometric average diameter with different initial size distribution are quite different. Both intra-modal and inter-modal coagulation finally make the polydispersed size distribution become monodispersed. As time goes by, the size distribution with initial bimodal turns to be unimoda/and shifts to a larger particle size range. In the free molecular regime and transition regime, the inter- modal coagulation becomes dominant when the number concentrations of mode i and j are of the same order. The effects of the number concentration of mode i and mode j on the evolution of geometric average diameter of mode j are negligible, while the effects of the number concentration of mode j on the evolution of geometric average diameter of mode j is distinct. In the free molecular regime and continuum regime, the higher the initial number concentration of mode j, the more obvious the variation of the number concentration of mode i.