期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Coagulation behavior and floc properties of compound bioflocculant–polyaluminum chloride dual-coagulants and polymeric aluminum in low temperature surface water treatment 被引量:11
1
作者 Xin Huang Shenglei Sun +3 位作者 Baoyu Gao Qinyan Yue Yan Wang Qian Li 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第4期215-222,共8页
This study was intended to compare coagulation behavior and floc properties of two dualcoagulants polyaluminum chloride–compound bioflocculant(PAC–CBF)(PAC dose first) and compound bioflocculant–polyaluminum ch... This study was intended to compare coagulation behavior and floc properties of two dualcoagulants polyaluminum chloride–compound bioflocculant(PAC–CBF)(PAC dose first) and compound bioflocculant–polyaluminum chloride(CBF–PAC)(CBF dose first) with those of PAC alone in low temperature drinking water treatment. Results showed that dualcoagulants could improve DOC removal efficiency from 30% up to 34%. Moreover, CBF contributed to the increase of floc size and growth rate, especially those of PAC–CBF were almost twice bigger than those of PAC. However, dual-coagulants formed looser and weaker flocs with lower breakage factors in which fractal dimension of PAC–CBF flocs was low which indicates a looser floc structure. The floc recovery ability was in the following order:PAC–CBF 〉 PAC alone 〉 CBF–PAC. The flocculation mechanism of PAC was charge neutralization and enmeshment, meanwhile the negatively charged CBF added absorption and bridging effect. 展开更多
关键词 coagulation behavior Floc properties Dual-coagulants Surface water
原文传递
Preparation and performance of oxidative poly-silicon-ferric coagulant PSFN 被引量:3
2
作者 FU Ying YU Shui-li +1 位作者 LI Wei CHEN Dong-xu 《Journal of Marine Science and Application》 2006年第4期62-67,共6页
A new polymer, poly-silicon-ferric with oxidization (PSFN) coagulant was produced by adding KMnO4 and stabilizer M to poly-silicon-ferric (PSF) coagulant. The micro properties of PSFN was investigated with optical... A new polymer, poly-silicon-ferric with oxidization (PSFN) coagulant was produced by adding KMnO4 and stabilizer M to poly-silicon-ferric (PSF) coagulant. The micro properties of PSFN was investigated with optical microscope, transmission electron microscope(TEM), ultraviolet/visible absorption(UVA) scanning, infrared(IR) spectrometer and oxidation-reduction potential (ORP) meter respectively, compared to that of PSE The coagulation behavior by PSFN was investigated compared to that by PSF. The results show that the micro properties of PSF have been changed greatly due to the addition of KMnO4, and there exists KMnO4 unattached in PSFN. A kind of tetrahedron structure somewhat like the connection of Si-O-Si bonds may be formed by the complexation of Mn (maybe in various valence) with PSE PSFN has lower turbidity removal than PSF at lower dose and achieves the same when the dose reaches a definite amount, while the removal of UV254 by PSFN is higher than that by PSF almost over entire dose range with the largest difference of about 17%. PSFN has more oxidization function at acidic condition than that at basic condition, and gives stronger ability of application for treating various waters than that by PSE. 展开更多
关键词 poly-silicic-ferric (PSF) coagulant KMnO4 oxidization micro properties coagulation behavior
下载PDF
Comparison of the effects of aluminum and iron(Ⅲ)salts on ultrafiltration membrane biofouling in drinking water treatment 被引量:8
3
作者 Xing Wang Baiwen Ma +3 位作者 Yaohui Bai Huachun Lan Huijuan Liu Jiuhui Qu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第1期96-104,共9页
Coagulation plays an important role in alleviating membrane fouling, and a noticeable problem is the development of microorganisms after long-time operation, which gradually secrete extracellular polymeric substances... Coagulation plays an important role in alleviating membrane fouling, and a noticeable problem is the development of microorganisms after long-time operation, which gradually secrete extracellular polymeric substances(EPS). To date, few studies have paid attention to the behavior of microorganisms in drinking water treatment with ultrafiltration(UF)membranes. Herein, the membrane biofouling was investigated with different aluminum and iron salts. We found that Al_2(SO_4)_3·18 H_2O performed better in reducing membrane fouling due to the slower growth rate of microorganisms. In comparison to Al_2(SO_4)_3·18H_2O,more EPS were induced with Fe_2(SO_4)_3·x18H_2O, both in the membrane tank and the sludge on the cake layer. We also found that bacteria were the major microorganisms, of which the concentration was much higher than those of fungi and archaea. Further analyses showed that Proteobacteria was dominant in bacterial communities, which caused severe membrane fouling by forming a biofilm, especially for Fe_2(SO_4)_3·x18H_2O. Additionally, the abundances of Bacteroidetes and Verrucomicrobia were relatively higher in the presence of Al_2(SO_4)_3·18 H_2O,resulting in less severe biofouling by effectively degrading the protein and polysaccharide in EPS. As a result, in terms of microorganism behaviors, Al-based salts should be given preference as coagulants during actual operations. 展开更多
关键词 Ultrafiltration membrane Al-based and Fe-based salts coagulation behavior of microorganisms Fouling mechanism
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部