In order to accelerate the sedimentation of super-large-scale argillized ultrafine tailings with bad features such as low settling velocity, muddy overflow water, and large flocculant dosage, a fly-ash-based magnetic ...In order to accelerate the sedimentation of super-large-scale argillized ultrafine tailings with bad features such as low settling velocity, muddy overflow water, and large flocculant dosage, a fly-ash-based magnetic coagulant (FAMC) was used in a dynamic experimental device. To obtain the best possible combination of the impact factors (magnetic intensity, FAMC dosage, flocculant dosage, and feed speed) for minimum overflow turbidity, a response surface methodology test coupled with a four-factor five-level central composite design was conducted. The synergy mechanism of FAMC and flocculant was analyzed based on the potential measurement and scanning electron microscopy. The results show that the flocculant dosage, overflow turbidity, and solid content can be reduced by 50%, 90%, and 80%, while the handling capacity per unit and efficiency of backfill and dry stacking can be promoted by 20%, 17%, and 13%, respectively, with a magnetic intensity of 0.3 T, FAMC dosage of 200 mL/t, flocculant dosage of 30 g/t, and feed speed of 0.6 t/(m^2·h). Therefore, synergy of FAMC and flocculant has obvious efficiency in saving energy and protecting the environment by allowing 70×10^6 t/a of argillized ultrafine tailings slurry to be disposed safely and efficiently with a cost saving of more than 53×106 Yuan/a, which gives it great promise for use in domestic and foreign mines.展开更多
The electrokinetic characteristics and coagulation behaviors of polyaluminum silicate chloride (PASiC) and polyaluminum chloride (PAC) were studied and compared by streaming current (SC) measurement and jar test metho...The electrokinetic characteristics and coagulation behaviors of polyaluminum silicate chloride (PASiC) and polyaluminum chloride (PAC) were studied and compared by streaming current (SC) measurement and jar test method. The experimental results showed that the interaction between polysilicic acid characterized negative charge and hydrolyzed aluminum species result in a decrease of the charge neutralizing ability of PASiC, compared to PAC. The decrease has a close relationship with the basicity ( B ) and Al/Si molar ratio in PASiC. The less the B value and the Al/Si molar ratio, the lower the charge neutralizing ability of PASiC is. In contrast, the preparation technique for PASiC affects the charge-neutralization of PASiC to a smaller extent. In addition, compared with PAC, PASiC may enhance aggregating efficiency and give better coagulating effects.展开更多
The applications of natural polymeric flocculants due to their green feature has been recently received much more attention. In this work, the combined usages of a cationic starch-based coagulant and polyaluminum chlo...The applications of natural polymeric flocculants due to their green feature has been recently received much more attention. In this work, the combined usages of a cationic starch-based coagulant and polyaluminum chloride(PACl) were extensively evaluated for various addition sequences in the coagulation of both raw(surface water from the Jiuxiang River) and synthetic turbid water(two kaolin suspensions with different initial turbidities).Two typical cationic starch-based coagulants with different structures(St-G and St-E) were tried. In comparison to St-G, St-E and PACl used individually as well as St-G and St-E dosed after PACl, the combination of the starch-based coagulants fed before PACl showed higher turbidity removal efficiency, which featured not only less optimal doses of both inorganic and organic coagulants but also lower residual turbidity. On the basis of a detailed analysis of the particle size and its distribution in solution supernatants before and after coagulation by two starch-based coagulants and PACl, polymeric coagulants preferentially coagulate the small-sized colloids due to their distinct long-chain structures, but PACl preferentially coagulates the medium-sized ones. Thus, the medium-sized particles that were previously formed by the starch-based coagulants would be collectively and effectively removed by the subsequent addition of PACl. The addition sequence of the inorganic and organic coagulants in their combined usage is an important factor for improvement of the turbidity removal efficiency in practice.展开更多
基金Project(2012BAC09B02)supported by the 12th-Five Years Key Programs for Science and Technology Development of ChinaProject(2015zzts078)supported by the Fundamental Research Funds for the Central Universities of Central South University,ChinaProject(2015CX005)supported by Innovation Driven Plan of Central South University,China
文摘In order to accelerate the sedimentation of super-large-scale argillized ultrafine tailings with bad features such as low settling velocity, muddy overflow water, and large flocculant dosage, a fly-ash-based magnetic coagulant (FAMC) was used in a dynamic experimental device. To obtain the best possible combination of the impact factors (magnetic intensity, FAMC dosage, flocculant dosage, and feed speed) for minimum overflow turbidity, a response surface methodology test coupled with a four-factor five-level central composite design was conducted. The synergy mechanism of FAMC and flocculant was analyzed based on the potential measurement and scanning electron microscopy. The results show that the flocculant dosage, overflow turbidity, and solid content can be reduced by 50%, 90%, and 80%, while the handling capacity per unit and efficiency of backfill and dry stacking can be promoted by 20%, 17%, and 13%, respectively, with a magnetic intensity of 0.3 T, FAMC dosage of 200 mL/t, flocculant dosage of 30 g/t, and feed speed of 0.6 t/(m^2·h). Therefore, synergy of FAMC and flocculant has obvious efficiency in saving energy and protecting the environment by allowing 70×10^6 t/a of argillized ultrafine tailings slurry to be disposed safely and efficiently with a cost saving of more than 53×106 Yuan/a, which gives it great promise for use in domestic and foreign mines.
文摘The electrokinetic characteristics and coagulation behaviors of polyaluminum silicate chloride (PASiC) and polyaluminum chloride (PAC) were studied and compared by streaming current (SC) measurement and jar test method. The experimental results showed that the interaction between polysilicic acid characterized negative charge and hydrolyzed aluminum species result in a decrease of the charge neutralizing ability of PASiC, compared to PAC. The decrease has a close relationship with the basicity ( B ) and Al/Si molar ratio in PASiC. The less the B value and the Al/Si molar ratio, the lower the charge neutralizing ability of PASiC is. In contrast, the preparation technique for PASiC affects the charge-neutralization of PASiC to a smaller extent. In addition, compared with PAC, PASiC may enhance aggregating efficiency and give better coagulating effects.
基金supported by the National Natural Science Foundation of China(Nos.51778279 and 51438008)
文摘The applications of natural polymeric flocculants due to their green feature has been recently received much more attention. In this work, the combined usages of a cationic starch-based coagulant and polyaluminum chloride(PACl) were extensively evaluated for various addition sequences in the coagulation of both raw(surface water from the Jiuxiang River) and synthetic turbid water(two kaolin suspensions with different initial turbidities).Two typical cationic starch-based coagulants with different structures(St-G and St-E) were tried. In comparison to St-G, St-E and PACl used individually as well as St-G and St-E dosed after PACl, the combination of the starch-based coagulants fed before PACl showed higher turbidity removal efficiency, which featured not only less optimal doses of both inorganic and organic coagulants but also lower residual turbidity. On the basis of a detailed analysis of the particle size and its distribution in solution supernatants before and after coagulation by two starch-based coagulants and PACl, polymeric coagulants preferentially coagulate the small-sized colloids due to their distinct long-chain structures, but PACl preferentially coagulates the medium-sized ones. Thus, the medium-sized particles that were previously formed by the starch-based coagulants would be collectively and effectively removed by the subsequent addition of PACl. The addition sequence of the inorganic and organic coagulants in their combined usage is an important factor for improvement of the turbidity removal efficiency in practice.