The oily wastewater generated from pretreatment unit of electrocoating industry contains oils, phosphate, organic solvents, and surfactants. In order to improve the removal efficiencies of phosphate and oils, to mitig...The oily wastewater generated from pretreatment unit of electrocoating industry contains oils, phosphate, organic solvents, and surfactants. In order to improve the removal efficiencies of phosphate and oils, to mitigate the membrane fouling, coagulation for ceramic membrane microfiltration of oily wastewater was performed. The results of filtration tests show that the membrane fouling decreased and the permeate flux and quality increased with coagulation as pretreatment. At the coagulant Ca (OH)2 dosage of 900 mg/L, the removal efficiency of phosphate was increased from 46.4% without coagulation to 99.6%; the removal of COD and oils were 97.0% and 99.8%, respectively. And the permeate flux was about 70% greater than that when Ca(OH)2 was not used. The permeate obtained from coagulation and microfiltration can be reused as make-up water, and the recommended operation conditions for pilot and industrial application are transmembrane pressure of 0.10 MPa and cross-flow velocity of 5 m/s. The comparison results show that 0.2 μm ZrO2 microfilter with coagulation could be used to perform the filtration rather than conventional ultrafilter, with very substantial gain in flux and removal efficiency of phosphate.展开更多
The advanced treatment using integrated Fenton's reaction and coagulation process was investigated in this study. Before the advancement, the pharmaceutical wastewater containing lincomycin hydrochloride was pretreat...The advanced treatment using integrated Fenton's reaction and coagulation process was investigated in this study. Before the advancement, the pharmaceutical wastewater containing lincomycin hydrochloride was pretreated by UASB (upflow anaerobic sludge bed) and a SBR (sequencing batch reactor) process. The residual recalcitrant compounds, measured by gas chromatographymass spectrometry (GC-MS), mainly consisted of alcohols, phenols, and nitrogenous and sulfur compounds. The experimental results indicated that when the Fenton's reaction was conducted at pH=3.0, H2O2CODOcr=0.27, H2O2/Fe^2+=3:1 and 30 min of reaction time, and the coagulation process operated at a sulfate aluminum concentration of 800 mg/L and pH value of 5.0, the color and COD in the wastewater decreased by 94% and 73%, respectively; with a finale COD concentration of 267 mg/L and color level of 40 units, meeting the secondary standard of GB8978-1996 for industrial wastewater.展开更多
The objective of this paper was to investigate the practicability of coagulation-immersed membrane process during low-temperature period through the study of steady operation,chemical cleaning methods,water quality an...The objective of this paper was to investigate the practicability of coagulation-immersed membrane process during low-temperature period through the study of steady operation,chemical cleaning methods,water quality and agent consumption.Experimental results showed that:membrane performance decreases with the reduction of temperature,but low temperature has little effect on stable operation of immersed membrane when coagulation as pretreatment.EFM with 1200 mg/L sodium hypochlorite after every 48 filtration cycles was made for reducing membrane fouling efficiently,and the method,with 1.5% sodium hydroxide and 3500 mg/L sodium hypochlorite for 10 h and then 2% hydrochloric acid for 4 h,is an appropriate cleaning method under low temperature.Compared with convention treatment process,immersed membrane process not only has same agent consumption,but also permeated water quality is more superior such as fine removal effect on turbidity with average 0.10 NTU.Therefore,coagulation-immersed membrane process is more appropriate for increasing water quality demand and the treatment of low turbidity and low temperature water.展开更多
In order to confirm which process is the most important in the blood coagulation cascade,a dynamic model on the function of platelets in blood coagulation is presented based on biochemical experiments.Based on qualita...In order to confirm which process is the most important in the blood coagulation cascade,a dynamic model on the function of platelets in blood coagulation is presented based on biochemical experiments.Based on qualitative analysis and mathematical simulation,a series of conclusions about the influence of the activation rate of factor VIII and factor IX on the generation of thrombin(IIa)are drawn.It is evident that the pro-coagulation stimulus must exceed a threshold value to initiate the coagulation cascade.The value is related to the binding constant d_2 of the platelet. The stability of the equilibrium value is also related to the pro-coagulation stimulus. This article also evaluates the influence of the stimulus strength and the activated rate parameter of platelets on thrombin.The proportion of platelets activated at any given time is designated c.To each c,we obtain a maximum concentration of thrombin.It is evident that when the level of factor IX is below 1% of the normal level,the rate of thrombin generation reduces dramatically,resulting in severe bleeding tendency.展开更多
Nano-Al13 was separated and purified by four methods to investigate its characteristic, and was analyzed by Al-Ferron timed complexation spectrophotometer, ^27Al-NMR (nuclear magnetic resonance), and transmission el...Nano-Al13 was separated and purified by four methods to investigate its characteristic, and was analyzed by Al-Ferron timed complexation spectrophotometer, ^27Al-NMR (nuclear magnetic resonance), and transmission electron microscopy (TEM). Coagulation efficiency of nano-Al13, polyaluminum chloride (PAC), and AlCl3 in synthetic water were also investigated by jar test. The dynamic process and aggregation state of kaolin suspensions coagulating with nano-Al13, PAC, and AlCl3 were also investigated. The experimental results indicated that the efficiency of gel column chromatography method was the highest for separating PAC solution with low Al concentration. Ethanol and acetone method was simple and could separated PAC solution with different Al concentrations, while silicon alkylation white block column chromatography method could separate PAC solution only with low Al concentration. The SO4^2-/Ba^2+ displacement method could separate PAC solution with high Al concentration, but extra inorganic cation and anion could be introduced into the solution during the separation. The coagulation efficiency and dynamic experimental results showed that nano- Al13 with a high positive-charged species was the main species of electric neutralization in coagulation process, and it could reduce the turbidity and increase the effective particles collision rate efficiently in coagulation process. Its coagulation speed and the particle size of coagulant formed were of greatest value in this study.展开更多
Fermented whey (a by-product from tofu industry) has been used as a coagulant in tofu manufactures in Indonesia. This research aimed to study effects of fermented whey on coagulation efficiency and physicochemical c...Fermented whey (a by-product from tofu industry) has been used as a coagulant in tofu manufactures in Indonesia. This research aimed to study effects of fermented whey on coagulation efficiency and physicochemical characteristics of tofu, compared to other acid coagulants (acetic acid and glucono-delta-lactone (GDL)) and salt coagulants (calcium sulfate and natural gypsum). A randomized block design with a single factor was used in this research. Fermented whey could be used as coagulant in tofu manufacturing. Physicochemical characteristics of tofu from fermented whey were not significantly difference compared to tofu from calcium salt and acid coagulants. Coagulation efficiencies (CF, TSIL TPR and TB~) of fermented whey are lower than that from calcium salt coagulants (calcium sulphate and natural gypsum). Fermented whey showed no significant differences in tofu properties and parameters of coagulation process, compared to GDL and acetic acid.展开更多
A cake layer is formed by coagulation aggregates under certain transmembrane pressure in the coagulation-microfiltration (MF) process. The characteristics of humic acid aggregates coagulated by different iron-based ...A cake layer is formed by coagulation aggregates under certain transmembrane pressure in the coagulation-microfiltration (MF) process. The characteristics of humic acid aggregates coagulated by different iron-based coagulants, such as charge, size, fractal dimension and compressibility, have an effect on the cake layer structure. At the optimum iron dose of 0.6 to 0.8 mmol/L for ferric chloride (FC) and polymer ferric sulfate (PFS) pre-coagulation, at the point of charge neutralization for near zero zeta potential, the aggregate particles produced possess the greatest size and highest fractal dimension, which contributes to the cake layer being most loose with high porosity and low compressibility. Thus the membrane filterability is better. At a low or high iron dose of FC and PFS, a high negative or positive zeta potential with high charge repulsion results in so many small aggregate particles and low fractal dimension that the cake layer is compact with low porosity and high compressibility. Therefore the membrane fouling is accelerated and MF permeability becomes worse. The variation of cake layer structure as measured by scanning electric microscopy corresponds with the fact that the smaller the coagulation flocs size and fractal dimension are, the lower the porosity and the tighter the cake layer conformation. This also explains the MF membrane flux variation visually and accurately.展开更多
In the drinking water treatment processes, the optimization of the treatment is an issue of particular concern. In general, the process consists of many units as settling, coagulation, flocculation, sedimentation, fil...In the drinking water treatment processes, the optimization of the treatment is an issue of particular concern. In general, the process consists of many units as settling, coagulation, flocculation, sedimentation, filtration and disinfection. The optimization of the process consists of some measures to decrease the managing and monitoring expenses and improve the quality of the produced water. The objective of this study is to provide water treatment operators with methods and practices that enable to attain the most effective use of the facility and in consequence optimize the cubic meter price of the treated water. This paper proposes a review on optimization of drinking water treatment process by analyzing all of the water treatment units and gives some solutions in order to maximize the water treatment performances without compromising the water quality standards. Some practical solutions and methods are performed in the water treatment plant located in the middle of Morocco (Meknes).展开更多
The removal of the natural organic matter present in coffee processing wastewater through chemical coagulation-flocculation and advanced oxidation processes (AOP) had been studied. The effectiveness of the removal o...The removal of the natural organic matter present in coffee processing wastewater through chemical coagulation-flocculation and advanced oxidation processes (AOP) had been studied. The effectiveness of the removal of natural organic matter using commercial flocculants and UV/H202, UV/O3 and UV/H2O2/O3 processes was determined under acidic conditions. For each of these processes, different operational conditions were explored to optimize the treatment efficiency of the coffee wastewater. Coffee wastewater is characterized by a high chemical oxygen demand (COD) and low total suspended solids. The outcomes of coffee wastewater treatment using coagulation-flocculation and photodegradation processes were assessed in terms of reduction of COD, color, and turbidity. It was found that a reduction in COD of 67% could be realized when the coffee wastewater was treated by chemical coagulation-flocculation with lime and coagulant T-1. When coffee wastewater was treated by coagulation-flocculation in combination with UV/H2O2, a COD reduction of 86% was achieved, although only after prolonged UV irradiation. Of the three advanced oxidation processes considered, UV/H2O2, UV/O3 and UV/H2O2/O3, we found that the treatment with UV/H2O2/O3 was the most effective, with an efficiency of color, turbidity and further COD removal of 87%, when applied to the flocculated coffee wastewater.展开更多
文摘The oily wastewater generated from pretreatment unit of electrocoating industry contains oils, phosphate, organic solvents, and surfactants. In order to improve the removal efficiencies of phosphate and oils, to mitigate the membrane fouling, coagulation for ceramic membrane microfiltration of oily wastewater was performed. The results of filtration tests show that the membrane fouling decreased and the permeate flux and quality increased with coagulation as pretreatment. At the coagulant Ca (OH)2 dosage of 900 mg/L, the removal efficiency of phosphate was increased from 46.4% without coagulation to 99.6%; the removal of COD and oils were 97.0% and 99.8%, respectively. And the permeate flux was about 70% greater than that when Ca(OH)2 was not used. The permeate obtained from coagulation and microfiltration can be reused as make-up water, and the recommended operation conditions for pilot and industrial application are transmembrane pressure of 0.10 MPa and cross-flow velocity of 5 m/s. The comparison results show that 0.2 μm ZrO2 microfilter with coagulation could be used to perform the filtration rather than conventional ultrafilter, with very substantial gain in flux and removal efficiency of phosphate.
文摘The advanced treatment using integrated Fenton's reaction and coagulation process was investigated in this study. Before the advancement, the pharmaceutical wastewater containing lincomycin hydrochloride was pretreated by UASB (upflow anaerobic sludge bed) and a SBR (sequencing batch reactor) process. The residual recalcitrant compounds, measured by gas chromatographymass spectrometry (GC-MS), mainly consisted of alcohols, phenols, and nitrogenous and sulfur compounds. The experimental results indicated that when the Fenton's reaction was conducted at pH=3.0, H2O2CODOcr=0.27, H2O2/Fe^2+=3:1 and 30 min of reaction time, and the coagulation process operated at a sulfate aluminum concentration of 800 mg/L and pH value of 5.0, the color and COD in the wastewater decreased by 94% and 73%, respectively; with a finale COD concentration of 267 mg/L and color level of 40 units, meeting the secondary standard of GB8978-1996 for industrial wastewater.
基金Sponsored by the Tianjin Municipal Science and Technology Commission (Grant No. 05FZZDSH00500)
文摘The objective of this paper was to investigate the practicability of coagulation-immersed membrane process during low-temperature period through the study of steady operation,chemical cleaning methods,water quality and agent consumption.Experimental results showed that:membrane performance decreases with the reduction of temperature,but low temperature has little effect on stable operation of immersed membrane when coagulation as pretreatment.EFM with 1200 mg/L sodium hypochlorite after every 48 filtration cycles was made for reducing membrane fouling efficiently,and the method,with 1.5% sodium hydroxide and 3500 mg/L sodium hypochlorite for 10 h and then 2% hydrochloric acid for 4 h,is an appropriate cleaning method under low temperature.Compared with convention treatment process,immersed membrane process not only has same agent consumption,but also permeated water quality is more superior such as fine removal effect on turbidity with average 0.10 NTU.Therefore,coagulation-immersed membrane process is more appropriate for increasing water quality demand and the treatment of low turbidity and low temperature water.
基金The project supported by The Beijing Municipal Natural Sciences Foundation (3982005)
文摘In order to confirm which process is the most important in the blood coagulation cascade,a dynamic model on the function of platelets in blood coagulation is presented based on biochemical experiments.Based on qualitative analysis and mathematical simulation,a series of conclusions about the influence of the activation rate of factor VIII and factor IX on the generation of thrombin(IIa)are drawn.It is evident that the pro-coagulation stimulus must exceed a threshold value to initiate the coagulation cascade.The value is related to the binding constant d_2 of the platelet. The stability of the equilibrium value is also related to the pro-coagulation stimulus. This article also evaluates the influence of the stimulus strength and the activated rate parameter of platelets on thrombin.The proportion of platelets activated at any given time is designated c.To each c,we obtain a maximum concentration of thrombin.It is evident that when the level of factor IX is below 1% of the normal level,the rate of thrombin generation reduces dramatically,resulting in severe bleeding tendency.
基金supported by the National Natural Sciences Foundation of China (No. 50678095)the Postdoctoral Innovative Projects of Shandong Province (No. 200703053).
文摘Nano-Al13 was separated and purified by four methods to investigate its characteristic, and was analyzed by Al-Ferron timed complexation spectrophotometer, ^27Al-NMR (nuclear magnetic resonance), and transmission electron microscopy (TEM). Coagulation efficiency of nano-Al13, polyaluminum chloride (PAC), and AlCl3 in synthetic water were also investigated by jar test. The dynamic process and aggregation state of kaolin suspensions coagulating with nano-Al13, PAC, and AlCl3 were also investigated. The experimental results indicated that the efficiency of gel column chromatography method was the highest for separating PAC solution with low Al concentration. Ethanol and acetone method was simple and could separated PAC solution with different Al concentrations, while silicon alkylation white block column chromatography method could separate PAC solution only with low Al concentration. The SO4^2-/Ba^2+ displacement method could separate PAC solution with high Al concentration, but extra inorganic cation and anion could be introduced into the solution during the separation. The coagulation efficiency and dynamic experimental results showed that nano- Al13 with a high positive-charged species was the main species of electric neutralization in coagulation process, and it could reduce the turbidity and increase the effective particles collision rate efficiently in coagulation process. Its coagulation speed and the particle size of coagulant formed were of greatest value in this study.
文摘Fermented whey (a by-product from tofu industry) has been used as a coagulant in tofu manufactures in Indonesia. This research aimed to study effects of fermented whey on coagulation efficiency and physicochemical characteristics of tofu, compared to other acid coagulants (acetic acid and glucono-delta-lactone (GDL)) and salt coagulants (calcium sulfate and natural gypsum). A randomized block design with a single factor was used in this research. Fermented whey could be used as coagulant in tofu manufacturing. Physicochemical characteristics of tofu from fermented whey were not significantly difference compared to tofu from calcium salt and acid coagulants. Coagulation efficiencies (CF, TSIL TPR and TB~) of fermented whey are lower than that from calcium salt coagulants (calcium sulphate and natural gypsum). Fermented whey showed no significant differences in tofu properties and parameters of coagulation process, compared to GDL and acetic acid.
基金supported by the National Natural Science Foundation of China (No.50978014)the Fundamental Research Funds for the Central Universities (No.2011JBM077)
文摘A cake layer is formed by coagulation aggregates under certain transmembrane pressure in the coagulation-microfiltration (MF) process. The characteristics of humic acid aggregates coagulated by different iron-based coagulants, such as charge, size, fractal dimension and compressibility, have an effect on the cake layer structure. At the optimum iron dose of 0.6 to 0.8 mmol/L for ferric chloride (FC) and polymer ferric sulfate (PFS) pre-coagulation, at the point of charge neutralization for near zero zeta potential, the aggregate particles produced possess the greatest size and highest fractal dimension, which contributes to the cake layer being most loose with high porosity and low compressibility. Thus the membrane filterability is better. At a low or high iron dose of FC and PFS, a high negative or positive zeta potential with high charge repulsion results in so many small aggregate particles and low fractal dimension that the cake layer is compact with low porosity and high compressibility. Therefore the membrane fouling is accelerated and MF permeability becomes worse. The variation of cake layer structure as measured by scanning electric microscopy corresponds with the fact that the smaller the coagulation flocs size and fractal dimension are, the lower the porosity and the tighter the cake layer conformation. This also explains the MF membrane flux variation visually and accurately.
文摘In the drinking water treatment processes, the optimization of the treatment is an issue of particular concern. In general, the process consists of many units as settling, coagulation, flocculation, sedimentation, filtration and disinfection. The optimization of the process consists of some measures to decrease the managing and monitoring expenses and improve the quality of the produced water. The objective of this study is to provide water treatment operators with methods and practices that enable to attain the most effective use of the facility and in consequence optimize the cubic meter price of the treated water. This paper proposes a review on optimization of drinking water treatment process by analyzing all of the water treatment units and gives some solutions in order to maximize the water treatment performances without compromising the water quality standards. Some practical solutions and methods are performed in the water treatment plant located in the middle of Morocco (Meknes).
文摘The removal of the natural organic matter present in coffee processing wastewater through chemical coagulation-flocculation and advanced oxidation processes (AOP) had been studied. The effectiveness of the removal of natural organic matter using commercial flocculants and UV/H202, UV/O3 and UV/H2O2/O3 processes was determined under acidic conditions. For each of these processes, different operational conditions were explored to optimize the treatment efficiency of the coffee wastewater. Coffee wastewater is characterized by a high chemical oxygen demand (COD) and low total suspended solids. The outcomes of coffee wastewater treatment using coagulation-flocculation and photodegradation processes were assessed in terms of reduction of COD, color, and turbidity. It was found that a reduction in COD of 67% could be realized when the coffee wastewater was treated by chemical coagulation-flocculation with lime and coagulant T-1. When coffee wastewater was treated by coagulation-flocculation in combination with UV/H2O2, a COD reduction of 86% was achieved, although only after prolonged UV irradiation. Of the three advanced oxidation processes considered, UV/H2O2, UV/O3 and UV/H2O2/O3, we found that the treatment with UV/H2O2/O3 was the most effective, with an efficiency of color, turbidity and further COD removal of 87%, when applied to the flocculated coffee wastewater.