Thick and ultra-thick coal seams are main coal seams for high production rate and high efficiency in Chinese coal mines, which accounts for 44 % of the total minable coal reserve. A fully mechanized top-coal caving mi...Thick and ultra-thick coal seams are main coal seams for high production rate and high efficiency in Chinese coal mines, which accounts for 44 % of the total minable coal reserve. A fully mechanized top-coal caving mining method is a main underground coal extraction method for ultra-thick coal seams. The coal extraction technologies for coal seams less than 14 m thick were extensively used in China. However, for coal seams with thickness greater than 14 m, there have been no reported cases in the world for underground mechanical extraction with safe performance, high efficiency and high coal recovery ratio. To deal with this case, China Coal Technology & Engineering Group, Datong Coal Mine Group, and other 15 organizations in China launched a fundamental and big project to develop coal mining technologies and equipment for coal seams with thicknesses greater than 14 m. After the completion of the project, a coal extraction method was developed for top-coal caving with a large mining height, as well as a ground control theory for ultra-thick coal seams. In addition, the mining technology for top-coal caving with a large mining height, the ground support technology for roadway in coal seams with a large cross-section, and the prevention and control technology for gas and fire hazards were developed and applied. Furthermore, a hydraulic support with a mining height of 5.2 m, a shearer with high reliability, and auxiliary equipment were developed and manufactured. Practical implication on the technologies and equipment developed was successfully completed at the No. 8105 coal face in the Tashan coal mine, Datong, China. The major achievements of the project are summarized as follows: 1. A top-coal caving method for ultra-thick coal seams is proposed with a cutting height of 5 m and a top-coal caving height of 15 m. A structural mechanical model of overlying strata called cantilever beam-articulated rock beam is established. Based on the model, the load resistance of the hydraulic support with a large mining height for top-coal caving method is determined. With the analysis, the movement characteristics of the top coal and above strata are evaluated during top-coal caving operation at the coal face with a large mining height. Furthermore, there is successful development of comprehensive technologies for preventing and controlling spalling of the coal wall, and the top-coal caving technology with high efficiency and high recovery at the top-coal caving face with a large mining height. This means that the technologies developed have overcome the difficulties in strata control, top-coal caving with high efficiency and high coal recovery, and enabled to achieve a production rate of more than 10 Mtpa at a single top-coal caving face with a large mining height in ultra-thick coal seams; 2. A hydraulic support with 5.2 m supporting height and anti-rockburst capacity, a shearer with high reliability, a scraper conveyor with a large power at the back of face, and a large load and long distance headgate belt conveyor have been successfully developed for a top-coal caving face with large mining height. The study has developed the key technologies for improving the reliability of equipment at the coal face and has overcome the challenges in equipping the top-coal caving face with a large mining height in ultra-thick coal seams; 3. The deformation characteristics of a large cross-section roadway in ultra-thick coal seams are discovered. Based on the findings above, a series of bolt materials with a high yielding strength of 500-830 MPa and a high extension ratio, and cable bolt material with a 1 × 19 structure, large tonnage and high extension ratio are developed. In addition, in order to achieve a safe roadway and a fast face advance, installation equipment for high pre-tension bolt is developed to solve the problems with the support of roadway in coal seams for top-coal caving operation with a large mining height; 4. The characteristics of gas distribution and uneven emission at top-coal caving face with large mining height in ultra-thick coal seams are evaluated. With the application of the technologies of gas drainage in the roof, the difficulties in gas control for high intensive top-coal caving mining operations, known as "low gas content, high gas emission", are solved. In addition, large flow-rate underground mobile equipment for making nitrogen are developed to solve the problems with fire prevention and safe mining at a top-coal caving face with large mining height and production rate of more than 10 Mtpa. A case study to apply the developed technologies has been conducted at the No. 8105 face, the Tashan coal mine in Datong, China. The case study demonstrates that the three units of equipment, i.e., the support, shearer and scraper conveyor, are rationally equipped. Average equipment usage at the coal face is 92.1%. The coal recovery ratio at the coal face is up to 88.9 %. In 2011, the coal production at the No. 8105 face reached 10.849 Mtpa, exceeding the target of 10 Mtpa for a topcoal caving operation with large mining height performed by Chinese-made mining equipment. The technologies and equipment developed provide a way for extracting ultra-thick coal seams. Currently, the technologies and equipment are used in 13 mining areas in China including Datong, Pingshuo, Shendong and Xinjiang. With the exploitation of coal resources in Western China, there is great potential for the application of the technologies and equipment developed.展开更多
Non-isothermal oxidation of brown coal with 5 wt% of Cu(NO3)2, 5 wt% of Ce(NO3)3 and {2.5 wt% Cu(NO3)2 + 2.5 wt% Ce(NO3)3} additives was studied. The introduction of additives was carried out by an incipient wet impre...Non-isothermal oxidation of brown coal with 5 wt% of Cu(NO3)2, 5 wt% of Ce(NO3)3 and {2.5 wt% Cu(NO3)2 + 2.5 wt% Ce(NO3)3} additives was studied. The introduction of additives was carried out by an incipient wet impregnation method to ensure uniform distribution of cerium and copper nitrates within the structure of coal powdery samples (according to SEM and EDX mapping). The samples reactivity was studied in an isothermal oxidation regime at 200 °C (1 h) and by DSC/TGA at 2.5 °C/min heating rate. The additives implementation was found to reduce significantly the oxidation onset temperature (△Ti = 20-55 °C), the samples oxidation delay time (△ti= 2-22 min) and overall duration of the oxidation process (△tc = 8-16 min). The additives efficiency could be graded in accordance with the activation on the coal oxidation in the following row: Cu(NO3)2 >{Cu(NO3)2 + Ce(NO3)3}> Ce(NO3)3. According to the mass spectroscopy, the obtained row of activation correlates well with the initial temperature of the studied nitrate's decomposition (from 190 to 223 °C). A presence of nitrates was found to change significantly the trend of heat release taking place during the oxidation of coal samples (according to DSC/TGA data). The influence of coal morphology and volatiles concern in initial sample on the parameters of the oxidation process was studied as well. Activation energy (Ea) of the coal oxidation was calculated using Coats-Redfern method. Maximum decrease in Ea from 69 to 58 kJ/mol was observed for the samples with Cu(NO3)2. Graphical abstract.展开更多
A novel suspension-floating-circulating fluidized combustion technology is proposed for burning coal slurry fuel in traditional circulating ftuidized bed boilers (CFBB). This technology can solve some existing probl...A novel suspension-floating-circulating fluidized combustion technology is proposed for burning coal slurry fuel in traditional circulating ftuidized bed boilers (CFBB). This technology can solve some existing problems in large- capacity CFBB burning coal slurry. The principles of the suspension-floating-circulating fluidized combustion technology were introduced in detail in this paper. A 130 t/h CFBB was retrofitted based on the technology, and the retrofitted system mainly includes a long-distance transport sub-system, a bed-material conveying sub-system with a wind-seal device invented by the authors, a superheater thermoregulation device using a novel temperature regulator, a return loop flu- idization facility, and a pneumatic ash conveying sub-system with sealed pump. The achieved performance of the retro- fitted CFBB shows that the thermal efficiency is 89.83 %, the combustion efficiency is 96.24 %, and the blending proportion of slurry is 94 %.展开更多
Objectives Tumor necrosis factor-α (TNF-α) may play an important role in host's immune response to mycobacterium tuberculosis (M. tuberculosis) infection. This study was to investigate the association of TNF-α...Objectives Tumor necrosis factor-α (TNF-α) may play an important role in host's immune response to mycobacterium tuberculosis (M. tuberculosis) infection. This study was to investigate the association of TNF-α gene polymorphism with pulmonary tuberculosis (TB) among patients with coal worker's pneumoconiosis (CWP). Methods A case-control study was conducted in 113 patients with confirmed CWP complicated with pulmonary TB and 113 non-TB controls with CWP. They were matched in gender, age, job, and stage of pneumoconiosis. All participants were interviewed with questionnaires and their blood specimens were collected for genetic determination with informed consent. The TNF-α gene polymorphism was determined with polymerase chain reaction of restriction fragment length polymorphism (PCR-RFLP). Frequency of genotypes was assessed for Hardy-Weinberg equilibrium by chi-square test or Fisher's exact probability. Factors influencing the association of individual susceptibility with pulmonary TB were evaluated with logistic regression analysis. Gene-environment interaction was evaluated by a multiplieative model with combined OR. All data were analyzed using SAS version 8.2 software. Results No significant difference in frequency of the TNF-α-308 genotype was found between CWP complicated with pulmonary TB and non-TB controls (2,2=5.44, P=-0.07). But difference in frequency of the TNF-α-308 A allele was identified between them (2,2-5.14, P=0.02). No significant difference in frequencies of the TNF-α-238 genotype and allele (P=0.23 and P=0.09, respectively) was found between cases and controls either, with combined (GG and AA) OR of 3.96 (95% confidence interval of 1.30-12.09) at the -308 locus of the TNF-α gene, as compared to combination of the TNF-α-238 GG and TNF-α-308 GG genotypes. Multivariate-adjusted odds ratio of the TNF-α-238 GG and TNF-α-308 GA genotypes was 1.98 (95% CI of 1.06-3.71) for risk for pulmonary TB in patients with CWP. There was a synergic interaction between the TNF-a-308 GG genotype and body mass index (OR=4.92), as well as an interaction between the TNF-α-308 GG genotype and history of BCG immunization or history of TB exposure. And, the interaction of the TNF-α-238 GG genotype and history of BCG immunization or TB exposure with risk for pulmonary TB in them was also indicated. Conclusions TNF-α-308 A allele is associated with an elevated risk for pulmonary TB, whereas TNF-α-238 A allele was otherwise.展开更多
Based on fuzzy mathematics, comprehensive comparisons among four kinds of materials for manufacturing shearer bits were made in six aspects which are respec- tively hardness, tensile strength, impact toughness, relati...Based on fuzzy mathematics, comprehensive comparisons among four kinds of materials for manufacturing shearer bits were made in six aspects which are respec- tively hardness, tensile strength, impact toughness, relative wearability, relative lifespan and relative cost. Material 4 is preferred to be the targeted choice for manufacturing bits with superior comprehensive and economic performances.展开更多
This work explored the way to improve hot modulus q/' rupture (HMOR) and refractoriness under load (RUL) by adding mild-calcined coal gangue (MCG) in Al2O3 -SiO2 ultra low cement (ULC) castables, making use o...This work explored the way to improve hot modulus q/' rupture (HMOR) and refractoriness under load (RUL) by adding mild-calcined coal gangue (MCG) in Al2O3 -SiO2 ultra low cement (ULC) castables, making use of the in-situ effect of the MCG during heating-up. The influence of respective additions of 5%, 10% and 1.5% of the MCG powders calcined at 700℃ was investigated on HMOR at 1400 ℃ and RUL of the castables. With increased addition of the MCG, HMOR and RUL become significantly enhanced. At 10% of the MCG addition, HMOR reaches 3 MPa, as compared to 0. 3 MPa in the case of no MCG addition. RUL of the specimens dried at 110 ℃for 24 h can be increased by some 270 ℃ with 10% of the MCG addition. RUL 0.11 the specimens preheated at 1 500℃ for 3 h maintains the growth trend with the MCG addition increasing. The microstructure of the heated castable samples was investigated by means of SEM. The in-situ formed needle-like and interlaced mullite in the matrix is contributive to the tmprovement.展开更多
The characteristics and research methods of terrigenous organic hydrocarbon-generated source rock in coal measures are studied in this thesis. After abundance of organic matters, pyrolysis parameter of rocks and hydro...The characteristics and research methods of terrigenous organic hydrocarbon-generated source rock in coal measures are studied in this thesis. After abundance of organic matters, pyrolysis parameter of rocks and hydrocarbon generated capacity of macerals are basically discussed in coal measures of the Cretaceous Muleng-Chengzihe formation in Suibin depression in Sanjang basin, the hydrocarbon generated grade in coal-genera^ted source rock is ascertained in this depression. At last, we think that it is a main attack prospect in coal-genera^ted hydrocarbons study in the future to research the macerals of coal measures organic source rock and to build a criterion to classify the coal-generated hydrocarbons in Northeast region.展开更多
Flotation is a complex multifaceted process that is widely used for the separation of finely ground minerals. The theory of froth flotation is complex and is not completely understood. This fact has been brought many ...Flotation is a complex multifaceted process that is widely used for the separation of finely ground minerals. The theory of froth flotation is complex and is not completely understood. This fact has been brought many monitoring challenges in a coal processing plant. To solve those challenges, it is important to understand the effect of different parameters on the fine particle separation, and control flotation performance for a particular system. This study is going to indicate the effect of various parameters (particle Characteristics and hydrodynamic conditions) on coal flotation responses (flotation rate constant and recovery) by different modeling techniques. A comprehensive coal flotation database was prepared for the statistical and soft computing methods. Statistical factors were used for variable selections. Results were in a good agreement with recent theoretical flotation investigations. Computational models accurately can estimate flotation rate constant and coal recovery (correlation coefficient 0.85, and 0.99, respectively). According to the results, it can be concluded that the soft computing models can overcome the complexity of process and be used as an expert system to control, and optimize parameters of coal flotation process.展开更多
Based on the statistical data from 1975 to 1997, we forecast the growth rate of coal consuming and the quantity in coming decade with the BP neuron network in the article.
Circulating fluidized bed combustion (CFBC) ash can be potentially used as supplementary cementitious materials for concrete production due to its desirable pozzolanic activity. The adsorption properties of CFBC ash...Circulating fluidized bed combustion (CFBC) ash can be potentially used as supplementary cementitious materials for concrete production due to its desirable pozzolanic activity. The adsorption properties of CFBC ash-cement pastes were studied, and ordinary pulverized coal combustion (PCC) fly ash-cement pastes were used as control. The water-adsorption and superplasticizer (SP)-adsorption properties of the pastes were evaluated by water demand and UV-visible absorption spectroscopy respectively. The results show that CFBC ash-cement system has greater compressive strength as compared with PCC fly ash-cement system at a given curing age, although the water demand of the former is significantly higher than that of the latter. CFBC ash-cement pastes possess higher adsorption ability of aliphatic SP than PCC fly ash-cement pastes and the adsorption amount increases with an increase in ash replacement ratio. CFBC ash- cement pastes exhibit lower workability with higher slump loss. It is concluded that CFBC ash can be potentially used as supplementary cementitious material in concrete production, but the mix design of CFBC ash concrete needs to be appropriately adjusted. It is suggested that CFBC ash is used for the production of the concrete needing low flowability.展开更多
Optical microscopy, and scanning electron microscopy in conjunction with energy dispersed X-ray spectrometry (SEM-EDX), have been used to study the minerals and the concentrations of 12 trace elements in the No.14 c...Optical microscopy, and scanning electron microscopy in conjunction with energy dispersed X-ray spectrometry (SEM-EDX), have been used to study the minerals and the concentrations of 12 trace elements in the No.14 coal from the Huolinhe mine, Inner Mongolia China. The distribution, affinity and removability of the trace elements were studied by float-sink experiments and petrological methods. A high mineral content, dominated by clay minerals, was found in the No.14 coal from the Huolinhe mine. The concentrations of As, Sb and Hg are relatively high compared to the average values for Chinese coals. As, Cr, Hg, Li, Mn, Pb are mainly associated with the minerals while Cd, Co, Ni, Sb, and Se are evenly distributed between the minerals and the organic matter. Be and Ba are mainly distributed in the minerals with a minor proportion in the organic matter. Most elements have a low organic affinity, although Sb, Se, Co, Cd, Ni are closely integrated with the organic matter. High theoretical removabilities are indicated for most trace elements. So it may be possible to lower the concentrations of trace elements during coal preparation.展开更多
In this paper, the desulphurisation of high sulphur low-rank coal is proposed as a raw material for pulverised coal injection technology. Therefore, the influence of oxidant linear velocity and the size of the coal gr...In this paper, the desulphurisation of high sulphur low-rank coal is proposed as a raw material for pulverised coal injection technology. Therefore, the influence of oxidant linear velocity and the size of the coal grain was investigated in a fluidised bed. The hydrodynamic parameters of the fluidised bed including: porosity, Sherwood criterion (diffusion Nusselt number), and mass transfer coefficient (external surface) were calculated. Furthermore, the study examined the effects of intensity and efficiency on the desulphurised coal properties; organic matter, ash, and volatile matter contents. The key changes during the conversion of pyritic sulphur and coal organic matter were subsequently examined. The results showed that the sulphur content (St^d 3.16 wt%) of the low-rank coal, was transformed to (St^d 〈 1.5 wt%) after desulfurization. Other enhanced properties were: V^daf ≤ 38.0 wt%; A^d 〈 10.0 wt%, now suitable for pulverised coal injection technology.展开更多
Coal fly ash originated from coal combustion has high concentrations of metals. If suitable leaching techniques are identified, then coal fly ash could serve as a useful source of valuable minerals including rare eart...Coal fly ash originated from coal combustion has high concentrations of metals. If suitable leaching techniques are identified, then coal fly ash could serve as a useful source of valuable minerals including rare earth elements (REEs). In this study, three microbial strains, Candida bombicola, Phanerochaete chrysosporium and Cryptococcus curvatus were tested on their performance of leaching trace elements and REEs from fly ash. Through comparing mineral loss and leaching efficiencies resulting from indirect leaching or use of the culture supernatant, C. bombicola was identified to be the best leading to the highest mineral loss and extracting efficiencies of trace elements and REEs among the three strains. The highest mineral loss observed from using the supernatant of this yeast strain was 59.7%. Among all trace elements, As and Mo had the highest leaching efficiency of 80.9% and 79.5%. respectively. The same leaching test led to 67.7% of Yb and 64.6% of Er dissolved from the ash. This study, thus, demonstrated that bioleaching is feasible for leaching metals out of fly ash. The C. bombicola strain deserves further investigation due to its robust actions on metal leaching.展开更多
The purpose of this study is to contribute to the literature by studying the effects of sudden changes both on crude oil import price and domestic gasoline price on inflation for Turkey, an emerging country. Since an ...The purpose of this study is to contribute to the literature by studying the effects of sudden changes both on crude oil import price and domestic gasoline price on inflation for Turkey, an emerging country. Since an inflation targeting regime is being carried out by the Central Bank of Turkey, determination of such effects is becoming more important. Therefore empirical evidence in this paper will serve as guidance for those countries, which have an in- flation targeting regime. Analyses have been done in the period of October 2005-December 2012 by Markovswitching vector autoregressive (MS-VAR) models which are successful in capturing the nonlinear properties of variables. Using MS-VAR analysis, it is found that there are 2 regimes in the analysis period. Furthermore, regime changes can be dated and the turning points of economic cycles can be determined. In addition, it is found that the effect of the changes in crude oil and domestic gasoline prices on consumer prices and core inflation is not the same under different regimes. Moreover, the sudden increase in gasoline price is more important for consumer price infla- tion than crude oil price shocks. Another finding is the presence of a pass-through effect from oil price and ga- soline price to core inflation.展开更多
Sorption isotherms of hydrocarbon and carbon dioxide (CO2) provide crucial information for designing processes to sequester CO2 and recover natural gas from unmineable coal beds. Methane (CH4), ethane (C2H6), an...Sorption isotherms of hydrocarbon and carbon dioxide (CO2) provide crucial information for designing processes to sequester CO2 and recover natural gas from unmineable coal beds. Methane (CH4), ethane (C2H6), and CO2 adsorption isotherms on dry coal and the temperature effect on their maximum sorption capacity have been studied by performing combined Monte Carlo (MC) and molecular dynamics (MD) simulations at temperatures of 308 and 370 K (35 and 97 ~C) and at pressures up to 10 MPa. Simulation results demonstrate that absolute sorption (expressed as a mass basis) divided by bulk gas density has negligible temperature effect on CH4, C2H6, and CO2 sorption on dry coal when pressure is over 6 MPa. CO2 is more closely packed due to stronger interaction with coal and the stronger interaction between CO2 mole- cules compared, respectively, with the interactions between hydrocarbons and coal and between hydrocarbons. The results of this work suggest that the "a" constant (pro- portional to TcPc) in the Peng-Robinson equation of state is an important factor affecting the sorption behavior of hydrocarbons. CO2 injection pressures of lower than 8 MPa may be desirable for CH4 recovery and CO2 sequestration. This study provides a quantitative under- standing of the effects of temperature on coal sorptioncapacity for CH4, C2H6, and CO2 from a microscopic perspective.展开更多
During underground coal gasification (UCG), whereby coal is converted to syngas in situ, a cavity is formed in the coal seam. The cavity growth rate (CGR) or the moving rate of the gasification face is affected by...During underground coal gasification (UCG), whereby coal is converted to syngas in situ, a cavity is formed in the coal seam. The cavity growth rate (CGR) or the moving rate of the gasification face is affected by controllable (operation pressure, gasification time, geometry of UCG panel) and uncontrollable (coal seam properties) factors. The CGR is usually predicted by mathematical models and laboratory experiments, which are time consuming, cumbersome and expensive. In this paper, a new simple model for CGR is developed using non-linear regression analysis, based on data from 1 l UCG field trials. The empirical model compares satisfactorily with Perkins model and can reliably predict CGR.展开更多
文摘Thick and ultra-thick coal seams are main coal seams for high production rate and high efficiency in Chinese coal mines, which accounts for 44 % of the total minable coal reserve. A fully mechanized top-coal caving mining method is a main underground coal extraction method for ultra-thick coal seams. The coal extraction technologies for coal seams less than 14 m thick were extensively used in China. However, for coal seams with thickness greater than 14 m, there have been no reported cases in the world for underground mechanical extraction with safe performance, high efficiency and high coal recovery ratio. To deal with this case, China Coal Technology & Engineering Group, Datong Coal Mine Group, and other 15 organizations in China launched a fundamental and big project to develop coal mining technologies and equipment for coal seams with thicknesses greater than 14 m. After the completion of the project, a coal extraction method was developed for top-coal caving with a large mining height, as well as a ground control theory for ultra-thick coal seams. In addition, the mining technology for top-coal caving with a large mining height, the ground support technology for roadway in coal seams with a large cross-section, and the prevention and control technology for gas and fire hazards were developed and applied. Furthermore, a hydraulic support with a mining height of 5.2 m, a shearer with high reliability, and auxiliary equipment were developed and manufactured. Practical implication on the technologies and equipment developed was successfully completed at the No. 8105 coal face in the Tashan coal mine, Datong, China. The major achievements of the project are summarized as follows: 1. A top-coal caving method for ultra-thick coal seams is proposed with a cutting height of 5 m and a top-coal caving height of 15 m. A structural mechanical model of overlying strata called cantilever beam-articulated rock beam is established. Based on the model, the load resistance of the hydraulic support with a large mining height for top-coal caving method is determined. With the analysis, the movement characteristics of the top coal and above strata are evaluated during top-coal caving operation at the coal face with a large mining height. Furthermore, there is successful development of comprehensive technologies for preventing and controlling spalling of the coal wall, and the top-coal caving technology with high efficiency and high recovery at the top-coal caving face with a large mining height. This means that the technologies developed have overcome the difficulties in strata control, top-coal caving with high efficiency and high coal recovery, and enabled to achieve a production rate of more than 10 Mtpa at a single top-coal caving face with a large mining height in ultra-thick coal seams; 2. A hydraulic support with 5.2 m supporting height and anti-rockburst capacity, a shearer with high reliability, a scraper conveyor with a large power at the back of face, and a large load and long distance headgate belt conveyor have been successfully developed for a top-coal caving face with large mining height. The study has developed the key technologies for improving the reliability of equipment at the coal face and has overcome the challenges in equipping the top-coal caving face with a large mining height in ultra-thick coal seams; 3. The deformation characteristics of a large cross-section roadway in ultra-thick coal seams are discovered. Based on the findings above, a series of bolt materials with a high yielding strength of 500-830 MPa and a high extension ratio, and cable bolt material with a 1 × 19 structure, large tonnage and high extension ratio are developed. In addition, in order to achieve a safe roadway and a fast face advance, installation equipment for high pre-tension bolt is developed to solve the problems with the support of roadway in coal seams for top-coal caving operation with a large mining height; 4. The characteristics of gas distribution and uneven emission at top-coal caving face with large mining height in ultra-thick coal seams are evaluated. With the application of the technologies of gas drainage in the roof, the difficulties in gas control for high intensive top-coal caving mining operations, known as "low gas content, high gas emission", are solved. In addition, large flow-rate underground mobile equipment for making nitrogen are developed to solve the problems with fire prevention and safe mining at a top-coal caving face with large mining height and production rate of more than 10 Mtpa. A case study to apply the developed technologies has been conducted at the No. 8105 face, the Tashan coal mine in Datong, China. The case study demonstrates that the three units of equipment, i.e., the support, shearer and scraper conveyor, are rationally equipped. Average equipment usage at the coal face is 92.1%. The coal recovery ratio at the coal face is up to 88.9 %. In 2011, the coal production at the No. 8105 face reached 10.849 Mtpa, exceeding the target of 10 Mtpa for a topcoal caving operation with large mining height performed by Chinese-made mining equipment. The technologies and equipment developed provide a way for extracting ultra-thick coal seams. Currently, the technologies and equipment are used in 13 mining areas in China including Datong, Pingshuo, Shendong and Xinjiang. With the exploitation of coal resources in Western China, there is great potential for the application of the technologies and equipment developed.
文摘Non-isothermal oxidation of brown coal with 5 wt% of Cu(NO3)2, 5 wt% of Ce(NO3)3 and {2.5 wt% Cu(NO3)2 + 2.5 wt% Ce(NO3)3} additives was studied. The introduction of additives was carried out by an incipient wet impregnation method to ensure uniform distribution of cerium and copper nitrates within the structure of coal powdery samples (according to SEM and EDX mapping). The samples reactivity was studied in an isothermal oxidation regime at 200 °C (1 h) and by DSC/TGA at 2.5 °C/min heating rate. The additives implementation was found to reduce significantly the oxidation onset temperature (△Ti = 20-55 °C), the samples oxidation delay time (△ti= 2-22 min) and overall duration of the oxidation process (△tc = 8-16 min). The additives efficiency could be graded in accordance with the activation on the coal oxidation in the following row: Cu(NO3)2 >{Cu(NO3)2 + Ce(NO3)3}> Ce(NO3)3. According to the mass spectroscopy, the obtained row of activation correlates well with the initial temperature of the studied nitrate's decomposition (from 190 to 223 °C). A presence of nitrates was found to change significantly the trend of heat release taking place during the oxidation of coal samples (according to DSC/TGA data). The influence of coal morphology and volatiles concern in initial sample on the parameters of the oxidation process was studied as well. Activation energy (Ea) of the coal oxidation was calculated using Coats-Redfern method. Maximum decrease in Ea from 69 to 58 kJ/mol was observed for the samples with Cu(NO3)2. Graphical abstract.
文摘A novel suspension-floating-circulating fluidized combustion technology is proposed for burning coal slurry fuel in traditional circulating ftuidized bed boilers (CFBB). This technology can solve some existing problems in large- capacity CFBB burning coal slurry. The principles of the suspension-floating-circulating fluidized combustion technology were introduced in detail in this paper. A 130 t/h CFBB was retrofitted based on the technology, and the retrofitted system mainly includes a long-distance transport sub-system, a bed-material conveying sub-system with a wind-seal device invented by the authors, a superheater thermoregulation device using a novel temperature regulator, a return loop flu- idization facility, and a pneumatic ash conveying sub-system with sealed pump. The achieved performance of the retro- fitted CFBB shows that the thermal efficiency is 89.83 %, the combustion efficiency is 96.24 %, and the blending proportion of slurry is 94 %.
基金supported by grants from China National Programs for Science and Technology Development (Grant No. 2003BA712A11-24)Scientific Research Fund of North China Coal Medical College (Grant No. 2005-14)
文摘Objectives Tumor necrosis factor-α (TNF-α) may play an important role in host's immune response to mycobacterium tuberculosis (M. tuberculosis) infection. This study was to investigate the association of TNF-α gene polymorphism with pulmonary tuberculosis (TB) among patients with coal worker's pneumoconiosis (CWP). Methods A case-control study was conducted in 113 patients with confirmed CWP complicated with pulmonary TB and 113 non-TB controls with CWP. They were matched in gender, age, job, and stage of pneumoconiosis. All participants were interviewed with questionnaires and their blood specimens were collected for genetic determination with informed consent. The TNF-α gene polymorphism was determined with polymerase chain reaction of restriction fragment length polymorphism (PCR-RFLP). Frequency of genotypes was assessed for Hardy-Weinberg equilibrium by chi-square test or Fisher's exact probability. Factors influencing the association of individual susceptibility with pulmonary TB were evaluated with logistic regression analysis. Gene-environment interaction was evaluated by a multiplieative model with combined OR. All data were analyzed using SAS version 8.2 software. Results No significant difference in frequency of the TNF-α-308 genotype was found between CWP complicated with pulmonary TB and non-TB controls (2,2=5.44, P=-0.07). But difference in frequency of the TNF-α-308 A allele was identified between them (2,2-5.14, P=0.02). No significant difference in frequencies of the TNF-α-238 genotype and allele (P=0.23 and P=0.09, respectively) was found between cases and controls either, with combined (GG and AA) OR of 3.96 (95% confidence interval of 1.30-12.09) at the -308 locus of the TNF-α gene, as compared to combination of the TNF-α-238 GG and TNF-α-308 GG genotypes. Multivariate-adjusted odds ratio of the TNF-α-238 GG and TNF-α-308 GA genotypes was 1.98 (95% CI of 1.06-3.71) for risk for pulmonary TB in patients with CWP. There was a synergic interaction between the TNF-a-308 GG genotype and body mass index (OR=4.92), as well as an interaction between the TNF-α-308 GG genotype and history of BCG immunization or history of TB exposure. And, the interaction of the TNF-α-238 GG genotype and history of BCG immunization or TB exposure with risk for pulmonary TB in them was also indicated. Conclusions TNF-α-308 A allele is associated with an elevated risk for pulmonary TB, whereas TNF-α-238 A allele was otherwise.
文摘Based on fuzzy mathematics, comprehensive comparisons among four kinds of materials for manufacturing shearer bits were made in six aspects which are respec- tively hardness, tensile strength, impact toughness, relative wearability, relative lifespan and relative cost. Material 4 is preferred to be the targeted choice for manufacturing bits with superior comprehensive and economic performances.
文摘This work explored the way to improve hot modulus q/' rupture (HMOR) and refractoriness under load (RUL) by adding mild-calcined coal gangue (MCG) in Al2O3 -SiO2 ultra low cement (ULC) castables, making use of the in-situ effect of the MCG during heating-up. The influence of respective additions of 5%, 10% and 1.5% of the MCG powders calcined at 700℃ was investigated on HMOR at 1400 ℃ and RUL of the castables. With increased addition of the MCG, HMOR and RUL become significantly enhanced. At 10% of the MCG addition, HMOR reaches 3 MPa, as compared to 0. 3 MPa in the case of no MCG addition. RUL of the specimens dried at 110 ℃for 24 h can be increased by some 270 ℃ with 10% of the MCG addition. RUL 0.11 the specimens preheated at 1 500℃ for 3 h maintains the growth trend with the MCG addition increasing. The microstructure of the heated castable samples was investigated by means of SEM. The in-situ formed needle-like and interlaced mullite in the matrix is contributive to the tmprovement.
文摘The characteristics and research methods of terrigenous organic hydrocarbon-generated source rock in coal measures are studied in this thesis. After abundance of organic matters, pyrolysis parameter of rocks and hydrocarbon generated capacity of macerals are basically discussed in coal measures of the Cretaceous Muleng-Chengzihe formation in Suibin depression in Sanjang basin, the hydrocarbon generated grade in coal-genera^ted source rock is ascertained in this depression. At last, we think that it is a main attack prospect in coal-genera^ted hydrocarbons study in the future to research the macerals of coal measures organic source rock and to build a criterion to classify the coal-generated hydrocarbons in Northeast region.
文摘Flotation is a complex multifaceted process that is widely used for the separation of finely ground minerals. The theory of froth flotation is complex and is not completely understood. This fact has been brought many monitoring challenges in a coal processing plant. To solve those challenges, it is important to understand the effect of different parameters on the fine particle separation, and control flotation performance for a particular system. This study is going to indicate the effect of various parameters (particle Characteristics and hydrodynamic conditions) on coal flotation responses (flotation rate constant and recovery) by different modeling techniques. A comprehensive coal flotation database was prepared for the statistical and soft computing methods. Statistical factors were used for variable selections. Results were in a good agreement with recent theoretical flotation investigations. Computational models accurately can estimate flotation rate constant and coal recovery (correlation coefficient 0.85, and 0.99, respectively). According to the results, it can be concluded that the soft computing models can overcome the complexity of process and be used as an expert system to control, and optimize parameters of coal flotation process.
文摘Based on the statistical data from 1975 to 1997, we forecast the growth rate of coal consuming and the quantity in coming decade with the BP neuron network in the article.
基金the National Nature Science Foundation of China (51272222).
文摘Circulating fluidized bed combustion (CFBC) ash can be potentially used as supplementary cementitious materials for concrete production due to its desirable pozzolanic activity. The adsorption properties of CFBC ash-cement pastes were studied, and ordinary pulverized coal combustion (PCC) fly ash-cement pastes were used as control. The water-adsorption and superplasticizer (SP)-adsorption properties of the pastes were evaluated by water demand and UV-visible absorption spectroscopy respectively. The results show that CFBC ash-cement system has greater compressive strength as compared with PCC fly ash-cement system at a given curing age, although the water demand of the former is significantly higher than that of the latter. CFBC ash-cement pastes possess higher adsorption ability of aliphatic SP than PCC fly ash-cement pastes and the adsorption amount increases with an increase in ash replacement ratio. CFBC ash- cement pastes exhibit lower workability with higher slump loss. It is concluded that CFBC ash can be potentially used as supplementary cementitious material in concrete production, but the mix design of CFBC ash concrete needs to be appropriately adjusted. It is suggested that CFBC ash is used for the production of the concrete needing low flowability.
文摘Optical microscopy, and scanning electron microscopy in conjunction with energy dispersed X-ray spectrometry (SEM-EDX), have been used to study the minerals and the concentrations of 12 trace elements in the No.14 coal from the Huolinhe mine, Inner Mongolia China. The distribution, affinity and removability of the trace elements were studied by float-sink experiments and petrological methods. A high mineral content, dominated by clay minerals, was found in the No.14 coal from the Huolinhe mine. The concentrations of As, Sb and Hg are relatively high compared to the average values for Chinese coals. As, Cr, Hg, Li, Mn, Pb are mainly associated with the minerals while Cd, Co, Ni, Sb, and Se are evenly distributed between the minerals and the organic matter. Be and Ba are mainly distributed in the minerals with a minor proportion in the organic matter. Most elements have a low organic affinity, although Sb, Se, Co, Cd, Ni are closely integrated with the organic matter. High theoretical removabilities are indicated for most trace elements. So it may be possible to lower the concentrations of trace elements during coal preparation.
文摘In this paper, the desulphurisation of high sulphur low-rank coal is proposed as a raw material for pulverised coal injection technology. Therefore, the influence of oxidant linear velocity and the size of the coal grain was investigated in a fluidised bed. The hydrodynamic parameters of the fluidised bed including: porosity, Sherwood criterion (diffusion Nusselt number), and mass transfer coefficient (external surface) were calculated. Furthermore, the study examined the effects of intensity and efficiency on the desulphurised coal properties; organic matter, ash, and volatile matter contents. The key changes during the conversion of pyritic sulphur and coal organic matter were subsequently examined. The results showed that the sulphur content (St^d 3.16 wt%) of the low-rank coal, was transformed to (St^d 〈 1.5 wt%) after desulfurization. Other enhanced properties were: V^daf ≤ 38.0 wt%; A^d 〈 10.0 wt%, now suitable for pulverised coal injection technology.
文摘Coal fly ash originated from coal combustion has high concentrations of metals. If suitable leaching techniques are identified, then coal fly ash could serve as a useful source of valuable minerals including rare earth elements (REEs). In this study, three microbial strains, Candida bombicola, Phanerochaete chrysosporium and Cryptococcus curvatus were tested on their performance of leaching trace elements and REEs from fly ash. Through comparing mineral loss and leaching efficiencies resulting from indirect leaching or use of the culture supernatant, C. bombicola was identified to be the best leading to the highest mineral loss and extracting efficiencies of trace elements and REEs among the three strains. The highest mineral loss observed from using the supernatant of this yeast strain was 59.7%. Among all trace elements, As and Mo had the highest leaching efficiency of 80.9% and 79.5%. respectively. The same leaching test led to 67.7% of Yb and 64.6% of Er dissolved from the ash. This study, thus, demonstrated that bioleaching is feasible for leaching metals out of fly ash. The C. bombicola strain deserves further investigation due to its robust actions on metal leaching.
文摘The purpose of this study is to contribute to the literature by studying the effects of sudden changes both on crude oil import price and domestic gasoline price on inflation for Turkey, an emerging country. Since an inflation targeting regime is being carried out by the Central Bank of Turkey, determination of such effects is becoming more important. Therefore empirical evidence in this paper will serve as guidance for those countries, which have an in- flation targeting regime. Analyses have been done in the period of October 2005-December 2012 by Markovswitching vector autoregressive (MS-VAR) models which are successful in capturing the nonlinear properties of variables. Using MS-VAR analysis, it is found that there are 2 regimes in the analysis period. Furthermore, regime changes can be dated and the turning points of economic cycles can be determined. In addition, it is found that the effect of the changes in crude oil and domestic gasoline prices on consumer prices and core inflation is not the same under different regimes. Moreover, the sudden increase in gasoline price is more important for consumer price infla- tion than crude oil price shocks. Another finding is the presence of a pass-through effect from oil price and ga- soline price to core inflation.
基金supported by the National Basic Research Program of China (2014CB239004)the ‘‘Element and Process Constraint Petroleum System Modeling’’ project (No. 2011A-0207) under the Petro China Science Innovation program
文摘Sorption isotherms of hydrocarbon and carbon dioxide (CO2) provide crucial information for designing processes to sequester CO2 and recover natural gas from unmineable coal beds. Methane (CH4), ethane (C2H6), and CO2 adsorption isotherms on dry coal and the temperature effect on their maximum sorption capacity have been studied by performing combined Monte Carlo (MC) and molecular dynamics (MD) simulations at temperatures of 308 and 370 K (35 and 97 ~C) and at pressures up to 10 MPa. Simulation results demonstrate that absolute sorption (expressed as a mass basis) divided by bulk gas density has negligible temperature effect on CH4, C2H6, and CO2 sorption on dry coal when pressure is over 6 MPa. CO2 is more closely packed due to stronger interaction with coal and the stronger interaction between CO2 mole- cules compared, respectively, with the interactions between hydrocarbons and coal and between hydrocarbons. The results of this work suggest that the "a" constant (pro- portional to TcPc) in the Peng-Robinson equation of state is an important factor affecting the sorption behavior of hydrocarbons. CO2 injection pressures of lower than 8 MPa may be desirable for CH4 recovery and CO2 sequestration. This study provides a quantitative under- standing of the effects of temperature on coal sorptioncapacity for CH4, C2H6, and CO2 from a microscopic perspective.
文摘During underground coal gasification (UCG), whereby coal is converted to syngas in situ, a cavity is formed in the coal seam. The cavity growth rate (CGR) or the moving rate of the gasification face is affected by controllable (operation pressure, gasification time, geometry of UCG panel) and uncontrollable (coal seam properties) factors. The CGR is usually predicted by mathematical models and laboratory experiments, which are time consuming, cumbersome and expensive. In this paper, a new simple model for CGR is developed using non-linear regression analysis, based on data from 1 l UCG field trials. The empirical model compares satisfactorily with Perkins model and can reliably predict CGR.