The development of more environment-friendly ways to dispose of oil sludge is currently regarded as a hot topic.In this context,gasification technologies are generally seen as a promising way to combine oil sludge wit...The development of more environment-friendly ways to dispose of oil sludge is currently regarded as a hot topic.In this context,gasification technologies are generally seen as a promising way to combine oil sludge with coal–water slurry(CWS)and generate resourceful fuel.In this study,a novel five-nozzle gasifier reactor was analyzed by means of a CFD(Computational fluid dynamic)method.Among several influential factors,special attention was paid to the height-to-diameter ratio of the gasifier and the mixing ratio of oil sludge,which are known to have a significant impact on the flow field,temperature distribution and gasifier performances.According to the numerical results,the optimal height-to-diameter ratio and oil mixing ratio are about 2.4:1 and 20%,respectively.Furthermore,the carbon conversion rate can become as high as 98.55%with the hydrolysis rate reaching a value of 53.88%.The consumption of raw coal and oxygen is generally reduced,while the effective gas production is increased to 50.93 mol/%.展开更多
Life cycle assessment is applied to assess the ultra-clean micronized coal oil water slurry (UCMCOWS) with SimaPro and the environmental impact of UCMCOWS on its whole life cycle is also analyzed. The result shows tha...Life cycle assessment is applied to assess the ultra-clean micronized coal oil water slurry (UCMCOWS) with SimaPro and the environmental impact of UCMCOWS on its whole life cycle is also analyzed. The result shows that the consumption of energy and products are increasing along with the deepening of UCMCOWS processing, UCMCOWS making and combustion are the two periods which have a bigger impact on eco-system and human health. As a new substitute of fuel, UCMCOWS merits to be utilized more efficiently and reasonably.展开更多
A novel suspension-floating-circulating fluidized combustion technology is proposed for burning coal slurry fuel in traditional circulating ftuidized bed boilers (CFBB). This technology can solve some existing probl...A novel suspension-floating-circulating fluidized combustion technology is proposed for burning coal slurry fuel in traditional circulating ftuidized bed boilers (CFBB). This technology can solve some existing problems in large- capacity CFBB burning coal slurry. The principles of the suspension-floating-circulating fluidized combustion technology were introduced in detail in this paper. A 130 t/h CFBB was retrofitted based on the technology, and the retrofitted system mainly includes a long-distance transport sub-system, a bed-material conveying sub-system with a wind-seal device invented by the authors, a superheater thermoregulation device using a novel temperature regulator, a return loop flu- idization facility, and a pneumatic ash conveying sub-system with sealed pump. The achieved performance of the retro- fitted CFBB shows that the thermal efficiency is 89.83 %, the combustion efficiency is 96.24 %, and the blending proportion of slurry is 94 %.展开更多
In this article, residual oil hydroconversion was studied in slurry phase in the presence of fine solid Ni Mo/γ-Al2O3 catalyst and the effects of operating conditions were carefully studied. The results showed that r...In this article, residual oil hydroconversion was studied in slurry phase in the presence of fine solid Ni Mo/γ-Al2O3 catalyst and the effects of operating conditions were carefully studied. The results showed that residue conversion was only affected by the reaction temperature and reaction time. The coke yield increased with a higher reaction temperature, a bigger catalyst particle size, a longer reaction time, a lower initial hydrogen pressure and a lower catalyst concentration. Heteroatoms removal rate increased with a higher reaction temperature, a longer reaction time, a higher initial hydrogen pressure, a higher catalyst concentration, and a smaller catalyst particle size. The role of catalyst in the slurry bed technology was discussed and its function could be stated as follows: the metal was applied to activate the hydrogen atoms for removing heteroatoms and saturating aromatics, while the support of the catalyst was used to prevent the mesophase coalescence for reducing coke formation.展开更多
基金Enterprise Horizontal Project(Project Contract No.2021K2450)Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(SJCX22_1437).
文摘The development of more environment-friendly ways to dispose of oil sludge is currently regarded as a hot topic.In this context,gasification technologies are generally seen as a promising way to combine oil sludge with coal–water slurry(CWS)and generate resourceful fuel.In this study,a novel five-nozzle gasifier reactor was analyzed by means of a CFD(Computational fluid dynamic)method.Among several influential factors,special attention was paid to the height-to-diameter ratio of the gasifier and the mixing ratio of oil sludge,which are known to have a significant impact on the flow field,temperature distribution and gasifier performances.According to the numerical results,the optimal height-to-diameter ratio and oil mixing ratio are about 2.4:1 and 20%,respectively.Furthermore,the carbon conversion rate can become as high as 98.55%with the hydrolysis rate reaching a value of 53.88%.The consumption of raw coal and oxygen is generally reduced,while the effective gas production is increased to 50.93 mol/%.
文摘Life cycle assessment is applied to assess the ultra-clean micronized coal oil water slurry (UCMCOWS) with SimaPro and the environmental impact of UCMCOWS on its whole life cycle is also analyzed. The result shows that the consumption of energy and products are increasing along with the deepening of UCMCOWS processing, UCMCOWS making and combustion are the two periods which have a bigger impact on eco-system and human health. As a new substitute of fuel, UCMCOWS merits to be utilized more efficiently and reasonably.
文摘A novel suspension-floating-circulating fluidized combustion technology is proposed for burning coal slurry fuel in traditional circulating ftuidized bed boilers (CFBB). This technology can solve some existing problems in large- capacity CFBB burning coal slurry. The principles of the suspension-floating-circulating fluidized combustion technology were introduced in detail in this paper. A 130 t/h CFBB was retrofitted based on the technology, and the retrofitted system mainly includes a long-distance transport sub-system, a bed-material conveying sub-system with a wind-seal device invented by the authors, a superheater thermoregulation device using a novel temperature regulator, a return loop flu- idization facility, and a pneumatic ash conveying sub-system with sealed pump. The achieved performance of the retro- fitted CFBB shows that the thermal efficiency is 89.83 %, the combustion efficiency is 96.24 %, and the blending proportion of slurry is 94 %.
文摘In this article, residual oil hydroconversion was studied in slurry phase in the presence of fine solid Ni Mo/γ-Al2O3 catalyst and the effects of operating conditions were carefully studied. The results showed that residue conversion was only affected by the reaction temperature and reaction time. The coke yield increased with a higher reaction temperature, a bigger catalyst particle size, a longer reaction time, a lower initial hydrogen pressure and a lower catalyst concentration. Heteroatoms removal rate increased with a higher reaction temperature, a longer reaction time, a higher initial hydrogen pressure, a higher catalyst concentration, and a smaller catalyst particle size. The role of catalyst in the slurry bed technology was discussed and its function could be stated as follows: the metal was applied to activate the hydrogen atoms for removing heteroatoms and saturating aromatics, while the support of the catalyst was used to prevent the mesophase coalescence for reducing coke formation.