Combustion performance of pulverized coal(PC)in blast furnace(BF)process is regarded as a criteria parameter to assess the prop-er injection dosage of PC.In this paper,effects of two kinds of additives,Fe_(2)O_(3) and...Combustion performance of pulverized coal(PC)in blast furnace(BF)process is regarded as a criteria parameter to assess the prop-er injection dosage of PC.In this paper,effects of two kinds of additives,Fe_(2)O_(3) and CaO,on PC combustion were studied using the thermo-gravimetric method.The results demonstrate that both the Fe_(2)O_(3) and CaO can promote combustion performance index of PC including igni-tion index(C_(i)),burnout index(D_(b)),as well as comprehensive combustibility index(S_(n)).The S_(n) increases from 1.37×10^(−6) to 2.16×10^(−6)%2·min^(−2)·℃^(−3) as the Fe_(2)O_(3) proportion increases from 0 to 5.0wt%.Additionally,the combustion kinetics of PC was clarified using the Coats-Redfern method.The results show that the activation energy(E)of PC combustion decreases after adding the above additives.For instance,the E decreases from 56.54 to 35.75 kJ/mol when the Fe_(2)O_(3) proportion increases from 0 to 5.0wt%,which supports the improved combustion per-formance.Moreover,it is uneconomic to utilize pure Fe_(2)O_(3) and CaO in production.Based on economy analysis,we selected the iron-bearing dust(IBD)which contains much Fe_(2)O_(3) and CaO component to investigate,and got the same effects.Therefore,the IBD is a potential option for catalytic PC combustion in BF process.展开更多
An important index to evaluate the process efficiency of coal preparation is the mineral liberation degree of pulverized coal,which is greatly influenced by the particle size and shape distribution acquired by image s...An important index to evaluate the process efficiency of coal preparation is the mineral liberation degree of pulverized coal,which is greatly influenced by the particle size and shape distribution acquired by image segmentation.However,the agglomeration effect of fine powders and the edge effect of granular images caused by scanning electron microscopy greatly affect the precision of particle image segmentation.In this study,we propose a novel image segmentation method derived from mask regional convolutional neural network based on deep learning for recognizing fine coal powders.Firstly,an atrous convolution is introduced into our network to learn the image feature of multi-sized powders,which can reduce the missing segmentation of small-sized agglomerated particles.Then,a new mask loss function combing focal loss and dice coefficient is used to overcome the false segmentation caused by the edge effect.The final comparative experimental results show that our method achieves the best results of 94.43%and 91.44%on AP50 and AP75 respectively among the comparison algorithms.In addition,in order to provide an effective method for particle size analysis of coal particles,we study the particle size distribution of coal powders based on the proposed image segmentation method and obtain a good curve relationship between cumulative mass fraction and particle size.展开更多
Aiming at the optimization of the operation condition, a general numerical method for calculating pulverized coal combustion in a full scale furnace fired tangentially at four corners is adopted. “ k ε ” turbulence...Aiming at the optimization of the operation condition, a general numerical method for calculating pulverized coal combustion in a full scale furnace fired tangentially at four corners is adopted. “ k ε ” turbulence model is used for the gas phases and a stochastic approach based on the Lagrangian technique is used for particle phases. Two competing reactions model for the coal devolatilization and PDF (the probability density function) method for the combustion of the gas phases are employed. In the numerical simulations, assuming the air distribution of second port level is of pagoda, waist drum and uniform type. The results show that pagoda type air distribution is advantageous to ignition and smooth combustion of pulverized coal, and suitable to inferior coal combustion in practice. In the present furnace, the igniting distance at 1st and 3rd corner is longer than that at 2nd and 4th corner. The results from numerical calculations are in good agreement with those of observed in practice.展开更多
Considering the fact that the temperature distribution in furnace of a tangential fired pulverized coal boiler is difficult to be measured and monitored, two-stage numerical simulation method was put forward. First, m...Considering the fact that the temperature distribution in furnace of a tangential fired pulverized coal boiler is difficult to be measured and monitored, two-stage numerical simulation method was put forward. First, multi-field coupling simulation in typical work conditions was carried out off-line with the software CFX-4.3, and then the expression of temperature profile varying with operating parameter was obtained. According to real-time operating parameters, the temperature at arbitrary point of the furnace can be calculated by using this expression. Thus the temperature profile can be shown on-line and monitoring for combustion state in the furnace is realized. The simul-(ation) model was checked by the parameters measured in an operating boiler, (DG130-9.8/540.) The maximum of relative error is less than 12% and the absolute error is less than 120℃, which shows that the proposed two-stage simulation method is reliable and able to satisfy the requirement of industrial application.展开更多
This paper presents a new approach to the on-line tracking of pulverized coal and biomass fuels through flame spectrum analysis.A flame detector containing four photodiodes is used to derive multiple signals covering ...This paper presents a new approach to the on-line tracking of pulverized coal and biomass fuels through flame spectrum analysis.A flame detector containing four photodiodes is used to derive multiple signals covering a wide spectrum of the flame from visible,near-infrared and mid-infrared spectral bands as well as a part of far-infrared band.Different features are extracted in time and frequency domains to identify the dynamic "fingerprints" of the flame.Fuzzy logic inference techniques are employed to combine typical features together and infer the type of fuel being burnt.Four types of pulverized coal and five types of biomass are burnt on a laboratory-scale combustion test rig.Results obtained demonstrate that this approach is capable of tracking the type of fuel under steady combustion conditions.展开更多
In the present paper, a multifluid model of two-phase flows with pulverized-coal combustion, based on a continuum-trajectory model with reacting particle phase, is developed and employed to simulate the 3-D turbulent ...In the present paper, a multifluid model of two-phase flows with pulverized-coal combustion, based on a continuum-trajectory model with reacting particle phase, is developed and employed to simulate the 3-D turbulent two-phase hows and combustion in a new type of pulverized-coal combustor with one primary-air jet placed along the wall of the combustor. The results show that: (1) this continuum-trajectory model with reacting particle phase can be used in practical engineering to qualitatively predict the flame stability, concentrations of gas species, possibilities of slag formation and soot deposition, etc.; (2) large recirculation zones can be created in the combustor, which is favorable to the ignition and flame stabilization.展开更多
A local thermal stress model of water-cooled-wall pulverized-coal gasifier was built, and ANSYS was used to simulate the stress field in the gasifier operation to research the damage of refractories and slag layer cau...A local thermal stress model of water-cooled-wall pulverized-coal gasifier was built, and ANSYS was used to simulate the stress field in the gasifier operation to research the damage of refractories and slag layer caused by the thermal stress. The results reveal that:(1) the maximum stress of water-cooled-wall gasifier appears at the interface between anchor nails and refractories as well as the interface between refractories and the slag layer, and the maximum stress of slag layer appears on the surface of the slag layer;(2) the increase of slag layer thickness can significantly reduce the thermal stress at the interface between anchor nails and refractories, but increase the thermal stress between slag layer and refractories;(3) when the therma I conductivity is 2-6 W · m-1 · K-1, the thermal stress increases rapidly with the increase of the thermal conductivity, but when the thermal conductivity is 6-10 W · m-1 · K-1, the thermal stress is basically stable;(4) the higher the cooling rate, the faster the decreasing speed of the temperature and thermal stress.展开更多
The aim of this study is to investigate the influence of the angle of the pulverized coal (PC) injection lance on the combustion characteristics of fuel in the raceway of blast furnace tuyeres. Using FLUENT software, ...The aim of this study is to investigate the influence of the angle of the pulverized coal (PC) injection lance on the combustion characteristics of fuel in the raceway of blast furnace tuyeres. Using FLUENT software, a Euler-Lagrange three-dimensional numerical model was constructed to analyze the influence of different positions of blast furnace tuyere coal powder injection lance (coaxial and cross-axis) on key parameters such as temperature distribution, gas flow, and combustion efficiency. The results demonstrate that adjusting the angle of the injection lance significantly modifies the average and peak temperatures in the raceway, while the composition of gas components remains relatively stable. When the injection lance angle is 10°, the average temperature and peak temperature in the raceway are 2294 K and 2747 K, respectively. When the injection lance angle is 12°, the combustion efficiency of the PC reaches 80.8%. This study reveals the significant impact of the injection lance angle on the combustion process. Especially at an angle of 12°, the combustion efficiency of the blast furnace significantly improves. With coaxial injection, the combustion rate increases as the distance between the injection lance tip and the tuyere increases. This paper is instructive for the optimization of the blast furnace combustion system, which improve fuel utilization efficiency and reduce environmental emissions. This paper provides practical recommendations for adjusting blast furnace operational parameters, offering insights for achieving more efficient and environmentally friendly industrial production.展开更多
The NO formation experiments simulating moderate and intense low-oxygen dilution(MILD)oxy-coal combustion conditions were conducted on a laminar diffusion flame burner with the coflow temperatures of 1473-1873 K and t...The NO formation experiments simulating moderate and intense low-oxygen dilution(MILD)oxy-coal combustion conditions were conducted on a laminar diffusion flame burner with the coflow temperatures of 1473-1873 K and the oxygen volume fractions of 5%-20%in O_(2)/CO_(2),O_(2)/Ar and O_(2)/N_(2)atmospheres.The flame images of pulverized coal combustion were captured to obtain the ignition delay distances,and the axial species concentrations were measured to obtain the variation of NO formation and reduction.The NO yield in O_(2)/Ar atmosphere decreased by nearly 0.2 when the oxygen volume fraction decreased from 20%to 5%and by about 0.05 when the coflow temperature decreased from 1873 K to 1473 K.The NO yield in O_(2)/CO_(2)atmosphere was 0.1-0.15 lower than that in O_(2)/Ar atmosphere.The optimal kinetic parameters of thermal NO and fuel NO formation rate were obtained by a nonlinear fit of nth-order Arrhenius expression.Finally,the relative contribution rates of thermal NO to total NO(Rth)and NO reduction to fuel NO(Rre)were quantitatively separated.Rth decreases with the increase of oxygen volume fraction,below 6%at 1800 K,25%at 2000 K.Rre is almost unaffected by the coflow temperature and affected by the oxygen volume fraction,reaching 30%at 5%O_(2).展开更多
An updated approach to refining the core indicators of pulverized coal used for blast furnace injection based on principal component analysis is proposed in view of the disadvantages of the existing performance indica...An updated approach to refining the core indicators of pulverized coal used for blast furnace injection based on principal component analysis is proposed in view of the disadvantages of the existing performance indicator system of pulverized coal used in blast furnaces. This presented method takes into account all the performance indicators of pulverized coal injection, including calorific value, igniting point, combustibility, reactivity, flowability, grindability, etc. Four core indicators of pulverized coal injection are selected and studied by using principal component analysis, namely, comprehensive combustibility, comprehensive reactivity, comprehensive flowability, and comprehensive grindability. The newly established core index system is not only beneficial to narrowing down current evaluation indices but also effective to avoid previous overlapping problems among indicators by mutually independent index design. Furthermore, a comprehensive property indicator is introduced on the basis of the four core indicators, and the injection properties of pulverized coal can be overall evaluated.展开更多
The combustion characteristics of two kinds of unburned pulverized coal (UPC) made from bituminous coal and anthracite were investigated by thermogravimetric analysis under air. The reaction kinetics mechanisms betwee...The combustion characteristics of two kinds of unburned pulverized coal (UPC) made from bituminous coal and anthracite were investigated by thermogravimetric analysis under air. The reaction kinetics mechanisms between UPC and CO2 in an isothermal experiment in the temperature range 1000–1100°C were investigated. The combustion performance of unburned pulverized coal made from bituminous coal (BUPC) was better than that of unburned pulverized coal made from anthracite (AUPC). The combustion characteristic indexes (S) of BUPC and AUPC are 0.47 × 10^-6 and 0.34 × 10^-6 %2·min^-2·°C^-3, respectively, and the combustion reaction apparent activation energies are 91.94 and 102.63 kJ·mol^-1, respectively. The reaction mechanism of BUPC with CO2 is random nucleation and growth, and the apparent activation energy is 96.24 kJ·mol^-1. By contrast, the reaction mechanism of AUPC with CO2 follows the shrinkage spherical function model and the apparent activation energy is 133.55 kJ·mol^-1.展开更多
The relationship between two-dimensional radiant image and three-dimensional radiant energy in blast furnace raceway was studied by numerical simulation of combustion process. Taking radiant image as radiant boundary ...The relationship between two-dimensional radiant image and three-dimensional radiant energy in blast furnace raceway was studied by numerical simulation of combustion process. Taking radiant image as radiant boundary for numerical simulation of combustion process, the uneven radiation parameter can be calculated. A method to examine three-dimensional temperature distribution in blast furnace raceway was put forward by radiant image processing. The numeral temperature field matching the real combustion can be obtained by proposed numeric image processing technique.展开更多
The combustion process of pulverized coal injected into blast furnace involves a lot of physical and chemical reactions. Based on the combustion behaviors of pulverized coal, the conception of coal effective calorific...The combustion process of pulverized coal injected into blast furnace involves a lot of physical and chemical reactions. Based on the combustion behaviors of pulverized coal, the conception of coal effective calorific value representing the actual thermal energy provided for blast furnace was proposed. A cost performance evaluation model of coal injection was built up for the optimal selection of various kinds of coal based on effective calorific value. The model contains two indicators: coal effective calorific value which has eight sub-indicators and coal injection cost which includes four sub-indicators. In addition, the calculation principle and application of cost performance evaluation model in a Chinese large-scale iron and steel company were comprehensively introduced. The evaluation results finally confirm that this novel model is of great significance to the optimal selection of blast furnace pulverized coal.展开更多
In order to establish correlativity between pulverized coal combustion in a blast furnace raceway and its radiant image, we investigated the relationships between two dimensional radiant images and three dimensional r...In order to establish correlativity between pulverized coal combustion in a blast furnace raceway and its radiant image, we investigated the relationships between two dimensional radiant images and three dimensional radiant energy in a blast furnace raceway, focusing on the correlativity of the numerical simulation of combustion processes with the connection of radiant images information and space temperature distribution. We calculated the uneven radiate characteristic parameterby taking radiant images as a kind of radiative boundary for numerical simulation of combustion processes, and put fonward a method to examine three-dimensional temperatures distribution in blast furnace raceway by radiant image processing. The numeral temperature fields matching the real combustion can be got by the numeric image processing technique.展开更多
Thick and ultra-thick coal seams are main coal seams for high production rate and high efficiency in Chinese coal mines, which accounts for 44 % of the total minable coal reserve. A fully mechanized top-coal caving mi...Thick and ultra-thick coal seams are main coal seams for high production rate and high efficiency in Chinese coal mines, which accounts for 44 % of the total minable coal reserve. A fully mechanized top-coal caving mining method is a main underground coal extraction method for ultra-thick coal seams. The coal extraction technologies for coal seams less than 14 m thick were extensively used in China. However, for coal seams with thickness greater than 14 m, there have been no reported cases in the world for underground mechanical extraction with safe performance, high efficiency and high coal recovery ratio. To deal with this case, China Coal Technology & Engineering Group, Datong Coal Mine Group, and other 15 organizations in China launched a fundamental and big project to develop coal mining technologies and equipment for coal seams with thicknesses greater than 14 m. After the completion of the project, a coal extraction method was developed for top-coal caving with a large mining height, as well as a ground control theory for ultra-thick coal seams. In addition, the mining technology for top-coal caving with a large mining height, the ground support technology for roadway in coal seams with a large cross-section, and the prevention and control technology for gas and fire hazards were developed and applied. Furthermore, a hydraulic support with a mining height of 5.2 m, a shearer with high reliability, and auxiliary equipment were developed and manufactured. Practical implication on the technologies and equipment developed was successfully completed at the No. 8105 coal face in the Tashan coal mine, Datong, China. The major achievements of the project are summarized as follows: 1. A top-coal caving method for ultra-thick coal seams is proposed with a cutting height of 5 m and a top-coal caving height of 15 m. A structural mechanical model of overlying strata called cantilever beam-articulated rock beam is established. Based on the model, the load resistance of the hydraulic support with a large mining height for top-coal caving method is determined. With the analysis, the movement characteristics of the top coal and above strata are evaluated during top-coal caving operation at the coal face with a large mining height. Furthermore, there is successful development of comprehensive technologies for preventing and controlling spalling of the coal wall, and the top-coal caving technology with high efficiency and high recovery at the top-coal caving face with a large mining height. This means that the technologies developed have overcome the difficulties in strata control, top-coal caving with high efficiency and high coal recovery, and enabled to achieve a production rate of more than 10 Mtpa at a single top-coal caving face with a large mining height in ultra-thick coal seams; 2. A hydraulic support with 5.2 m supporting height and anti-rockburst capacity, a shearer with high reliability, a scraper conveyor with a large power at the back of face, and a large load and long distance headgate belt conveyor have been successfully developed for a top-coal caving face with large mining height. The study has developed the key technologies for improving the reliability of equipment at the coal face and has overcome the challenges in equipping the top-coal caving face with a large mining height in ultra-thick coal seams; 3. The deformation characteristics of a large cross-section roadway in ultra-thick coal seams are discovered. Based on the findings above, a series of bolt materials with a high yielding strength of 500-830 MPa and a high extension ratio, and cable bolt material with a 1 × 19 structure, large tonnage and high extension ratio are developed. In addition, in order to achieve a safe roadway and a fast face advance, installation equipment for high pre-tension bolt is developed to solve the problems with the support of roadway in coal seams for top-coal caving operation with a large mining height; 4. The characteristics of gas distribution and uneven emission at top-coal caving face with large mining height in ultra-thick coal seams are evaluated. With the application of the technologies of gas drainage in the roof, the difficulties in gas control for high intensive top-coal caving mining operations, known as "low gas content, high gas emission", are solved. In addition, large flow-rate underground mobile equipment for making nitrogen are developed to solve the problems with fire prevention and safe mining at a top-coal caving face with large mining height and production rate of more than 10 Mtpa. A case study to apply the developed technologies has been conducted at the No. 8105 face, the Tashan coal mine in Datong, China. The case study demonstrates that the three units of equipment, i.e., the support, shearer and scraper conveyor, are rationally equipped. Average equipment usage at the coal face is 92.1%. The coal recovery ratio at the coal face is up to 88.9 %. In 2011, the coal production at the No. 8105 face reached 10.849 Mtpa, exceeding the target of 10 Mtpa for a topcoal caving operation with large mining height performed by Chinese-made mining equipment. The technologies and equipment developed provide a way for extracting ultra-thick coal seams. Currently, the technologies and equipment are used in 13 mining areas in China including Datong, Pingshuo, Shendong and Xinjiang. With the exploitation of coal resources in Western China, there is great potential for the application of the technologies and equipment developed.展开更多
The imbibition ability of extinguishant is an important factor influencing the extinguishing effect for smoldering fire in pulverized coals. The coal particle size, bulk compactness, and aqueous solution properties si...The imbibition ability of extinguishant is an important factor influencing the extinguishing effect for smoldering fire in pulverized coals. The coal particle size, bulk compactness, and aqueous solution properties significantly affect the imbibition ability of extinguishment. This work aims to reveal the influence of the properties of pulverized coals and aqueous solution on the imbibition ability of extinguishant for smoldering fire through experiments and capillary theories. The imbibition height and rate were adopted to evaluate the imbibition ability of extinguishment. The results showed that a relatively small bulk compactness and a fine coal particle size negatively influenced the extinguishing process dominantly because of its high surface energy and low wettability. An additive was used to adjust the properties of aqueous solution. The liquid with a larger surface tension, a smaller contact angle, and a lower viscosity induced a better imbibition ability of extinguishment.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52074086,51974073,52074072,52074074)the Fundamental Research Funds for the Central Universities,China(No.N2225039)the Liaoning Provincial Natural Science Foundation of China(No.2019-MS-132)。
文摘Combustion performance of pulverized coal(PC)in blast furnace(BF)process is regarded as a criteria parameter to assess the prop-er injection dosage of PC.In this paper,effects of two kinds of additives,Fe_(2)O_(3) and CaO,on PC combustion were studied using the thermo-gravimetric method.The results demonstrate that both the Fe_(2)O_(3) and CaO can promote combustion performance index of PC including igni-tion index(C_(i)),burnout index(D_(b)),as well as comprehensive combustibility index(S_(n)).The S_(n) increases from 1.37×10^(−6) to 2.16×10^(−6)%2·min^(−2)·℃^(−3) as the Fe_(2)O_(3) proportion increases from 0 to 5.0wt%.Additionally,the combustion kinetics of PC was clarified using the Coats-Redfern method.The results show that the activation energy(E)of PC combustion decreases after adding the above additives.For instance,the E decreases from 56.54 to 35.75 kJ/mol when the Fe_(2)O_(3) proportion increases from 0 to 5.0wt%,which supports the improved combustion per-formance.Moreover,it is uneconomic to utilize pure Fe_(2)O_(3) and CaO in production.Based on economy analysis,we selected the iron-bearing dust(IBD)which contains much Fe_(2)O_(3) and CaO component to investigate,and got the same effects.Therefore,the IBD is a potential option for catalytic PC combustion in BF process.
基金Supported by the Research and Development Project of Experimental Technology,China University of Mining and Technology(Study on mineral occurrence in coal based on SEM and EDS,S2023Y018)the National Natural Science Foundations of China under Grant 62371451.
文摘An important index to evaluate the process efficiency of coal preparation is the mineral liberation degree of pulverized coal,which is greatly influenced by the particle size and shape distribution acquired by image segmentation.However,the agglomeration effect of fine powders and the edge effect of granular images caused by scanning electron microscopy greatly affect the precision of particle image segmentation.In this study,we propose a novel image segmentation method derived from mask regional convolutional neural network based on deep learning for recognizing fine coal powders.Firstly,an atrous convolution is introduced into our network to learn the image feature of multi-sized powders,which can reduce the missing segmentation of small-sized agglomerated particles.Then,a new mask loss function combing focal loss and dice coefficient is used to overcome the false segmentation caused by the edge effect.The final comparative experimental results show that our method achieves the best results of 94.43%and 91.44%on AP50 and AP75 respectively among the comparison algorithms.In addition,in order to provide an effective method for particle size analysis of coal particles,we study the particle size distribution of coal powders based on the proposed image segmentation method and obtain a good curve relationship between cumulative mass fraction and particle size.
文摘Aiming at the optimization of the operation condition, a general numerical method for calculating pulverized coal combustion in a full scale furnace fired tangentially at four corners is adopted. “ k ε ” turbulence model is used for the gas phases and a stochastic approach based on the Lagrangian technique is used for particle phases. Two competing reactions model for the coal devolatilization and PDF (the probability density function) method for the combustion of the gas phases are employed. In the numerical simulations, assuming the air distribution of second port level is of pagoda, waist drum and uniform type. The results show that pagoda type air distribution is advantageous to ignition and smooth combustion of pulverized coal, and suitable to inferior coal combustion in practice. In the present furnace, the igniting distance at 1st and 3rd corner is longer than that at 2nd and 4th corner. The results from numerical calculations are in good agreement with those of observed in practice.
文摘Considering the fact that the temperature distribution in furnace of a tangential fired pulverized coal boiler is difficult to be measured and monitored, two-stage numerical simulation method was put forward. First, multi-field coupling simulation in typical work conditions was carried out off-line with the software CFX-4.3, and then the expression of temperature profile varying with operating parameter was obtained. According to real-time operating parameters, the temperature at arbitrary point of the furnace can be calculated by using this expression. Thus the temperature profile can be shown on-line and monitoring for combustion state in the furnace is realized. The simul-(ation) model was checked by the parameters measured in an operating boiler, (DG130-9.8/540.) The maximum of relative error is less than 12% and the absolute error is less than 120℃, which shows that the proposed two-stage simulation method is reliable and able to satisfy the requirement of industrial application.
基金Supported by the Key Program of the National Natural Science Foundation of China(60534030)
文摘This paper presents a new approach to the on-line tracking of pulverized coal and biomass fuels through flame spectrum analysis.A flame detector containing four photodiodes is used to derive multiple signals covering a wide spectrum of the flame from visible,near-infrared and mid-infrared spectral bands as well as a part of far-infrared band.Different features are extracted in time and frequency domains to identify the dynamic "fingerprints" of the flame.Fuzzy logic inference techniques are employed to combine typical features together and infer the type of fuel being burnt.Four types of pulverized coal and five types of biomass are burnt on a laboratory-scale combustion test rig.Results obtained demonstrate that this approach is capable of tracking the type of fuel under steady combustion conditions.
基金Sponsored by the National Key Projects of Fundamental Research of China.
文摘In the present paper, a multifluid model of two-phase flows with pulverized-coal combustion, based on a continuum-trajectory model with reacting particle phase, is developed and employed to simulate the 3-D turbulent two-phase hows and combustion in a new type of pulverized-coal combustor with one primary-air jet placed along the wall of the combustor. The results show that: (1) this continuum-trajectory model with reacting particle phase can be used in practical engineering to qualitatively predict the flame stability, concentrations of gas species, possibilities of slag formation and soot deposition, etc.; (2) large recirculation zones can be created in the combustor, which is favorable to the ignition and flame stabilization.
文摘A local thermal stress model of water-cooled-wall pulverized-coal gasifier was built, and ANSYS was used to simulate the stress field in the gasifier operation to research the damage of refractories and slag layer caused by the thermal stress. The results reveal that:(1) the maximum stress of water-cooled-wall gasifier appears at the interface between anchor nails and refractories as well as the interface between refractories and the slag layer, and the maximum stress of slag layer appears on the surface of the slag layer;(2) the increase of slag layer thickness can significantly reduce the thermal stress at the interface between anchor nails and refractories, but increase the thermal stress between slag layer and refractories;(3) when the therma I conductivity is 2-6 W · m-1 · K-1, the thermal stress increases rapidly with the increase of the thermal conductivity, but when the thermal conductivity is 6-10 W · m-1 · K-1, the thermal stress is basically stable;(4) the higher the cooling rate, the faster the decreasing speed of the temperature and thermal stress.
基金support of this research on the mechanism of enhancing the performance of composite pellets_made from limonite(Project No.KKS0202152010,202101AT070083)National Natural Science Foundation of China(No.52104351)+1 种基金the Yunnan Fundamental Research Projects(No.202301AT070795,202101AU070088)the author Lei Gao would like to acknowledge Yunnan Province Xingdian Talent Support Plan Project.
文摘The aim of this study is to investigate the influence of the angle of the pulverized coal (PC) injection lance on the combustion characteristics of fuel in the raceway of blast furnace tuyeres. Using FLUENT software, a Euler-Lagrange three-dimensional numerical model was constructed to analyze the influence of different positions of blast furnace tuyere coal powder injection lance (coaxial and cross-axis) on key parameters such as temperature distribution, gas flow, and combustion efficiency. The results demonstrate that adjusting the angle of the injection lance significantly modifies the average and peak temperatures in the raceway, while the composition of gas components remains relatively stable. When the injection lance angle is 10°, the average temperature and peak temperature in the raceway are 2294 K and 2747 K, respectively. When the injection lance angle is 12°, the combustion efficiency of the PC reaches 80.8%. This study reveals the significant impact of the injection lance angle on the combustion process. Especially at an angle of 12°, the combustion efficiency of the blast furnace significantly improves. With coaxial injection, the combustion rate increases as the distance between the injection lance tip and the tuyere increases. This paper is instructive for the optimization of the blast furnace combustion system, which improve fuel utilization efficiency and reduce environmental emissions. This paper provides practical recommendations for adjusting blast furnace operational parameters, offering insights for achieving more efficient and environmentally friendly industrial production.
基金supported by the National Natural Science Foundation of China(grant number:51976120).
文摘The NO formation experiments simulating moderate and intense low-oxygen dilution(MILD)oxy-coal combustion conditions were conducted on a laminar diffusion flame burner with the coflow temperatures of 1473-1873 K and the oxygen volume fractions of 5%-20%in O_(2)/CO_(2),O_(2)/Ar and O_(2)/N_(2)atmospheres.The flame images of pulverized coal combustion were captured to obtain the ignition delay distances,and the axial species concentrations were measured to obtain the variation of NO formation and reduction.The NO yield in O_(2)/Ar atmosphere decreased by nearly 0.2 when the oxygen volume fraction decreased from 20%to 5%and by about 0.05 when the coflow temperature decreased from 1873 K to 1473 K.The NO yield in O_(2)/CO_(2)atmosphere was 0.1-0.15 lower than that in O_(2)/Ar atmosphere.The optimal kinetic parameters of thermal NO and fuel NO formation rate were obtained by a nonlinear fit of nth-order Arrhenius expression.Finally,the relative contribution rates of thermal NO to total NO(Rth)and NO reduction to fuel NO(Rre)were quantitatively separated.Rth decreases with the increase of oxygen volume fraction,below 6%at 1800 K,25%at 2000 K.Rre is almost unaffected by the coflow temperature and affected by the oxygen volume fraction,reaching 30%at 5%O_(2).
基金financially supported by the Young Talent Cultivation Fund in Universities (No. FRF-TP-12-020A)the National Natural Science Foundation of China (Nos. 51204013 and 51174023)
文摘An updated approach to refining the core indicators of pulverized coal used for blast furnace injection based on principal component analysis is proposed in view of the disadvantages of the existing performance indicator system of pulverized coal used in blast furnaces. This presented method takes into account all the performance indicators of pulverized coal injection, including calorific value, igniting point, combustibility, reactivity, flowability, grindability, etc. Four core indicators of pulverized coal injection are selected and studied by using principal component analysis, namely, comprehensive combustibility, comprehensive reactivity, comprehensive flowability, and comprehensive grindability. The newly established core index system is not only beneficial to narrowing down current evaluation indices but also effective to avoid previous overlapping problems among indicators by mutually independent index design. Furthermore, a comprehensive property indicator is introduced on the basis of the four core indicators, and the injection properties of pulverized coal can be overall evaluated.
基金financially supported by the National Natural Science Foundation of China (Nos. 51874080, 51604069, and 51774071)the Fundamental Research Funds for the Central Universities, China (No. N162504004)
文摘The combustion characteristics of two kinds of unburned pulverized coal (UPC) made from bituminous coal and anthracite were investigated by thermogravimetric analysis under air. The reaction kinetics mechanisms between UPC and CO2 in an isothermal experiment in the temperature range 1000–1100°C were investigated. The combustion performance of unburned pulverized coal made from bituminous coal (BUPC) was better than that of unburned pulverized coal made from anthracite (AUPC). The combustion characteristic indexes (S) of BUPC and AUPC are 0.47 × 10^-6 and 0.34 × 10^-6 %2·min^-2·°C^-3, respectively, and the combustion reaction apparent activation energies are 91.94 and 102.63 kJ·mol^-1, respectively. The reaction mechanism of BUPC with CO2 is random nucleation and growth, and the apparent activation energy is 96.24 kJ·mol^-1. By contrast, the reaction mechanism of AUPC with CO2 follows the shrinkage spherical function model and the apparent activation energy is 133.55 kJ·mol^-1.
文摘The relationship between two-dimensional radiant image and three-dimensional radiant energy in blast furnace raceway was studied by numerical simulation of combustion process. Taking radiant image as radiant boundary for numerical simulation of combustion process, the uneven radiation parameter can be calculated. A method to examine three-dimensional temperature distribution in blast furnace raceway was put forward by radiant image processing. The numeral temperature field matching the real combustion can be obtained by proposed numeric image processing technique.
基金Project(51134008)supported by the National Natural Science Foundation of ChinaProject(2012CB720401)supported by the National Basic Research Program of China
文摘The combustion process of pulverized coal injected into blast furnace involves a lot of physical and chemical reactions. Based on the combustion behaviors of pulverized coal, the conception of coal effective calorific value representing the actual thermal energy provided for blast furnace was proposed. A cost performance evaluation model of coal injection was built up for the optimal selection of various kinds of coal based on effective calorific value. The model contains two indicators: coal effective calorific value which has eight sub-indicators and coal injection cost which includes four sub-indicators. In addition, the calculation principle and application of cost performance evaluation model in a Chinese large-scale iron and steel company were comprehensively introduced. The evaluation results finally confirm that this novel model is of great significance to the optimal selection of blast furnace pulverized coal.
基金Funded by the National Natural Science Foundation of China and Iron & Steel Unite Research Funds (50374085).
文摘In order to establish correlativity between pulverized coal combustion in a blast furnace raceway and its radiant image, we investigated the relationships between two dimensional radiant images and three dimensional radiant energy in a blast furnace raceway, focusing on the correlativity of the numerical simulation of combustion processes with the connection of radiant images information and space temperature distribution. We calculated the uneven radiate characteristic parameterby taking radiant images as a kind of radiative boundary for numerical simulation of combustion processes, and put fonward a method to examine three-dimensional temperatures distribution in blast furnace raceway by radiant image processing. The numeral temperature fields matching the real combustion can be got by the numeric image processing technique.
文摘Thick and ultra-thick coal seams are main coal seams for high production rate and high efficiency in Chinese coal mines, which accounts for 44 % of the total minable coal reserve. A fully mechanized top-coal caving mining method is a main underground coal extraction method for ultra-thick coal seams. The coal extraction technologies for coal seams less than 14 m thick were extensively used in China. However, for coal seams with thickness greater than 14 m, there have been no reported cases in the world for underground mechanical extraction with safe performance, high efficiency and high coal recovery ratio. To deal with this case, China Coal Technology & Engineering Group, Datong Coal Mine Group, and other 15 organizations in China launched a fundamental and big project to develop coal mining technologies and equipment for coal seams with thicknesses greater than 14 m. After the completion of the project, a coal extraction method was developed for top-coal caving with a large mining height, as well as a ground control theory for ultra-thick coal seams. In addition, the mining technology for top-coal caving with a large mining height, the ground support technology for roadway in coal seams with a large cross-section, and the prevention and control technology for gas and fire hazards were developed and applied. Furthermore, a hydraulic support with a mining height of 5.2 m, a shearer with high reliability, and auxiliary equipment were developed and manufactured. Practical implication on the technologies and equipment developed was successfully completed at the No. 8105 coal face in the Tashan coal mine, Datong, China. The major achievements of the project are summarized as follows: 1. A top-coal caving method for ultra-thick coal seams is proposed with a cutting height of 5 m and a top-coal caving height of 15 m. A structural mechanical model of overlying strata called cantilever beam-articulated rock beam is established. Based on the model, the load resistance of the hydraulic support with a large mining height for top-coal caving method is determined. With the analysis, the movement characteristics of the top coal and above strata are evaluated during top-coal caving operation at the coal face with a large mining height. Furthermore, there is successful development of comprehensive technologies for preventing and controlling spalling of the coal wall, and the top-coal caving technology with high efficiency and high recovery at the top-coal caving face with a large mining height. This means that the technologies developed have overcome the difficulties in strata control, top-coal caving with high efficiency and high coal recovery, and enabled to achieve a production rate of more than 10 Mtpa at a single top-coal caving face with a large mining height in ultra-thick coal seams; 2. A hydraulic support with 5.2 m supporting height and anti-rockburst capacity, a shearer with high reliability, a scraper conveyor with a large power at the back of face, and a large load and long distance headgate belt conveyor have been successfully developed for a top-coal caving face with large mining height. The study has developed the key technologies for improving the reliability of equipment at the coal face and has overcome the challenges in equipping the top-coal caving face with a large mining height in ultra-thick coal seams; 3. The deformation characteristics of a large cross-section roadway in ultra-thick coal seams are discovered. Based on the findings above, a series of bolt materials with a high yielding strength of 500-830 MPa and a high extension ratio, and cable bolt material with a 1 × 19 structure, large tonnage and high extension ratio are developed. In addition, in order to achieve a safe roadway and a fast face advance, installation equipment for high pre-tension bolt is developed to solve the problems with the support of roadway in coal seams for top-coal caving operation with a large mining height; 4. The characteristics of gas distribution and uneven emission at top-coal caving face with large mining height in ultra-thick coal seams are evaluated. With the application of the technologies of gas drainage in the roof, the difficulties in gas control for high intensive top-coal caving mining operations, known as "low gas content, high gas emission", are solved. In addition, large flow-rate underground mobile equipment for making nitrogen are developed to solve the problems with fire prevention and safe mining at a top-coal caving face with large mining height and production rate of more than 10 Mtpa. A case study to apply the developed technologies has been conducted at the No. 8105 face, the Tashan coal mine in Datong, China. The case study demonstrates that the three units of equipment, i.e., the support, shearer and scraper conveyor, are rationally equipped. Average equipment usage at the coal face is 92.1%. The coal recovery ratio at the coal face is up to 88.9 %. In 2011, the coal production at the No. 8105 face reached 10.849 Mtpa, exceeding the target of 10 Mtpa for a topcoal caving operation with large mining height performed by Chinese-made mining equipment. The technologies and equipment developed provide a way for extracting ultra-thick coal seams. Currently, the technologies and equipment are used in 13 mining areas in China including Datong, Pingshuo, Shendong and Xinjiang. With the exploitation of coal resources in Western China, there is great potential for the application of the technologies and equipment developed.
基金supported by the Key Technical Research Plan of Ministry of Public Security (No. 2017JSYJA13)Independent Innovation Fund of Tianjin University (No. 1706)
文摘The imbibition ability of extinguishant is an important factor influencing the extinguishing effect for smoldering fire in pulverized coals. The coal particle size, bulk compactness, and aqueous solution properties significantly affect the imbibition ability of extinguishment. This work aims to reveal the influence of the properties of pulverized coals and aqueous solution on the imbibition ability of extinguishant for smoldering fire through experiments and capillary theories. The imbibition height and rate were adopted to evaluate the imbibition ability of extinguishment. The results showed that a relatively small bulk compactness and a fine coal particle size negatively influenced the extinguishing process dominantly because of its high surface energy and low wettability. An additive was used to adjust the properties of aqueous solution. The liquid with a larger surface tension, a smaller contact angle, and a lower viscosity induced a better imbibition ability of extinguishment.