期刊文献+
共找到4,482篇文章
< 1 2 225 >
每页显示 20 50 100
Combustion performance of pulverized coal and corresponding kinetics study after adding the additives of Fe_(2)O_(3) and CaO 被引量:3
1
作者 Qiangjian Gao Guopeng Zhang +2 位作者 Haiyan Zheng Xin Jiang Fengman Shen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第2期314-323,共10页
Combustion performance of pulverized coal(PC)in blast furnace(BF)process is regarded as a criteria parameter to assess the prop-er injection dosage of PC.In this paper,effects of two kinds of additives,Fe_(2)O_(3) and... Combustion performance of pulverized coal(PC)in blast furnace(BF)process is regarded as a criteria parameter to assess the prop-er injection dosage of PC.In this paper,effects of two kinds of additives,Fe_(2)O_(3) and CaO,on PC combustion were studied using the thermo-gravimetric method.The results demonstrate that both the Fe_(2)O_(3) and CaO can promote combustion performance index of PC including igni-tion index(C_(i)),burnout index(D_(b)),as well as comprehensive combustibility index(S_(n)).The S_(n) increases from 1.37×10^(−6) to 2.16×10^(−6)%2·min^(−2)·℃^(−3) as the Fe_(2)O_(3) proportion increases from 0 to 5.0wt%.Additionally,the combustion kinetics of PC was clarified using the Coats-Redfern method.The results show that the activation energy(E)of PC combustion decreases after adding the above additives.For instance,the E decreases from 56.54 to 35.75 kJ/mol when the Fe_(2)O_(3) proportion increases from 0 to 5.0wt%,which supports the improved combustion per-formance.Moreover,it is uneconomic to utilize pure Fe_(2)O_(3) and CaO in production.Based on economy analysis,we selected the iron-bearing dust(IBD)which contains much Fe_(2)O_(3) and CaO component to investigate,and got the same effects.Therefore,the IBD is a potential option for catalytic PC combustion in BF process. 展开更多
关键词 pulverized coal combustion performance blast furnace KINETICS ADDITIVES
下载PDF
An image segmentation method of pulverized coal for particle size analysis
2
作者 Xin Li Shiyin Li +3 位作者 Liang Dong Shuxian Su Xiaojuan Hu Zhaolin Lu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第9期1181-1192,共12页
An important index to evaluate the process efficiency of coal preparation is the mineral liberation degree of pulverized coal,which is greatly influenced by the particle size and shape distribution acquired by image s... An important index to evaluate the process efficiency of coal preparation is the mineral liberation degree of pulverized coal,which is greatly influenced by the particle size and shape distribution acquired by image segmentation.However,the agglomeration effect of fine powders and the edge effect of granular images caused by scanning electron microscopy greatly affect the precision of particle image segmentation.In this study,we propose a novel image segmentation method derived from mask regional convolutional neural network based on deep learning for recognizing fine coal powders.Firstly,an atrous convolution is introduced into our network to learn the image feature of multi-sized powders,which can reduce the missing segmentation of small-sized agglomerated particles.Then,a new mask loss function combing focal loss and dice coefficient is used to overcome the false segmentation caused by the edge effect.The final comparative experimental results show that our method achieves the best results of 94.43%and 91.44%on AP50 and AP75 respectively among the comparison algorithms.In addition,in order to provide an effective method for particle size analysis of coal particles,we study the particle size distribution of coal powders based on the proposed image segmentation method and obtain a good curve relationship between cumulative mass fraction and particle size. 展开更多
关键词 pulverized coal Image segmentation Deep learning Particle size analysis
下载PDF
Computational Study on Furnace Process in a Multi-burner Boiler of Pulverized Coal Fired Tangentially at Four Corners 被引量:1
3
作者 Zhou, P Mei, C Cong, GC 《Journal of Central South University》 SCIE EI CAS 2000年第3期152-155,共4页
Aiming at the optimization of the operation condition, a general numerical method for calculating pulverized coal combustion in a full scale furnace fired tangentially at four corners is adopted. “ k ε ” turbulence... Aiming at the optimization of the operation condition, a general numerical method for calculating pulverized coal combustion in a full scale furnace fired tangentially at four corners is adopted. “ k ε ” turbulence model is used for the gas phases and a stochastic approach based on the Lagrangian technique is used for particle phases. Two competing reactions model for the coal devolatilization and PDF (the probability density function) method for the combustion of the gas phases are employed. In the numerical simulations, assuming the air distribution of second port level is of pagoda, waist drum and uniform type. The results show that pagoda type air distribution is advantageous to ignition and smooth combustion of pulverized coal, and suitable to inferior coal combustion in practice. In the present furnace, the igniting distance at 1st and 3rd corner is longer than that at 2nd and 4th corner. The results from numerical calculations are in good agreement with those of observed in practice. 展开更多
关键词 power STATION BOILER COMBUSTION of pulverized coal numerical simulation
下载PDF
Two-stage numerical simulation for temperature profile in furnace of tangentially fired pulverized coal boiler 被引量:1
4
作者 周乃君 徐琼辉 周萍 《Journal of Central South University of Technology》 2005年第1期97-101,共5页
Considering the fact that the temperature distribution in furnace of a tangential fired pulverized coal boiler is difficult to be measured and monitored, two-stage numerical simulation method was put forward. First, m... Considering the fact that the temperature distribution in furnace of a tangential fired pulverized coal boiler is difficult to be measured and monitored, two-stage numerical simulation method was put forward. First, multi-field coupling simulation in typical work conditions was carried out off-line with the software CFX-4.3, and then the expression of temperature profile varying with operating parameter was obtained. According to real-time operating parameters, the temperature at arbitrary point of the furnace can be calculated by using this expression. Thus the temperature profile can be shown on-line and monitoring for combustion state in the furnace is realized. The simul-(ation) model was checked by the parameters measured in an operating boiler, (DG130-9.8/540.) The maximum of relative error is less than 12% and the absolute error is less than 120℃, which shows that the proposed two-stage simulation method is reliable and able to satisfy the requirement of industrial application. 展开更多
关键词 pulverized coal boiler combustion monitoring temperature distribution numerical simulation
下载PDF
On-line tracking of pulverized coal and biomass fuels through flame spectrum analysis 被引量:1
5
作者 Chi Tianyang Zhang Hongjian 《仪器仪表学报》 EI CAS CSCD 北大核心 2007年第11期2008-2013,共6页
This paper presents a new approach to the on-line tracking of pulverized coal and biomass fuels through flame spectrum analysis.A flame detector containing four photodiodes is used to derive multiple signals covering ... This paper presents a new approach to the on-line tracking of pulverized coal and biomass fuels through flame spectrum analysis.A flame detector containing four photodiodes is used to derive multiple signals covering a wide spectrum of the flame from visible,near-infrared and mid-infrared spectral bands as well as a part of far-infrared band.Different features are extracted in time and frequency domains to identify the dynamic "fingerprints" of the flame.Fuzzy logic inference techniques are employed to combine typical features together and infer the type of fuel being burnt.Four types of pulverized coal and five types of biomass are burnt on a laboratory-scale combustion test rig.Results obtained demonstrate that this approach is capable of tracking the type of fuel under steady combustion conditions. 展开更多
关键词 非线性跟踪 粉碎机 生物量 火焰
下载PDF
NUMERICAL MODELING OF 3-D TURBULENT TWO-PHASE FLOW AND COAL COMBUSTION IN A PULVERIZED-COAL COMBUSTOR 被引量:1
6
作者 周彪 吴承康 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1997年第3期193-202,共10页
In the present paper, a multifluid model of two-phase flows with pulverized-coal combustion, based on a continuum-trajectory model with reacting particle phase, is developed and employed to simulate the 3-D turbulent ... In the present paper, a multifluid model of two-phase flows with pulverized-coal combustion, based on a continuum-trajectory model with reacting particle phase, is developed and employed to simulate the 3-D turbulent two-phase hows and combustion in a new type of pulverized-coal combustor with one primary-air jet placed along the wall of the combustor. The results show that: (1) this continuum-trajectory model with reacting particle phase can be used in practical engineering to qualitatively predict the flame stability, concentrations of gas species, possibilities of slag formation and soot deposition, etc.; (2) large recirculation zones can be created in the combustor, which is favorable to the ignition and flame stabilization. 展开更多
关键词 numerical simulation pulverized-coal combustor two-phase flow
下载PDF
Numerical Simulation of Thermal Stress Field of Water-cooled-wall Pulverized-coal Gasifiers
7
作者 WEI Yi YANG Wengang +3 位作者 QIN Hongbin GUO Xiaojun LI Hongxia WANG Yanni 《China's Refractories》 CAS 2019年第4期17-21,共5页
A local thermal stress model of water-cooled-wall pulverized-coal gasifier was built, and ANSYS was used to simulate the stress field in the gasifier operation to research the damage of refractories and slag layer cau... A local thermal stress model of water-cooled-wall pulverized-coal gasifier was built, and ANSYS was used to simulate the stress field in the gasifier operation to research the damage of refractories and slag layer caused by the thermal stress. The results reveal that:(1) the maximum stress of water-cooled-wall gasifier appears at the interface between anchor nails and refractories as well as the interface between refractories and the slag layer, and the maximum stress of slag layer appears on the surface of the slag layer;(2) the increase of slag layer thickness can significantly reduce the thermal stress at the interface between anchor nails and refractories, but increase the thermal stress between slag layer and refractories;(3) when the therma I conductivity is 2-6 W · m-1 · K-1, the thermal stress increases rapidly with the increase of the thermal conductivity, but when the thermal conductivity is 6-10 W · m-1 · K-1, the thermal stress is basically stable;(4) the higher the cooling rate, the faster the decreasing speed of the temperature and thermal stress. 展开更多
关键词 water-cooled-wall pulverized-coal gasifier stress field numerical simulation
下载PDF
一次风率对煤粉气流床气化-燃烧特性及NO_(x)排放影响的试验研究
8
作者 崔保崇 王肖肖 +2 位作者 周必茂 谭厚章 熊小鹤 《电力科技与环保》 2024年第2期133-141,共9页
煤粉气化-燃烧技术是实现燃煤锅炉超低负荷稳燃和低氮氧化物(NO_(x))排放的重要方式。为了揭示一次风率(λ_(1))对煤粉气化-燃烧特性及NO_(x)排放的影响。采用自主搭建的对冲气流床气化-燃烧系统,研究了λ_(1)对煤粉气化特性,燃料N转化... 煤粉气化-燃烧技术是实现燃煤锅炉超低负荷稳燃和低氮氧化物(NO_(x))排放的重要方式。为了揭示一次风率(λ_(1))对煤粉气化-燃烧特性及NO_(x)排放的影响。采用自主搭建的对冲气流床气化-燃烧系统,研究了λ_(1)对煤粉气化特性,燃料N转化和NO_(x)排放特性的影响,采用热重分析仪和化学吸附仪对气化半焦的反应性和孔隙结构进行分析。结果表明:λ_(1)的增加会提高气化炉温度,使气化炉出口CO和CH_(4)的浓度分别降低了2.67%和2.43%;促进了固定碳的转化,其转化率增加了17.28%;燃料N的转化率增加了13.50%,其中增加了向N_(2)的转化,但降低了向NH_(3)的转化。同时,λ_(1)增加使气化焦炭具有更发达的孔隙结构,比表面积增加了95.77 m^(2)/g,孔体积增加了2倍,改善了气化焦炭的燃烧特性。气化燃料进入燃烧室后,当λ_(1)高于0.25时,燃烧室主燃区内未生成NO。λ_(1)为0.35时,燃烧室出口的污染物排放最低,NO_(x)和CO分别为115.86 mg/Nm^(3)(@6%O_(2))和39.25 mg/Nm^(3)(@6%O_(2));此时燃烧效率最高,为99.68%。因此,一次风对煤粉气化燃烧特性和污染物排放具有显著的影响,控制合适的一次风量可以降低污染物排放的同时提升燃烧效率。 展开更多
关键词 煤粉 气流床气化炉 气化燃烧 NO_(x)排放特性
下载PDF
溶胶-凝胶水热合成法制备纳米CoAl_2O_4粉体 被引量:3
9
作者 周永强 梁晓娟 +3 位作者 于方丽 王芬 罗宏杰 潘明初 《硅酸盐学报》 EI CAS CSCD 北大核心 2006年第10期1259-1262,共4页
以仲丁醇铝和硝酸钴为原料,用溶胶-凝胶水热合成法制备了纳米CoAl2O4粉体,探讨了水热合成中前驱体的制备工艺条件,并用X射线衍射和扫描电镜等手段分析了水热系统中反应温度、反应时间对纳米CoAl2O4粉体的形成以及形貌的影响。结果表明:... 以仲丁醇铝和硝酸钴为原料,用溶胶-凝胶水热合成法制备了纳米CoAl2O4粉体,探讨了水热合成中前驱体的制备工艺条件,并用X射线衍射和扫描电镜等手段分析了水热系统中反应温度、反应时间对纳米CoAl2O4粉体的形成以及形貌的影响。结果表明:前驱体在250℃的水热系统中反应24h,能制备出较纯净、结晶完整、粒度均匀、粒径小、尖晶石结构的纳米CoAl2O4粉体,其平均粒度约为50~60nm。 展开更多
关键词 溶胶-凝胶水热合成法 纳米coal2O4 粉体
下载PDF
煤厚异常区煤-瓦斯两相流传播特征试验研究 被引量:2
10
作者 李亮 高魁 +1 位作者 乔国栋 李梦娣 《实验技术与管理》 CAS 北大核心 2023年第8期20-26,共7页
为充分认识地质构造带煤厚异常区煤-瓦斯两相流的传播规律,该试验借助多场耦合大型真三维液压加载煤与瓦斯突出模拟试验系统,研究煤厚异常区瓦斯突出后冲击气流的动力特征以及煤粉的运移规律。试验结果表明:在瓦斯突出前期,煤-瓦斯两相... 为充分认识地质构造带煤厚异常区煤-瓦斯两相流的传播规律,该试验借助多场耦合大型真三维液压加载煤与瓦斯突出模拟试验系统,研究煤厚异常区瓦斯突出后冲击气流的动力特征以及煤粉的运移规律。试验结果表明:在瓦斯突出前期,煤-瓦斯两相流的传播特征呈现湍流脉动特性,围绕平均值上下波动;在突出阶段,异常区煤体内部瓦斯积攒的膨胀能得到释放,冲击气流通过曳力作用携带煤粉向管道中运移,气流在管道中扰动时间持续6s左右,冲击压力呈现出先增大后减小的趋势。距离突出口越远,冲击气压峰值衰减幅度越明显,出现压力峰值的时间越是滞后。煤-瓦斯两相流在运移过程中只有少部分气流发生扩散,该部分气流冲击气压峰值远小于主巷道冲击气压峰值,携带煤粉能力也较弱;突出发生后,高速气流携带的煤粉以射流状向管道中运移,煤粉的运移速度分为初期加速和后期衰减两个阶段,煤粉的速度越大,在管道中出现分层现象越明显。突出管道中堆积的煤粉整体近似处于正态分布,中部区域堆积大量煤粉,占管道中总煤粉的68.8%,前后区域煤粉分布较少。 展开更多
关键词 煤与瓦斯突出 冲击气流 压力峰值 煤粉运移
下载PDF
Numerical simulation of the effect of coaxial and cross-axis injection modes on pulverized coal combustion in the raceway of blast furnace tuyere
11
作者 Yunpeng Wang Lei Gao Xiaolei Zhou 《Particuology》 SCIE EI CAS CSCD 2024年第10期154-169,共16页
The aim of this study is to investigate the influence of the angle of the pulverized coal (PC) injection lance on the combustion characteristics of fuel in the raceway of blast furnace tuyeres. Using FLUENT software, ... The aim of this study is to investigate the influence of the angle of the pulverized coal (PC) injection lance on the combustion characteristics of fuel in the raceway of blast furnace tuyeres. Using FLUENT software, a Euler-Lagrange three-dimensional numerical model was constructed to analyze the influence of different positions of blast furnace tuyere coal powder injection lance (coaxial and cross-axis) on key parameters such as temperature distribution, gas flow, and combustion efficiency. The results demonstrate that adjusting the angle of the injection lance significantly modifies the average and peak temperatures in the raceway, while the composition of gas components remains relatively stable. When the injection lance angle is 10°, the average temperature and peak temperature in the raceway are 2294 K and 2747 K, respectively. When the injection lance angle is 12°, the combustion efficiency of the PC reaches 80.8%. This study reveals the significant impact of the injection lance angle on the combustion process. Especially at an angle of 12°, the combustion efficiency of the blast furnace significantly improves. With coaxial injection, the combustion rate increases as the distance between the injection lance tip and the tuyere increases. This paper is instructive for the optimization of the blast furnace combustion system, which improve fuel utilization efficiency and reduce environmental emissions. This paper provides practical recommendations for adjusting blast furnace operational parameters, offering insights for achieving more efficient and environmentally friendly industrial production. 展开更多
关键词 pulverized coal combustion Tuyere raceway Blast furnace CFD simulation
原文传递
Experimental investigation on the NO formation of pulverized coal combustion under high-temperature and low-oxygen environments simulating MILD oxy-fuel combustion conditions
12
作者 Lanbo Li Yuegui Zhou +2 位作者 Chaoqiang Yang Anwen Peng Guanshuo Huang 《Carbon Resources Conversion》 EI 2024年第3期84-96,共13页
The NO formation experiments simulating moderate and intense low-oxygen dilution(MILD)oxy-coal combustion conditions were conducted on a laminar diffusion flame burner with the coflow temperatures of 1473-1873 K and t... The NO formation experiments simulating moderate and intense low-oxygen dilution(MILD)oxy-coal combustion conditions were conducted on a laminar diffusion flame burner with the coflow temperatures of 1473-1873 K and the oxygen volume fractions of 5%-20%in O_(2)/CO_(2),O_(2)/Ar and O_(2)/N_(2)atmospheres.The flame images of pulverized coal combustion were captured to obtain the ignition delay distances,and the axial species concentrations were measured to obtain the variation of NO formation and reduction.The NO yield in O_(2)/Ar atmosphere decreased by nearly 0.2 when the oxygen volume fraction decreased from 20%to 5%and by about 0.05 when the coflow temperature decreased from 1873 K to 1473 K.The NO yield in O_(2)/CO_(2)atmosphere was 0.1-0.15 lower than that in O_(2)/Ar atmosphere.The optimal kinetic parameters of thermal NO and fuel NO formation rate were obtained by a nonlinear fit of nth-order Arrhenius expression.Finally,the relative contribution rates of thermal NO to total NO(Rth)and NO reduction to fuel NO(Rre)were quantitatively separated.Rth decreases with the increase of oxygen volume fraction,below 6%at 1800 K,25%at 2000 K.Rre is almost unaffected by the coflow temperature and affected by the oxygen volume fraction,reaching 30%at 5%O_(2). 展开更多
关键词 pulverized coal combustion MILD oxy-fuel combustion NO formation and reduction Chemical kinetics Relative contribution
原文传递
Extracting the core indicators of pulverized coal for blast furnace injection based on principal component analysis 被引量:4
13
作者 Hong-wei Guo Bu-xin Su +2 位作者 Jian-liang Zhang Meng-yi Zhu Jian Chang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第3期246-252,共7页
An updated approach to refining the core indicators of pulverized coal used for blast furnace injection based on principal component analysis is proposed in view of the disadvantages of the existing performance indica... An updated approach to refining the core indicators of pulverized coal used for blast furnace injection based on principal component analysis is proposed in view of the disadvantages of the existing performance indicator system of pulverized coal used in blast furnaces. This presented method takes into account all the performance indicators of pulverized coal injection, including calorific value, igniting point, combustibility, reactivity, flowability, grindability, etc. Four core indicators of pulverized coal injection are selected and studied by using principal component analysis, namely, comprehensive combustibility, comprehensive reactivity, comprehensive flowability, and comprehensive grindability. The newly established core index system is not only beneficial to narrowing down current evaluation indices but also effective to avoid previous overlapping problems among indicators by mutually independent index design. Furthermore, a comprehensive property indicator is introduced on the basis of the four core indicators, and the injection properties of pulverized coal can be overall evaluated. 展开更多
关键词 blast furnaces pulverized coal fuel injection principal component analysis INDICATORS
下载PDF
Combustion characteristics of unburned pulverized coal and its reaction kinetics with CO2 被引量:3
14
作者 Dong-wen Xiang Feng-man Shen +4 位作者 Jia-long Yang Xin Jiang Hai-yan Zheng Qiang-jian Gao Jia-xin Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第7期811-821,共11页
The combustion characteristics of two kinds of unburned pulverized coal (UPC) made from bituminous coal and anthracite were investigated by thermogravimetric analysis under air. The reaction kinetics mechanisms betwee... The combustion characteristics of two kinds of unburned pulverized coal (UPC) made from bituminous coal and anthracite were investigated by thermogravimetric analysis under air. The reaction kinetics mechanisms between UPC and CO2 in an isothermal experiment in the temperature range 1000–1100°C were investigated. The combustion performance of unburned pulverized coal made from bituminous coal (BUPC) was better than that of unburned pulverized coal made from anthracite (AUPC). The combustion characteristic indexes (S) of BUPC and AUPC are 0.47 × 10^-6 and 0.34 × 10^-6 %2·min^-2·°C^-3, respectively, and the combustion reaction apparent activation energies are 91.94 and 102.63 kJ·mol^-1, respectively. The reaction mechanism of BUPC with CO2 is random nucleation and growth, and the apparent activation energy is 96.24 kJ·mol^-1. By contrast, the reaction mechanism of AUPC with CO2 follows the shrinkage spherical function model and the apparent activation energy is 133.55 kJ·mol^-1. 展开更多
关键词 unburned pulverized coal COMBUSTION characteristics REACTIVITY REACTION mechanism APPARENT ACTIVATION energy
下载PDF
Radiant Image Simulation of Pulverized Coal Combustion in Blast Furnace Raceway 被引量:3
15
作者 WEN Liang-ying BAI Chen-guang OU Yang-qi CHEN Deng-fu QIU Gui-bao 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2006年第2期18-21,共4页
The relationship between two-dimensional radiant image and three-dimensional radiant energy in blast furnace raceway was studied by numerical simulation of combustion process. Taking radiant image as radiant boundary ... The relationship between two-dimensional radiant image and three-dimensional radiant energy in blast furnace raceway was studied by numerical simulation of combustion process. Taking radiant image as radiant boundary for numerical simulation of combustion process, the uneven radiation parameter can be calculated. A method to examine three-dimensional temperature distribution in blast furnace raceway was put forward by radiant image processing. The numeral temperature field matching the real combustion can be obtained by proposed numeric image processing technique. 展开更多
关键词 RACEWAY radiant image pulverized coal combustion temperature distribution
下载PDF
A novel model for cost performance evaluation of pulverized coal injected into blast furnace based on effective calorific value 被引量:4
16
作者 徐润生 张建良 +3 位作者 左海滨 李克江 宋腾飞 邵久刚 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第10期3990-3998,共9页
The combustion process of pulverized coal injected into blast furnace involves a lot of physical and chemical reactions. Based on the combustion behaviors of pulverized coal, the conception of coal effective calorific... The combustion process of pulverized coal injected into blast furnace involves a lot of physical and chemical reactions. Based on the combustion behaviors of pulverized coal, the conception of coal effective calorific value representing the actual thermal energy provided for blast furnace was proposed. A cost performance evaluation model of coal injection was built up for the optimal selection of various kinds of coal based on effective calorific value. The model contains two indicators: coal effective calorific value which has eight sub-indicators and coal injection cost which includes four sub-indicators. In addition, the calculation principle and application of cost performance evaluation model in a Chinese large-scale iron and steel company were comprehensively introduced. The evaluation results finally confirm that this novel model is of great significance to the optimal selection of blast furnace pulverized coal. 展开更多
关键词 blast furnace pulverized coal injection effective calorific value cost performance evaluation model
下载PDF
Flame radiant image numeralization for pulverized coal combustion in BF raceway 被引量:4
17
作者 温良英 《Journal of Chongqing University》 CAS 2005年第4期195-198,共4页
In order to establish correlativity between pulverized coal combustion in a blast furnace raceway and its radiant image, we investigated the relationships between two dimensional radiant images and three dimensional r... In order to establish correlativity between pulverized coal combustion in a blast furnace raceway and its radiant image, we investigated the relationships between two dimensional radiant images and three dimensional radiant energy in a blast furnace raceway, focusing on the correlativity of the numerical simulation of combustion processes with the connection of radiant images information and space temperature distribution. We calculated the uneven radiate characteristic parameterby taking radiant images as a kind of radiative boundary for numerical simulation of combustion processes, and put fonward a method to examine three-dimensional temperatures distribution in blast furnace raceway by radiant image processing. The numeral temperature fields matching the real combustion can be got by the numeric image processing technique. 展开更多
关键词 RACEWAY pulverized coal combustion radiant image temperature distribution
下载PDF
Key technologies and equipment for a fully mechanized top-coal caving operation with a large mining height at ultra-thick coal seams 被引量:61
18
作者 Jinhua Wang Bin Yu +4 位作者 Hongpu Kang Guofa Wang Debing Mao Yuntao Liang Pengfei Jiang 《International Journal of Coal Science & Technology》 EI 2015年第2期97-162,共66页
Thick and ultra-thick coal seams are main coal seams for high production rate and high efficiency in Chinese coal mines, which accounts for 44 % of the total minable coal reserve. A fully mechanized top-coal caving mi... Thick and ultra-thick coal seams are main coal seams for high production rate and high efficiency in Chinese coal mines, which accounts for 44 % of the total minable coal reserve. A fully mechanized top-coal caving mining method is a main underground coal extraction method for ultra-thick coal seams. The coal extraction technologies for coal seams less than 14 m thick were extensively used in China. However, for coal seams with thickness greater than 14 m, there have been no reported cases in the world for underground mechanical extraction with safe performance, high efficiency and high coal recovery ratio. To deal with this case, China Coal Technology & Engineering Group, Datong Coal Mine Group, and other 15 organizations in China launched a fundamental and big project to develop coal mining technologies and equipment for coal seams with thicknesses greater than 14 m. After the completion of the project, a coal extraction method was developed for top-coal caving with a large mining height, as well as a ground control theory for ultra-thick coal seams. In addition, the mining technology for top-coal caving with a large mining height, the ground support technology for roadway in coal seams with a large cross-section, and the prevention and control technology for gas and fire hazards were developed and applied. Furthermore, a hydraulic support with a mining height of 5.2 m, a shearer with high reliability, and auxiliary equipment were developed and manufactured. Practical implication on the technologies and equipment developed was successfully completed at the No. 8105 coal face in the Tashan coal mine, Datong, China. The major achievements of the project are summarized as follows: 1. A top-coal caving method for ultra-thick coal seams is proposed with a cutting height of 5 m and a top-coal caving height of 15 m. A structural mechanical model of overlying strata called cantilever beam-articulated rock beam is established. Based on the model, the load resistance of the hydraulic support with a large mining height for top-coal caving method is determined. With the analysis, the movement characteristics of the top coal and above strata are evaluated during top-coal caving operation at the coal face with a large mining height. Furthermore, there is successful development of comprehensive technologies for preventing and controlling spalling of the coal wall, and the top-coal caving technology with high efficiency and high recovery at the top-coal caving face with a large mining height. This means that the technologies developed have overcome the difficulties in strata control, top-coal caving with high efficiency and high coal recovery, and enabled to achieve a production rate of more than 10 Mtpa at a single top-coal caving face with a large mining height in ultra-thick coal seams; 2. A hydraulic support with 5.2 m supporting height and anti-rockburst capacity, a shearer with high reliability, a scraper conveyor with a large power at the back of face, and a large load and long distance headgate belt conveyor have been successfully developed for a top-coal caving face with large mining height. The study has developed the key technologies for improving the reliability of equipment at the coal face and has overcome the challenges in equipping the top-coal caving face with a large mining height in ultra-thick coal seams; 3. The deformation characteristics of a large cross-section roadway in ultra-thick coal seams are discovered. Based on the findings above, a series of bolt materials with a high yielding strength of 500-830 MPa and a high extension ratio, and cable bolt material with a 1 × 19 structure, large tonnage and high extension ratio are developed. In addition, in order to achieve a safe roadway and a fast face advance, installation equipment for high pre-tension bolt is developed to solve the problems with the support of roadway in coal seams for top-coal caving operation with a large mining height; 4. The characteristics of gas distribution and uneven emission at top-coal caving face with large mining height in ultra-thick coal seams are evaluated. With the application of the technologies of gas drainage in the roof, the difficulties in gas control for high intensive top-coal caving mining operations, known as "low gas content, high gas emission", are solved. In addition, large flow-rate underground mobile equipment for making nitrogen are developed to solve the problems with fire prevention and safe mining at a top-coal caving face with large mining height and production rate of more than 10 Mtpa. A case study to apply the developed technologies has been conducted at the No. 8105 face, the Tashan coal mine in Datong, China. The case study demonstrates that the three units of equipment, i.e., the support, shearer and scraper conveyor, are rationally equipped. Average equipment usage at the coal face is 92.1%. The coal recovery ratio at the coal face is up to 88.9 %. In 2011, the coal production at the No. 8105 face reached 10.849 Mtpa, exceeding the target of 10 Mtpa for a topcoal caving operation with large mining height performed by Chinese-made mining equipment. The technologies and equipment developed provide a way for extracting ultra-thick coal seams. Currently, the technologies and equipment are used in 13 mining areas in China including Datong, Pingshuo, Shendong and Xinjiang. With the exploitation of coal resources in Western China, there is great potential for the application of the technologies and equipment developed. 展开更多
关键词 Ultra-thick coal seams Top-coal caving mining Large mining height Mining method - Mining equipment Roadway support Safety guarantee
下载PDF
Effects of the Imbibition Ability of Extinguishant in Pulverized Coals 被引量:1
19
作者 Liyan Liu Haoshuang Gong +3 位作者 Xin Shi Dong Lv Wei Tan Guorui Zhu 《Transactions of Tianjin University》 EI CAS 2019年第1期45-51,共7页
The imbibition ability of extinguishant is an important factor influencing the extinguishing effect for smoldering fire in pulverized coals. The coal particle size, bulk compactness, and aqueous solution properties si... The imbibition ability of extinguishant is an important factor influencing the extinguishing effect for smoldering fire in pulverized coals. The coal particle size, bulk compactness, and aqueous solution properties significantly affect the imbibition ability of extinguishment. This work aims to reveal the influence of the properties of pulverized coals and aqueous solution on the imbibition ability of extinguishant for smoldering fire through experiments and capillary theories. The imbibition height and rate were adopted to evaluate the imbibition ability of extinguishment. The results showed that a relatively small bulk compactness and a fine coal particle size negatively influenced the extinguishing process dominantly because of its high surface energy and low wettability. An additive was used to adjust the properties of aqueous solution. The liquid with a larger surface tension, a smaller contact angle, and a lower viscosity induced a better imbibition ability of extinguishment. 展开更多
关键词 pulverized coal SMOLDERING FIRE IMBIBITION ABILITY CAPILLARY theories
下载PDF
Reduction behavior and kinetics of vanadium–titanium sinters under high potential oxygen enriched pulverized coal injection 被引量:1
20
作者 Jin-fang Ma Guang-wei Wang +4 位作者 Jian-liang Zhang Xin-yu Li Zheng-jian Liu Ke-xin Jiao Jian Guo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第5期493-503,共11页
In this work, the reduction behavior of vanadium–titanium sinters was studied under five different sets of conditions of pulverized coal injection with oxygen enrichment. The modified random pore model was establishe... In this work, the reduction behavior of vanadium–titanium sinters was studied under five different sets of conditions of pulverized coal injection with oxygen enrichment. The modified random pore model was established to analyze the reduction kinetics. The results show that the reduction rate of sinters was accelerated by an increase of CO and H2contents. Meanwhile, with the increase in CO and H2contents, the increasing range of the medium reduction index (MRE) of sinters decreased. The increasing oxygen enrichment ratio played a diminishing role in improving the reduction behavior of the sinters. The reducing process kinetic parameters were solved using the modified random role model. The results indicated that, with increasing oxygen enrichment, the contents of CO and H2in the reducing gas increased. The reduction activation energy of the sinters decreased to between 20.4 and 23.2 kJ/mol. © 2017, The Author(s). 展开更多
关键词 Activation energy coal Injection (oil wells) Kinetic parameters KINETICS OXYGEN pulverized fuel SINTERING TITANIUM VANADIUM
下载PDF
上一页 1 2 225 下一页 到第
使用帮助 返回顶部