Coal and gas outburst is one of the main gas hazards in coal mines. However, due to the risks of the coal and gas outburst, the field test is difficult to complete. Therefore, an effective approach to studying the mec...Coal and gas outburst is one of the main gas hazards in coal mines. However, due to the risks of the coal and gas outburst, the field test is difficult to complete. Therefore, an effective approach to studying the mechanism and development of outburst is to conduct the similar physical simulation. However, the similarity criteria and similar materials in outburst are the key factors which restrict the development of physical simulation. To solve those problems, this paper has established similarity criteria base on mechanics model, solid-fluid coupling model and energy model, and presented high similar materials. Combining with three groups of similar number, and considering similar mechanical parameters and deformation and failure regularity, the similarity criteria of outburst is determined on the basis of the energy model. According to those criteria, we put forward a similar material consists of pulverized coal, cement, sand, activated carbon, and water. The similar material has high compressive strength and the accordant characteristics with the raw coal, include density, porosity, adsorption, desorption. The new research is promising for preventing and controlling gas hazards in the future.展开更多
Based on the theories of the gas seepage in coal seams and the deformation of the coal-rock medium,the gas seepage field in coal-rock mass is coupled with the deformation field of the coal-rock mass to establish a flu...Based on the theories of the gas seepage in coal seams and the deformation of the coal-rock medium,the gas seepage field in coal-rock mass is coupled with the deformation field of the coal-rock mass to establish a fluidstructure interaction model for the interaction between coal gas and coal-rock masses.The outburst process in coal-rock masses under the joint action of gas pressure and crustal stress is simulated using the material point method.The simulation results show the changes in gas pressure,velocity distribution,maximum principal stress distribution,and damage distribution during the process of the coal and gas outburst,as well as themovement and accumulation of coal-rock masses after the occurrence of the outburst.It was found that the gas pressure gradient was greatest at theworking face after the occurrence of the outburst,the gas pressures and pressure gradients at each location within the coal seamgradually decreased with time,and the damage distribution was essentially the same as the minimum principal stress distribution.The simulation further revealed that the outburst first occurred in themiddle of the tunnel excavation face and that the speed at which particles of coal mass were ejected was highest at the center and decreased toward the upper and lower sides.The study provides a scientific basis for enhancing our understanding of the mechanism behind coal and gas outbursts,as well as their prevention and control.展开更多
Coal and gas outburst is a frequent dynamic disaster during underground coal mining activities.After about 150 years of exploration,the mechanisms of outbursts remain unclear to date.Studies on outburst mechanisms wor...Coal and gas outburst is a frequent dynamic disaster during underground coal mining activities.After about 150 years of exploration,the mechanisms of outbursts remain unclear to date.Studies on outburst mechanisms worldwide focused on the physicochemical and mechanical properties of outburst-prone coal,laboratory-scale outburst experiments and numerical modeling,mine-site investigations,and doctrines of outburst mechanisms.Outburst mechanisms are divided into two categories:single-factor and multi-factor mechanisms.The multi-factor mechanism is widely accepted,but all statistical phenomena during a single outburst cannot be explained using present knowledge.Additional topics about outburst mechanisms are proposed by summarizing the phenomena that need precise explanation.The most appealing research is the microscopic process of the interaction between coal and gas.Modern physical-chemical methods can help characterize the natural properties of outburst-prone coal.Outburst experiments can compensate for the deficiency of first-hand observation at the scene.Restoring the original outburst scene by constructing a geomechanical model or numerical model and reproducing the entire outburst process based on mining environment conditions,including stratigraphic distribution,gas occurrence,and geological structure,are important.Future studies can explore outburst mechanisms at the microscale.展开更多
Coal bed methane has been considered as an important energy resource.One major difficulty of purifying coal bed methane comes from the similar physical properties of CH_4 and N_2.The ZIF-8/water-glycol slurry was used...Coal bed methane has been considered as an important energy resource.One major difficulty of purifying coal bed methane comes from the similar physical properties of CH_4 and N_2.The ZIF-8/water-glycol slurry was used as a medium to separate coal bed methane by fluidifying the solid adsorbent material.The sorption equilibrium experiment of binary mixture(CH_4/N_2)and slurry was conducted.The selectivity of CH_4 to N_2 is within the range of 2-6,which proved the feasibility of the slurry separation method.The modified Langmuir equation was used to describe the gas-slurry phase equilibrium behavior,and the calculated results were in good agreement with the experimental data.A continuous absorption-adsorption and desorption process on the separation of CH_4/N_2 in slurry is proposed and its mathematical model is also developed.Sensitivity analysis is conducted to determine the operation conditions and the energy performance of the proposed process was also evaluated.Feed gas contains 30 mol%of methane and the methane concentration in product gas is 95.46 mol%with the methane recovery ratio of 90.74%.The total energy consumption for per unit volume of product gas is determined as 1.846 kWh Nm^(-3).Experimental results and process simulation provide basic data for the design and operation of pilot and industrial plant.展开更多
A gas–solid coupling model involving coal seam deformation,gas diffusion and seepage,gas adsorption and desorption was built to study the gas transport rule under the effect of protective coal seam mining.The researc...A gas–solid coupling model involving coal seam deformation,gas diffusion and seepage,gas adsorption and desorption was built to study the gas transport rule under the effect of protective coal seam mining.The research results indicate:(1) The depressurization effect changes the stress state of an overlying coal seam and causes its permeability to increase,thus gas in the protected coal seam will be desorbed and transported under the effect of a gas pressure gradient,which will cause a decrease in gas pressure.(2) Gas pressure can be further decreased by setting out gas extraction boreholes in the overlying coal seam,which can effectively reduce the coal and gas outburst risk.The research is of important engineering significance for studying the gas transport rule in protected coal seam and providing important reference for controlling coal and gas outbursts in deep mining in China.展开更多
Low maturity coal samples were taken from the Ordos Basin to conduct gold tube thermal simulation experiment in a closed system,and the characteristics of the products were analyzed to find out the fractionation mecha...Low maturity coal samples were taken from the Ordos Basin to conduct gold tube thermal simulation experiment in a closed system,and the characteristics of the products were analyzed to find out the fractionation mechanism of carbon isotopes and the causes of abnormal carbon isotopic compositions of natural gas.At the heating rates of 2℃/h(slow)and 20℃/h(rapid),the low maturity coal samples of the Ordos Basin had the maximum yields of alkane gas of 302.74 mL/g and 230.16 mL/g,theδ13C1 ranges of-34.8‰to-23.6‰and-35.5‰to-24.0‰;δ13C2 ranges of-28.0‰to-9.0‰and-28.9‰to-8.3‰;andδ13C3 ranges of-25.8‰to-14.7‰and-26.4‰to-13.2‰,respectively.Alkane gas in the thermal simulation products of rapid temperature rise process showed obvious partial reversal of carbon isotope series at 550℃,and at other temperatures showed positive carbon isotope series.In the two heating processes,theδ13C1 turned lighter first and then heavier,and the non-monotonic variation of theδ13C1 values is because the early CH4 is from different parent materials resulted from heterogeneity of organic matter or the carbon isotope fractionation formed by activation energy difference of early enriched 12CH4 and late enriched 13CH4.The reversal of carbon isotope values of heavy hydrocarbon gas can occur not only in high to over mature shale gas(oil-type gas),but also in coal-derived gas.Through thermal simulation experiment of toluene,it is confirmed that the carbon isotope value of heavy hydrocarbon gas can be reversed and inversed at high to over mature stage.The isotope fractionation effect caused by demethylation and methyl linkage of aromatic hydrocarbons may be an important reason for carbon isotope inversion and reversal of alkane gas at the high to over mature stage.展开更多
A desorption simulation experiment with the condition of simulated strata was designed. The experiment, under different depressurizing rates and the same fluid saturation, was conducted on the sample from 3# coal of D...A desorption simulation experiment with the condition of simulated strata was designed. The experiment, under different depressurizing rates and the same fluid saturation, was conducted on the sample from 3# coal of Daning coal mine in Jincheng, Shanxi Province. The gas production rate and pressure change at both ends of the sample were studied systematically, and the mechanisms of some phenomena in the experiment were discussed. The experimental results show that, whether at fast or slow depressurizing rate, the methane adsorbed to high-rank coal can effectively desorb and the desorption efficiency can reach above 90%. There is an obvious inflection point on the gas yield curve during the desorption process and it appears after the pressure on the lump of coal reduces below the desorption pressure. The desorption of methane from high-rank coal is mainly driven by differential pressure, and high pressure difference is conducive to fast desorption. In the scenario of fast depressurization, the desorption inflection appears earlier and the gas production rate in the stage of rapid desorption is higher. It is experimentally concluded that the originally recognized strategy of long-term slow CBM production is doubtful and the economic benefit of CBM exploitation from high-rank coal can be effectively improved by rapid drainage and pressure reduction. The field experiment results in pilot blocks of Fanzhuang and Zhengzhuang show that by increasing the drainage depressurization rate, the peak production of gas well would increase greatly, the time of gas well to reach the economic production shortened, the average time for a gas well to reach expected production reduced by half, and the peak gas production is higher.展开更多
The influence of water on gas generation from humic type organic matter at highly to over mature stage was investigated with thermal simulation experiments at high temperature and pressure.The result of the experiment...The influence of water on gas generation from humic type organic matter at highly to over mature stage was investigated with thermal simulation experiments at high temperature and pressure.The result of the experiments indicates that the effect of water on gas generation was controlled by the thermal maturity of organic matter.Water could enhance gas generation and increase hydrocarbon gas yields significantly at over mature stage of humic type organic matter.Hydrogen isotopic compositions of coal-derived gases generated at highly to over mature stage were mainly controlled by thermal maturity of source rocks,but also affected by formation water.Highly and over mature coal measure source rocks are widely distributed in China.The hydrocarbon gas generation capacity of coal measure source rocks and resource potential of coal-derived gases in deep formations would be significantly enhanced assuming that formation water could be involved in the thermal cracking of highly to over mature organic matter in real geological settings.展开更多
Natural gas releasing simulation experiments were carried out in laboratory for researching the gas storage capacity in state of high temperature and high pressure and its gas releasing potential in process of tempera...Natural gas releasing simulation experiments were carried out in laboratory for researching the gas storage capacity in state of high temperature and high pressure and its gas releasing potential in process of temperature decreasing and decompression. The exiting phase state was studied through measuring gas adsorption of coal and PVT phase calculating of natural gas. Gas volume, gas molecular and isotope compositions in process of temperature decreasing and decompression were measured, natural-gas yields released from the Upper Paleozoic coal strata after later Cretaceous (K3) were calculated and the formation of the reservoir was studied combining with the geological background. The results indicate that natural gas stored in coal has still bigger releasing potential after the uplift of Upper Paleozoic strata. There exists a weak gas supply-effluent equilibrium in the reservoir of Ordos Basin, which is another possible evidence that the Upper Paleozoic gas reservoir may be a deep basin gas reservoir.展开更多
In order to solve coal and gas outbursts during mining coal seam,studying on related problems were carried out. According to the theories of mining upper protective layer,proper mining plan were designed and performed...In order to solve coal and gas outbursts during mining coal seam,studying on related problems were carried out. According to the theories of mining upper protective layer,proper mining plan were designed and performed through field experiment. By means of examining several parameters obtained from the field experiment,the protective effects were evaluated and the protective scope and related parameters were determined. The results of field experiment show that the danger of outbursts was evidently eliminated and the method of mining protective layers is effective and the safety and economic benefits are remarkable. The research has really applied worth and will give beneficial references to mining area with analogous conditions.展开更多
基金Acknowledgements This work was financially supported by the National Key Research and Development Program (2016YFC0801402-4), the National Natural Science Foundation of China (51374236, 51574280), Chongqing Frontiers and Application- based Research Program (cstc2015jcyjBX0076). Meanwhile, the author would like to thank the reviewers of this paper for their constructive comments and suggestions to improve the publication.
文摘Coal and gas outburst is one of the main gas hazards in coal mines. However, due to the risks of the coal and gas outburst, the field test is difficult to complete. Therefore, an effective approach to studying the mechanism and development of outburst is to conduct the similar physical simulation. However, the similarity criteria and similar materials in outburst are the key factors which restrict the development of physical simulation. To solve those problems, this paper has established similarity criteria base on mechanics model, solid-fluid coupling model and energy model, and presented high similar materials. Combining with three groups of similar number, and considering similar mechanical parameters and deformation and failure regularity, the similarity criteria of outburst is determined on the basis of the energy model. According to those criteria, we put forward a similar material consists of pulverized coal, cement, sand, activated carbon, and water. The similar material has high compressive strength and the accordant characteristics with the raw coal, include density, porosity, adsorption, desorption. The new research is promising for preventing and controlling gas hazards in the future.
基金The article received China National Natural Science Found(41601574).
文摘Based on the theories of the gas seepage in coal seams and the deformation of the coal-rock medium,the gas seepage field in coal-rock mass is coupled with the deformation field of the coal-rock mass to establish a fluidstructure interaction model for the interaction between coal gas and coal-rock masses.The outburst process in coal-rock masses under the joint action of gas pressure and crustal stress is simulated using the material point method.The simulation results show the changes in gas pressure,velocity distribution,maximum principal stress distribution,and damage distribution during the process of the coal and gas outburst,as well as themovement and accumulation of coal-rock masses after the occurrence of the outburst.It was found that the gas pressure gradient was greatest at theworking face after the occurrence of the outburst,the gas pressures and pressure gradients at each location within the coal seamgradually decreased with time,and the damage distribution was essentially the same as the minimum principal stress distribution.The simulation further revealed that the outburst first occurred in themiddle of the tunnel excavation face and that the speed at which particles of coal mass were ejected was highest at the center and decreased toward the upper and lower sides.The study provides a scientific basis for enhancing our understanding of the mechanism behind coal and gas outbursts,as well as their prevention and control.
基金financially supported by the State Key Research Development Program of China(No.2016YFC0600708)the Fundamental Research Funds for the Central Universities(No.2009kz03)+1 种基金the Scientific and Technological Innovation Leading Talents of“Ten thousand plan”of the Organization Department of the Central Committee of the CPC(No.W02020049)the International Clean Energy Talent Program of State Scholarship Fund of China Scholarship Council(No.201902720011)。
文摘Coal and gas outburst is a frequent dynamic disaster during underground coal mining activities.After about 150 years of exploration,the mechanisms of outbursts remain unclear to date.Studies on outburst mechanisms worldwide focused on the physicochemical and mechanical properties of outburst-prone coal,laboratory-scale outburst experiments and numerical modeling,mine-site investigations,and doctrines of outburst mechanisms.Outburst mechanisms are divided into two categories:single-factor and multi-factor mechanisms.The multi-factor mechanism is widely accepted,but all statistical phenomena during a single outburst cannot be explained using present knowledge.Additional topics about outburst mechanisms are proposed by summarizing the phenomena that need precise explanation.The most appealing research is the microscopic process of the interaction between coal and gas.Modern physical-chemical methods can help characterize the natural properties of outburst-prone coal.Outburst experiments can compensate for the deficiency of first-hand observation at the scene.Restoring the original outburst scene by constructing a geomechanical model or numerical model and reproducing the entire outburst process based on mining environment conditions,including stratigraphic distribution,gas occurrence,and geological structure,are important.Future studies can explore outburst mechanisms at the microscale.
基金The financial supports received from the National Natural Science Foundation of China(21522609,21636009 and 21878328)the National Key Research and Development Program of China(Nos.2017YFC0307302,2016YFC0304003)+1 种基金the Science Foundation of China University of Petroleum,Beijing(No.2462018BJC004)Beijing Science and Technology Program,China(No.Z181100005118010)。
文摘Coal bed methane has been considered as an important energy resource.One major difficulty of purifying coal bed methane comes from the similar physical properties of CH_4 and N_2.The ZIF-8/water-glycol slurry was used as a medium to separate coal bed methane by fluidifying the solid adsorbent material.The sorption equilibrium experiment of binary mixture(CH_4/N_2)and slurry was conducted.The selectivity of CH_4 to N_2 is within the range of 2-6,which proved the feasibility of the slurry separation method.The modified Langmuir equation was used to describe the gas-slurry phase equilibrium behavior,and the calculated results were in good agreement with the experimental data.A continuous absorption-adsorption and desorption process on the separation of CH_4/N_2 in slurry is proposed and its mathematical model is also developed.Sensitivity analysis is conducted to determine the operation conditions and the energy performance of the proposed process was also evaluated.Feed gas contains 30 mol%of methane and the methane concentration in product gas is 95.46 mol%with the methane recovery ratio of 90.74%.The total energy consumption for per unit volume of product gas is determined as 1.846 kWh Nm^(-3).Experimental results and process simulation provide basic data for the design and operation of pilot and industrial plant.
基金supported by the National Natural Science Foundation of China (Nos.51304072,51574112 and 51404100)the Excellent Youth Foundation of Henan Scientific Committee (No.164100510013)+2 种基金the Key Scientific Research Project of Colleges and Universities of Henan Province (No.15A440010)the Chinese Ministry of Education Science and Technology Research Project (No.213022A)the Doctoral Foundation of Henan Polytechnic University (No.B2013-007)
文摘A gas–solid coupling model involving coal seam deformation,gas diffusion and seepage,gas adsorption and desorption was built to study the gas transport rule under the effect of protective coal seam mining.The research results indicate:(1) The depressurization effect changes the stress state of an overlying coal seam and causes its permeability to increase,thus gas in the protected coal seam will be desorbed and transported under the effect of a gas pressure gradient,which will cause a decrease in gas pressure.(2) Gas pressure can be further decreased by setting out gas extraction boreholes in the overlying coal seam,which can effectively reduce the coal and gas outburst risk.The research is of important engineering significance for studying the gas transport rule in protected coal seam and providing important reference for controlling coal and gas outbursts in deep mining in China.
基金Supported by the National Natural Science Foundation of China(41902160,41625009)the China Postdoctoral Science Foundation(2019M650967,2020T130721)the China National Science and Technology Major Project(2016ZX05007-001)
文摘Low maturity coal samples were taken from the Ordos Basin to conduct gold tube thermal simulation experiment in a closed system,and the characteristics of the products were analyzed to find out the fractionation mechanism of carbon isotopes and the causes of abnormal carbon isotopic compositions of natural gas.At the heating rates of 2℃/h(slow)and 20℃/h(rapid),the low maturity coal samples of the Ordos Basin had the maximum yields of alkane gas of 302.74 mL/g and 230.16 mL/g,theδ13C1 ranges of-34.8‰to-23.6‰and-35.5‰to-24.0‰;δ13C2 ranges of-28.0‰to-9.0‰and-28.9‰to-8.3‰;andδ13C3 ranges of-25.8‰to-14.7‰and-26.4‰to-13.2‰,respectively.Alkane gas in the thermal simulation products of rapid temperature rise process showed obvious partial reversal of carbon isotope series at 550℃,and at other temperatures showed positive carbon isotope series.In the two heating processes,theδ13C1 turned lighter first and then heavier,and the non-monotonic variation of theδ13C1 values is because the early CH4 is from different parent materials resulted from heterogeneity of organic matter or the carbon isotope fractionation formed by activation energy difference of early enriched 12CH4 and late enriched 13CH4.The reversal of carbon isotope values of heavy hydrocarbon gas can occur not only in high to over mature shale gas(oil-type gas),but also in coal-derived gas.Through thermal simulation experiment of toluene,it is confirmed that the carbon isotope value of heavy hydrocarbon gas can be reversed and inversed at high to over mature stage.The isotope fractionation effect caused by demethylation and methyl linkage of aromatic hydrocarbons may be an important reason for carbon isotope inversion and reversal of alkane gas at the high to over mature stage.
基金Supported by the China National Science and Technology Major Project(2017ZX05064)
文摘A desorption simulation experiment with the condition of simulated strata was designed. The experiment, under different depressurizing rates and the same fluid saturation, was conducted on the sample from 3# coal of Daning coal mine in Jincheng, Shanxi Province. The gas production rate and pressure change at both ends of the sample were studied systematically, and the mechanisms of some phenomena in the experiment were discussed. The experimental results show that, whether at fast or slow depressurizing rate, the methane adsorbed to high-rank coal can effectively desorb and the desorption efficiency can reach above 90%. There is an obvious inflection point on the gas yield curve during the desorption process and it appears after the pressure on the lump of coal reduces below the desorption pressure. The desorption of methane from high-rank coal is mainly driven by differential pressure, and high pressure difference is conducive to fast desorption. In the scenario of fast depressurization, the desorption inflection appears earlier and the gas production rate in the stage of rapid desorption is higher. It is experimentally concluded that the originally recognized strategy of long-term slow CBM production is doubtful and the economic benefit of CBM exploitation from high-rank coal can be effectively improved by rapid drainage and pressure reduction. The field experiment results in pilot blocks of Fanzhuang and Zhengzhuang show that by increasing the drainage depressurization rate, the peak production of gas well would increase greatly, the time of gas well to reach the economic production shortened, the average time for a gas well to reach expected production reduced by half, and the peak gas production is higher.
基金Supported by the National Natural Science Foundation of China(41472120)
文摘The influence of water on gas generation from humic type organic matter at highly to over mature stage was investigated with thermal simulation experiments at high temperature and pressure.The result of the experiments indicates that the effect of water on gas generation was controlled by the thermal maturity of organic matter.Water could enhance gas generation and increase hydrocarbon gas yields significantly at over mature stage of humic type organic matter.Hydrogen isotopic compositions of coal-derived gases generated at highly to over mature stage were mainly controlled by thermal maturity of source rocks,but also affected by formation water.Highly and over mature coal measure source rocks are widely distributed in China.The hydrocarbon gas generation capacity of coal measure source rocks and resource potential of coal-derived gases in deep formations would be significantly enhanced assuming that formation water could be involved in the thermal cracking of highly to over mature organic matter in real geological settings.
文摘Natural gas releasing simulation experiments were carried out in laboratory for researching the gas storage capacity in state of high temperature and high pressure and its gas releasing potential in process of temperature decreasing and decompression. The exiting phase state was studied through measuring gas adsorption of coal and PVT phase calculating of natural gas. Gas volume, gas molecular and isotope compositions in process of temperature decreasing and decompression were measured, natural-gas yields released from the Upper Paleozoic coal strata after later Cretaceous (K3) were calculated and the formation of the reservoir was studied combining with the geological background. The results indicate that natural gas stored in coal has still bigger releasing potential after the uplift of Upper Paleozoic strata. There exists a weak gas supply-effluent equilibrium in the reservoir of Ordos Basin, which is another possible evidence that the Upper Paleozoic gas reservoir may be a deep basin gas reservoir.
文摘In order to solve coal and gas outbursts during mining coal seam,studying on related problems were carried out. According to the theories of mining upper protective layer,proper mining plan were designed and performed through field experiment. By means of examining several parameters obtained from the field experiment,the protective effects were evaluated and the protective scope and related parameters were determined. The results of field experiment show that the danger of outbursts was evidently eliminated and the method of mining protective layers is effective and the safety and economic benefits are remarkable. The research has really applied worth and will give beneficial references to mining area with analogous conditions.