Structure stability analysis of rock masses is essential for forecasting catastrophic structure failure in coal seam mining. Steeply dipping thick coal seams (SDTCS) are common in the Urumqi coalfield, and some dyna...Structure stability analysis of rock masses is essential for forecasting catastrophic structure failure in coal seam mining. Steeply dipping thick coal seams (SDTCS) are common in the Urumqi coalfield, and some dynamical hazards such as roof collapse and mining-induced seismicity occur frequently in the coal mines. The cause of these events is mainly structure instability in giant rock pillars sand- wiched between SDTCS. Developing methods to predict these events is important for safe mining in such a complex environment. This study focuses on understanding the structural mechanics model of a giant rock pillar and presents a viewpoint of the stability of a trend sphenoid fractured beam (TSFB). Some stability index parameters such as failure surface dips were measured, and most dips were observed to be between 46° and 51°. We used a digital panoramic borehole monitoring system to measure the TSFB's height (△H), which varied from 56.37 to 60.50 m. Next, FLAC^3D was used to model the distribution and evolution of vertical displacement in the giant rock pillars; the results confirmed the existence of a TSFB structure. Finally, we investigated the acoustic emission (AE) energy accumulation rate and observed that the rate commonly ranged from 20 to 40 kJ/min. The AE energy accumulation rate could be used to anticipate impeding seismic events related to structure failure. The results presented provide a useful approach for forecasting catastrophic events related to structure instability and for developing hazard prevention technology for mining in SDTCS.展开更多
The occurrence of overlying coal pillar(OCP)exerts a strong effect on the stress and strain distribution of the surrounding rock in the stope.In this paper,the stress distribution characteristics are analyzed via the ...The occurrence of overlying coal pillar(OCP)exerts a strong effect on the stress and strain distribution of the surrounding rock in the stope.In this paper,the stress distribution characteristics are analyzed via the numerical calculation with the account of OCP presence or absence.In addition,this study revealed the joint effect of side pressure relief area of the goaf and stress concentration in OCP on the final stress distribution.Furthermore,the rules of abutment stress distribution affected by three influencing factors,namely horizontal-vertical distances between OCP and working face and buried depth of OCP,are analyzed.The functional model linking the peak stress of surrounding rock with the above influencing factors is developed.The field application of the above results proved that the rib spalling and deformation of a 2.95 m-high and 5.66 m-wide roadway could be efficiently controlled by rationally adjusting working states of the support,and adopting the hydraulic prop coordinated with the p type metal beam and anchor cable to strengthen the surrounding rock of working face and roadway,respectively.The proposed measures are considered appropriate to satisfy the safe operation requirements.展开更多
Gob-side entry driving can increase coal recovery ratio, and it is implied in many coal mines. Based on geological condition of 10416 working face tailentry in Yangliu Coal Mine, the surrounding rock deformation chara...Gob-side entry driving can increase coal recovery ratio, and it is implied in many coal mines. Based on geological condition of 10416 working face tailentry in Yangliu Coal Mine, the surrounding rock deformation characteristics of gob-side entry driving with narrow coal pillar is analysed, reasonable size of coal pillar and reasonable roadway excavation time after mining are achieved. Surrounding rock control technology and effective roadway side sealing technology are proposed and are taken into field practice. The results showed that a safer and more efficient mining of working face can be achieved. In addition, results of this paper also have important theoretical significance and valuable reference for surrounding rock control technology of gob-side entry driving with narrow coal pillar under special geological condition.展开更多
Multi-seam mining often leads to the retention of a significant number of coal pillars for purposes such as protection,safety,or water isolation.However,stress concentration beneath these residual coal pillars can sig...Multi-seam mining often leads to the retention of a significant number of coal pillars for purposes such as protection,safety,or water isolation.However,stress concentration beneath these residual coal pillars can significantly impact their strength and stability when mining below them,potentially leading to hydraulic support failure,surface subsidence,and rock bursting.To address this issue,the linkage between the failure and instability of residual coal pillars and rock strata during multi-seam mining is examined in this study.Key controls include residual pillar spalling,safety factor(f.),local mine stiffness(LMS),and the post-peak stiffness(k)of the residual coal pillar.Limits separating the two forms of failure,progressive versus dynamic,are defined.Progressive failure results at lower stresses when the coal pillar transitions from indefinitely stable(f,>1.5)to failing(f,<1.5)when the coal pillar can no longer remain stable for an extended duration,whereas sud-den(unstable)failure results when the strength of the pillar is further degraded and fails.The transition in mode of failure is defined by the LMS/k ratio.Failure transitions from quiescent to dynamic as LMS/k.<1,which can cause chain pillar instability propagating throughout the mine.This study provides theoretical guidance to define this limit to instability of residual coal pillars for multi-seam mining in similar mines.展开更多
Concerning the issue of mine pressure behaviors occurred in fully mechanized caving mining of thick coal seams beneath hard stratum in Datong Mining Area, combined with thin and thick plate theory, the paper utilizes ...Concerning the issue of mine pressure behaviors occurred in fully mechanized caving mining of thick coal seams beneath hard stratum in Datong Mining Area, combined with thin and thick plate theory, the paper utilizes theoretical analysis, similar experiments, numerical simulations and field tests to study the influence of remaining coal pillars in Jurassic system goaf on hard stratum fractures, as well as mine pressure behaviors under their coupling effects. The paper concludes the solution formula of initial fault displacement in hard stratum caused by remaining coal pillars. Experiments prove that coupling effects can enhance mine pressure behaviors on working faces. When inter-layer inferior key strata fractures, mine pressure phenomenon such as significant roof weighting steps and increasing resistance in support.When inter-layer superior key strata fractures, the scope of overlying strata extends to Jurassic system goaf, dual-system stopes cut through, and remaining coal pillars lose stability. As a result, the bottom inferior key strata also lose stability. It causes huge impacts on working face, and the second mine pressure behaviors. These phenomena provide evidence for research on other similar mine strata pressure behaviors occurred in dual-system mines with remaining coal pillars.展开更多
Given the difficulties encountered in roadway support under coal pillars,we studied the characteristics of stress distribution and their effect on roadway stability,using theoretical analysis and numerical simulation....Given the difficulties encountered in roadway support under coal pillars,we studied the characteristics of stress distribution and their effect on roadway stability,using theoretical analysis and numerical simulation.The results show that,under a coal pillar,vertical stress in a floor stratum increases while horizontal stress decreases.We conclude that the increased difference between vertical and horizontal stress is an important reason for deformation of the surrounding rock and failures of roadways under coal pillars.Based on this,we propose control technologies of the surrounding rock of a roadway under a coal pillar,such as high strength and high pre-stressed bolt support,cable reinforcement support single hydraulic prop with beam support and reinforcement by grouting of the surrounding rock,which have been successfully applied in a stability control project of a roadway under a coal pillar.展开更多
Current coal pillar design is the epitome of suspension design.A defined weight of unstable overburden material is estimated, and the dimensions of the pillars left behind are based on holding up that material to a pr...Current coal pillar design is the epitome of suspension design.A defined weight of unstable overburden material is estimated, and the dimensions of the pillars left behind are based on holding up that material to a prescribed factor of safety.In principle, this is no different to early roadway roof support design.However, for the most part, roadway roof stabilisation has progressed to reinforcement, whereby the roof strata is assisted in supporting itself.This is now the mainstay of efficient and effective underground coal production.Suspension and reinforcement are fundamentally different in roadway roof stabilisation and lead to substantially different requirements in terms of support hardware characteristics and their application.In suspension, the primary focus is the total load-bearing capacity of the installed support and ensuring that it is securely anchored outside of the unstable roof mass.In contrast, reinforcement recognises that roof de-stabilisation is a gradational process with ever-increasing roof displacement magnitude leading to ever-reducing stability.Key roof support characteristics relate to such issues as system stiffness, the location and pattern of support elements and mobilising a defined thickness of the immediate roof to create(or build) a stabilising strata beam.The objective is to ensure that horizontal stress is maintained at a level that prevents mass roof collapse.This paper presents a prototype coal pillar and overburden system representation where reinforcement, rather than suspension, of the overburden is the stabilising mechanism via the action of in situ horizontal stresses.Established roadway roof reinforcement principles can potentially be applied to coal pillar design under this representation.The merit of this is evaluated according to failed pillar cases as found in a series of published databases.Based on the findings, a series of coal pillar system design considerations for bord and pillar type mine workings are provided.This potentially allows a more flexible approach to coal pillar sizing within workable mining layouts, as compared to common industry practice of a single design factor of safety(Fo S) under defined overburden dead-loading to the exclusion of other relevant overburden stabilising influences.展开更多
Considering the situation that it is difficult to control the stability of narrow coal pillar in gob-side entry driving under unstable overlying strata, the finite difference numerical simulation method was adopted to...Considering the situation that it is difficult to control the stability of narrow coal pillar in gob-side entry driving under unstable overlying strata, the finite difference numerical simulation method was adopted to analyze the inner stress distribution and its evolution regularity, as well as the deformation characteristics of narrow coal pillar in gob-side entry driving, in the whole process from entry driving of last working face to the present working face mining. A new method of narrow coal pillar control based on the triune coupling support technique (TCST), which includes that high-strength prestressed thread steel bolt is used to strain the coal on the goaf side, and that short bolt to control the integrity of global displacement zone in coal pillar on the entry side, and that long grouting cable to fix anchor point to constrain the bed separation between global displacement zone and fixed zone, is thereby generated and applied to the field production. The result indicates that after entry excavating along the gob under unstable overlying strata, the supporting structure left on the gob side of narrow coal pillar is basically invalid to maintain the coal-pillar stability, and the large deformation of the pillar on the gob side is evident. Except for the significant dynamic pressure appearing in the coal mining of last working face and overlying strata stabilizing process, the stress variation inside the coal pillar in other stages are rather steady, however, the stress expansion is obvious and the coal pillar continues to deform. Once the gob-side entry driving is completed, a global displacement zone on the entry side appears in the shallow part of the pillar, whereas, a relatively steady fixed zone staying almost still in gob-side entry driving and present working face mining is found in the deep part of the pillar. The application of TCST can not only avoid the failure of pillar supporting structure, but exert the supporting capacity of the bolting structure left in the pillar of last sublevel entry, thus to jointly maintain the stability of coal pillar.展开更多
As a regional, real-time and dynamic method, microseismic monitoring technology is quite an appropriate technology for forecasting geological hazards, such as rock bursts, mine tremors, coal and gas outbursts and can ...As a regional, real-time and dynamic method, microseismic monitoring technology is quite an appropriate technology for forecasting geological hazards, such as rock bursts, mine tremors, coal and gas outbursts and can even be used to prevent or at least reduce these disasters. The study of the focal mechanisms of different seismic sources is the prerequisite and basis for forecasting rock burst by microseismic monitoring technology. Based on the analysis on the mechanism and fracture course of coal pillars where rock bursts occur mostly, the equivalent point source model of the seismicity caused by a coal pillar was created. Given the model, the seismic displacement equation of a coal pillar was analyzed and the seismic mechanism was pointed out by seismic wave theory. The course of the fracture of the coal pillar was simulated closely in the laboratory and the equivalent microseismic signals of the fractures of the coal pillar were acquired using a TDS-6 experimental system. The results show that, by the pressure and friction of a medium near the seismic source, both a compression wave and a shear wave will be emitted and shear fracture will be induced at the moment of breakage. The results can be used to provide an academic basis to forecast and prevent rock bursts or tremors in a coal pillar.展开更多
A study of the deformation of the surrounding rock and coal pillars near a fault under the influence of mining is conducted on a physical model for the design of coal pillars to support and maintain the roofs of adjac...A study of the deformation of the surrounding rock and coal pillars near a fault under the influence of mining is conducted on a physical model for the design of coal pillars to support and maintain the roofs of adjacent fault roadways.This research is based on the 15101 mining face in the Baiyangling Coal Mine,Shanxi,China,and uses simulation tests similar to digital speckle test technology to analyse the displacement,strain and vertical stress fields of surrounding rocks near faults to determine the influence of the coal pillar width.The results are as follows.The surrounding rock of the roadway roof fails to form a balance hinge for the massive rock mass.The vertical displacement,vertical strain and other deformation of the surrounding rock near the fault increase steeply as the coal pillar width decreases.The steep increase in deformation corresponds to a coal pillar width of 10 m.When the coal pillar width is 7.5 m,the pressure on the surrounding rock near the footwall of the fault suddenly increases,while the pressure on the hanging wall near the fault increases by only 0.35 MPa.The stress of the rock mass of the hanging wall is not completely shielded by the fault,and part of the load disturbance is still transmitted to the hanging wall via friction.The width of the fault coal pillars at the 15101 working face is determined to be 7.5 m,and the monitoring data verify the rationality of the fault coal pillars.展开更多
In current research, a series of triaxial tests, which were employed to simulate three typical mining lay-outs (i.e., top-coal caving, non-pillar mining and protected coal seam mining), were conducted on coal by using...In current research, a series of triaxial tests, which were employed to simulate three typical mining lay-outs (i.e., top-coal caving, non-pillar mining and protected coal seam mining), were conducted on coal by using MTS815 Flex Test GT rock mechanics test system, and the fracture networks in the broken coal samples were qualitatively and quantitatively investigated by employing CT scanning and 3D reconstruc-tion techniques. This work aimed at providing a detail description on the micro-structure and fracture-connectivity characteristics of rupture coal samples under different mining layouts. The results show that: (i) for protected coal seam mining layout, the coal specimens failure is in a compression-shear manner and oppositely, (ii) the tension-shear failure phenomenon is observed for top-coal caving and non-pillar mining layouts. By investigating the connectivity features of the generated fractures in the direction of r1 under different mining layouts, it is found that the connectivity level of the fractures of the samples corresponding to non-pillar mining layout was the highest.展开更多
With the increase in mining depth,traditional coal mining methods not only waste coal resources but also seriously impact the stability of the roadway support structure during the collapse of the overburden rock.In co...With the increase in mining depth,traditional coal mining methods not only waste coal resources but also seriously impact the stability of the roadway support structure during the collapse of the overburden rock.In contrast,the top-cutting and depressurization technology utilizes the expansion effect of the rock effectively.This technology allows the rock body to collapse entirely,filling up the mining area through active intervention,which reduces the subsidence height of the overburden rock and significantly improves the coal extraction rate in the mining area.This study utilizes 3D seismic exploration technology to analyze the spatial distribution characteristics of fissure zones and rich zones of the rock strata in the mining area and investigate the movement law of overburdened rock during the coal seam mining process using the 110 mining method.It conducts numerical analysis combined with geomechanical modeling experiments to explore the movement law of the overburden rock under the influence of mining activities at Yuwang Coal Mine.The numerical analysis results indicate that the horizontal and vertical displacements of the rock body on the roof of the roadway are minimal when the angle of the slit is 75°.The overlying rock movement during the test is categorized by modeling the stress and strain fields into the following stages:fracture zone expansion,collapse zone gestation,rapid collapse zone development,and overlying rock stabilization.The rock on the cut side collapses more completely,breaking up and expanding to support the overburden,effectively reducing the depth of crack expansion and the extent of rock settlement and deformation.The integrity of the roadway roof remains intact during the rock collapse under NPR anchors.This study provides a scientific basis for understanding the movement law of overlying rock and for controlling the stability of the roadway perimeter rock in kilometer-deep underground mining.展开更多
Comprehensive research methods such as literature research,theoretical analysis,numerical simulations and field monitoring have been used to analyze the disasters and characteristics caused by the linkage failure and ...Comprehensive research methods such as literature research,theoretical analysis,numerical simulations and field monitoring have been used to analyze the disasters and characteristics caused by the linkage failure and instability of the residual coal pillars-rock strata in multi-seam mining.The effective monitoring area and monitoring design method of linkage instability of residual coal pillar-rock strata in multi-seam mining have been identified.The evaluation index and the risk assessment method of disaster risk have been established and the project cases have been applied and validated.The results show that:①The coal pillar will not only cause disaster in singleseam mining,but also more easily cause disaster in multi-seam mining.The instability of coal pillars can cause not only dynamical disasters such as rock falls and mine earthquakes,but also cause surface subsidence and other disasters.②When monitoring the linkage instability of residual coal pillar-rock strata,it is not only necessary to consider the monitoring of the apply load body(key block),the transition body(residual coal pillar)and the carrier body(interlayer rock and working face),but also to strengthen the monitoring of the fracture development height(linkage body).③According to the principles of objectivity,easy access and quantification,combined with investigation,analysis,and production and geological characteristics of this mining area,the main evaluation indexes of the degree of disaster caused by linkage instability of residual coal pillar-rock strata are determined as:microseismic energy,residual coal pillar damage degree,fracture development height.And the evaluation index classification table was also given.④According to the measured value of the evaluation index,the fuzzy comprehensive evaluation method was used to calculate the disaster risk degree in the studied mine belongs to class III,that is,medium risk level.The corresponding pressure relief technology was adopted on site,which achieved a good control effect,and also verified the accuracy and effectiveness of the risk evaluation results.展开更多
基金financially supported by the Key National Basic Research Program of China (Nos.2014CB260404 and 2015CB251602)the Key National Natural Science Foundation of China (No.U13612030)+1 种基金Shaanxi Innovation Team Program (No.2013KCT-16)the High Technology Development Program of Xin Jiang Municipality (No.201432102)
文摘Structure stability analysis of rock masses is essential for forecasting catastrophic structure failure in coal seam mining. Steeply dipping thick coal seams (SDTCS) are common in the Urumqi coalfield, and some dynamical hazards such as roof collapse and mining-induced seismicity occur frequently in the coal mines. The cause of these events is mainly structure instability in giant rock pillars sand- wiched between SDTCS. Developing methods to predict these events is important for safe mining in such a complex environment. This study focuses on understanding the structural mechanics model of a giant rock pillar and presents a viewpoint of the stability of a trend sphenoid fractured beam (TSFB). Some stability index parameters such as failure surface dips were measured, and most dips were observed to be between 46° and 51°. We used a digital panoramic borehole monitoring system to measure the TSFB's height (△H), which varied from 56.37 to 60.50 m. Next, FLAC^3D was used to model the distribution and evolution of vertical displacement in the giant rock pillars; the results confirmed the existence of a TSFB structure. Finally, we investigated the acoustic emission (AE) energy accumulation rate and observed that the rate commonly ranged from 20 to 40 kJ/min. The AE energy accumulation rate could be used to anticipate impeding seismic events related to structure failure. The results presented provide a useful approach for forecasting catastrophic events related to structure instability and for developing hazard prevention technology for mining in SDTCS.
基金supported by the Special Funding Projects of Sanjin Scholars” Supporting Plan (No. 2050205)the National Key Research Projects (No. 2016YFC0600701)Ordinary University Graduate Student Scientific Research Innovation Projects of Jiangsu Province of China (No. KYLX16_0564)
文摘The occurrence of overlying coal pillar(OCP)exerts a strong effect on the stress and strain distribution of the surrounding rock in the stope.In this paper,the stress distribution characteristics are analyzed via the numerical calculation with the account of OCP presence or absence.In addition,this study revealed the joint effect of side pressure relief area of the goaf and stress concentration in OCP on the final stress distribution.Furthermore,the rules of abutment stress distribution affected by three influencing factors,namely horizontal-vertical distances between OCP and working face and buried depth of OCP,are analyzed.The functional model linking the peak stress of surrounding rock with the above influencing factors is developed.The field application of the above results proved that the rib spalling and deformation of a 2.95 m-high and 5.66 m-wide roadway could be efficiently controlled by rationally adjusting working states of the support,and adopting the hydraulic prop coordinated with the p type metal beam and anchor cable to strengthen the surrounding rock of working face and roadway,respectively.The proposed measures are considered appropriate to satisfy the safe operation requirements.
基金Financial support for this work was provided by the National Natural Science Foundation of China(Nos.51474005,51004002)
文摘Gob-side entry driving can increase coal recovery ratio, and it is implied in many coal mines. Based on geological condition of 10416 working face tailentry in Yangliu Coal Mine, the surrounding rock deformation characteristics of gob-side entry driving with narrow coal pillar is analysed, reasonable size of coal pillar and reasonable roadway excavation time after mining are achieved. Surrounding rock control technology and effective roadway side sealing technology are proposed and are taken into field practice. The results showed that a safer and more efficient mining of working face can be achieved. In addition, results of this paper also have important theoretical significance and valuable reference for surrounding rock control technology of gob-side entry driving with narrow coal pillar under special geological condition.
基金supported by the Climbling Project of Taishan Scholar in Shandong Province (No.tspd20210313)National Natural Science Foundation of China (Grant No.51874190,52079068,41941019,52090081 and 52074168)+3 种基金Taishan Scholar in Shandong Province (No.tsqn202211150)Outstanding Youth Fund Project in Shandong Province (No.ZQ2022YQ49)the State Key Laboratory of Hydroscience and Engineering,China (No.2021-KY-04)support from the G.Albert Shoemaker endowment.
文摘Multi-seam mining often leads to the retention of a significant number of coal pillars for purposes such as protection,safety,or water isolation.However,stress concentration beneath these residual coal pillars can significantly impact their strength and stability when mining below them,potentially leading to hydraulic support failure,surface subsidence,and rock bursting.To address this issue,the linkage between the failure and instability of residual coal pillars and rock strata during multi-seam mining is examined in this study.Key controls include residual pillar spalling,safety factor(f.),local mine stiffness(LMS),and the post-peak stiffness(k)of the residual coal pillar.Limits separating the two forms of failure,progressive versus dynamic,are defined.Progressive failure results at lower stresses when the coal pillar transitions from indefinitely stable(f,>1.5)to failing(f,<1.5)when the coal pillar can no longer remain stable for an extended duration,whereas sud-den(unstable)failure results when the strength of the pillar is further degraded and fails.The transition in mode of failure is defined by the LMS/k ratio.Failure transitions from quiescent to dynamic as LMS/k.<1,which can cause chain pillar instability propagating throughout the mine.This study provides theoretical guidance to define this limit to instability of residual coal pillars for multi-seam mining in similar mines.
基金provided by the National Natural Science Foundation of China(No.51104191)the National Natural Science Foundation of China(No.51374258)the Program for Changjiang Scholars and Innovative Research Team in University of China(No.IRT13043)
文摘Concerning the issue of mine pressure behaviors occurred in fully mechanized caving mining of thick coal seams beneath hard stratum in Datong Mining Area, combined with thin and thick plate theory, the paper utilizes theoretical analysis, similar experiments, numerical simulations and field tests to study the influence of remaining coal pillars in Jurassic system goaf on hard stratum fractures, as well as mine pressure behaviors under their coupling effects. The paper concludes the solution formula of initial fault displacement in hard stratum caused by remaining coal pillars. Experiments prove that coupling effects can enhance mine pressure behaviors on working faces. When inter-layer inferior key strata fractures, mine pressure phenomenon such as significant roof weighting steps and increasing resistance in support.When inter-layer superior key strata fractures, the scope of overlying strata extends to Jurassic system goaf, dual-system stopes cut through, and remaining coal pillars lose stability. As a result, the bottom inferior key strata also lose stability. It causes huge impacts on working face, and the second mine pressure behaviors. These phenomena provide evidence for research on other similar mine strata pressure behaviors occurred in dual-system mines with remaining coal pillars.
基金the National Natural Science Foundation of China(No.50774077)the State Key Laboratory of Coal Resources and Safe Mining Autonomous Study Subject Foundation of China(No.SKLCRSM08X04)+2 种基金the National Basic Research Program of China,the National Excellence Doctor Degree Dissertation Special Foundation of China(No.200760)the New Century Talent Support Program of the Ministry of Education of China(No.NCET-06-0475)the Youth Scientific Research Foundation of China University of Mining & Technology(No. 2008A002)
文摘Given the difficulties encountered in roadway support under coal pillars,we studied the characteristics of stress distribution and their effect on roadway stability,using theoretical analysis and numerical simulation.The results show that,under a coal pillar,vertical stress in a floor stratum increases while horizontal stress decreases.We conclude that the increased difference between vertical and horizontal stress is an important reason for deformation of the surrounding rock and failures of roadways under coal pillars.Based on this,we propose control technologies of the surrounding rock of a roadway under a coal pillar,such as high strength and high pre-stressed bolt support,cable reinforcement support single hydraulic prop with beam support and reinforcement by grouting of the surrounding rock,which have been successfully applied in a stability control project of a roadway under a coal pillar.
文摘Current coal pillar design is the epitome of suspension design.A defined weight of unstable overburden material is estimated, and the dimensions of the pillars left behind are based on holding up that material to a prescribed factor of safety.In principle, this is no different to early roadway roof support design.However, for the most part, roadway roof stabilisation has progressed to reinforcement, whereby the roof strata is assisted in supporting itself.This is now the mainstay of efficient and effective underground coal production.Suspension and reinforcement are fundamentally different in roadway roof stabilisation and lead to substantially different requirements in terms of support hardware characteristics and their application.In suspension, the primary focus is the total load-bearing capacity of the installed support and ensuring that it is securely anchored outside of the unstable roof mass.In contrast, reinforcement recognises that roof de-stabilisation is a gradational process with ever-increasing roof displacement magnitude leading to ever-reducing stability.Key roof support characteristics relate to such issues as system stiffness, the location and pattern of support elements and mobilising a defined thickness of the immediate roof to create(or build) a stabilising strata beam.The objective is to ensure that horizontal stress is maintained at a level that prevents mass roof collapse.This paper presents a prototype coal pillar and overburden system representation where reinforcement, rather than suspension, of the overburden is the stabilising mechanism via the action of in situ horizontal stresses.Established roadway roof reinforcement principles can potentially be applied to coal pillar design under this representation.The merit of this is evaluated according to failed pillar cases as found in a series of published databases.Based on the findings, a series of coal pillar system design considerations for bord and pillar type mine workings are provided.This potentially allows a more flexible approach to coal pillar sizing within workable mining layouts, as compared to common industry practice of a single design factor of safety(Fo S) under defined overburden dead-loading to the exclusion of other relevant overburden stabilising influences.
基金supports from the National High Technology Research and Development Program of China (No. 2012AA062101)the Program for New Century Excellent Talents in University of Ministry of Education of China (No. NCET-10-0770)+1 种基金the Program Granted for Scientific Innovation Research of College Graduate in Jiangsu Province (No. CXZZ11-0309)the Priority Academic Program Development of Jiangsu Higher Education Institutions (No. SZBF2011-6-B35)
文摘Considering the situation that it is difficult to control the stability of narrow coal pillar in gob-side entry driving under unstable overlying strata, the finite difference numerical simulation method was adopted to analyze the inner stress distribution and its evolution regularity, as well as the deformation characteristics of narrow coal pillar in gob-side entry driving, in the whole process from entry driving of last working face to the present working face mining. A new method of narrow coal pillar control based on the triune coupling support technique (TCST), which includes that high-strength prestressed thread steel bolt is used to strain the coal on the goaf side, and that short bolt to control the integrity of global displacement zone in coal pillar on the entry side, and that long grouting cable to fix anchor point to constrain the bed separation between global displacement zone and fixed zone, is thereby generated and applied to the field production. The result indicates that after entry excavating along the gob under unstable overlying strata, the supporting structure left on the gob side of narrow coal pillar is basically invalid to maintain the coal-pillar stability, and the large deformation of the pillar on the gob side is evident. Except for the significant dynamic pressure appearing in the coal mining of last working face and overlying strata stabilizing process, the stress variation inside the coal pillar in other stages are rather steady, however, the stress expansion is obvious and the coal pillar continues to deform. Once the gob-side entry driving is completed, a global displacement zone on the entry side appears in the shallow part of the pillar, whereas, a relatively steady fixed zone staying almost still in gob-side entry driving and present working face mining is found in the deep part of the pillar. The application of TCST can not only avoid the failure of pillar supporting structure, but exert the supporting capacity of the bolting structure left in the pillar of last sublevel entry, thus to jointly maintain the stability of coal pillar.
基金Projects 5049027350474068 supported by the National Natural Science Foundation of China+3 种基金2005CB221504 by the National Basic Research Program of China20030290017 by the Special Fund for Ph.D. Programs of the National Ministry of Education2006BAK04B02, 2006BAK03B06 by the National Eleventh Five-Year Key Science & Technology Project[2007]3020 by the State Scholarship Fund of China Scholarship Council
文摘As a regional, real-time and dynamic method, microseismic monitoring technology is quite an appropriate technology for forecasting geological hazards, such as rock bursts, mine tremors, coal and gas outbursts and can even be used to prevent or at least reduce these disasters. The study of the focal mechanisms of different seismic sources is the prerequisite and basis for forecasting rock burst by microseismic monitoring technology. Based on the analysis on the mechanism and fracture course of coal pillars where rock bursts occur mostly, the equivalent point source model of the seismicity caused by a coal pillar was created. Given the model, the seismic displacement equation of a coal pillar was analyzed and the seismic mechanism was pointed out by seismic wave theory. The course of the fracture of the coal pillar was simulated closely in the laboratory and the equivalent microseismic signals of the fractures of the coal pillar were acquired using a TDS-6 experimental system. The results show that, by the pressure and friction of a medium near the seismic source, both a compression wave and a shear wave will be emitted and shear fracture will be induced at the moment of breakage. The results can be used to provide an academic basis to forecast and prevent rock bursts or tremors in a coal pillar.
基金The authors acknowledge the support of the China National Key R&D Program Project(2017YFC1503102)the National Natural Science Foundation of China(No.51704143)the Natural Science Foundation of Liaoning Province of China(2020-MS-302).
文摘A study of the deformation of the surrounding rock and coal pillars near a fault under the influence of mining is conducted on a physical model for the design of coal pillars to support and maintain the roofs of adjacent fault roadways.This research is based on the 15101 mining face in the Baiyangling Coal Mine,Shanxi,China,and uses simulation tests similar to digital speckle test technology to analyse the displacement,strain and vertical stress fields of surrounding rocks near faults to determine the influence of the coal pillar width.The results are as follows.The surrounding rock of the roadway roof fails to form a balance hinge for the massive rock mass.The vertical displacement,vertical strain and other deformation of the surrounding rock near the fault increase steeply as the coal pillar width decreases.The steep increase in deformation corresponds to a coal pillar width of 10 m.When the coal pillar width is 7.5 m,the pressure on the surrounding rock near the footwall of the fault suddenly increases,while the pressure on the hanging wall near the fault increases by only 0.35 MPa.The stress of the rock mass of the hanging wall is not completely shielded by the fault,and part of the load disturbance is still transmitted to the hanging wall via friction.The width of the fault coal pillars at the 15101 working face is determined to be 7.5 m,and the monitoring data verify the rationality of the fault coal pillars.
基金financially supported by the Major State Fundamental Research Project of China(Nos.2011CB201201and2010CB226802)the National Natural Science Foundation of China(No.51204113)the Youth Science and Technology Fund of Sichuan Province(No.2012JQ0031)
文摘In current research, a series of triaxial tests, which were employed to simulate three typical mining lay-outs (i.e., top-coal caving, non-pillar mining and protected coal seam mining), were conducted on coal by using MTS815 Flex Test GT rock mechanics test system, and the fracture networks in the broken coal samples were qualitatively and quantitatively investigated by employing CT scanning and 3D reconstruc-tion techniques. This work aimed at providing a detail description on the micro-structure and fracture-connectivity characteristics of rupture coal samples under different mining layouts. The results show that: (i) for protected coal seam mining layout, the coal specimens failure is in a compression-shear manner and oppositely, (ii) the tension-shear failure phenomenon is observed for top-coal caving and non-pillar mining layouts. By investigating the connectivity features of the generated fractures in the direction of r1 under different mining layouts, it is found that the connectivity level of the fractures of the samples corresponding to non-pillar mining layout was the highest.
基金Study on in-situ stress database and 3D in-situ stress inversion technology of highway tunnel in Shanxi Province(22-JKCF-08)the Study on disaster mechanism and NPR anchor cable prevention and control of coal mining caving subsidence in operating tunnel in mountainous area(2022-JKKJ-6)for their support+2 种基金supported by the State Key Laboratory for Geomechanics and Deep Underground Engineering(SKLGDUEK2020)Huaneng Group headquarters science and technology project(HNKJ21-H07the Coal Burst Research Center of China Jiangsu.
文摘With the increase in mining depth,traditional coal mining methods not only waste coal resources but also seriously impact the stability of the roadway support structure during the collapse of the overburden rock.In contrast,the top-cutting and depressurization technology utilizes the expansion effect of the rock effectively.This technology allows the rock body to collapse entirely,filling up the mining area through active intervention,which reduces the subsidence height of the overburden rock and significantly improves the coal extraction rate in the mining area.This study utilizes 3D seismic exploration technology to analyze the spatial distribution characteristics of fissure zones and rich zones of the rock strata in the mining area and investigate the movement law of overburdened rock during the coal seam mining process using the 110 mining method.It conducts numerical analysis combined with geomechanical modeling experiments to explore the movement law of the overburden rock under the influence of mining activities at Yuwang Coal Mine.The numerical analysis results indicate that the horizontal and vertical displacements of the rock body on the roof of the roadway are minimal when the angle of the slit is 75°.The overlying rock movement during the test is categorized by modeling the stress and strain fields into the following stages:fracture zone expansion,collapse zone gestation,rapid collapse zone development,and overlying rock stabilization.The rock on the cut side collapses more completely,breaking up and expanding to support the overburden,effectively reducing the depth of crack expansion and the extent of rock settlement and deformation.The integrity of the roadway roof remains intact during the rock collapse under NPR anchors.This study provides a scientific basis for understanding the movement law of overlying rock and for controlling the stability of the roadway perimeter rock in kilometer-deep underground mining.
基金the financial support by the National Natural Science Foundation of China(Nos.52304093,52074168,52079068,41941019)Shandong Province Key Research and Development Program(No.2019SDZY02)+4 种基金Shandong Taishan Scholars Climbing Program(No.tspd20210313)State Key Laboratory of Hydroscience and Engineering foundation(No.2021-KY-04)Natural Science Foundation of Shandong Province Outstanding Youth Fund project(No.ZQ2022YQ49)the Taishan Scholars Project Special Fund(No.tsqn202211150)the Anhui Engineering Research Center of Exploitation and Utilization of Closed/Abandoned Mine Resources(No.EUCMR202205).
文摘Comprehensive research methods such as literature research,theoretical analysis,numerical simulations and field monitoring have been used to analyze the disasters and characteristics caused by the linkage failure and instability of the residual coal pillars-rock strata in multi-seam mining.The effective monitoring area and monitoring design method of linkage instability of residual coal pillar-rock strata in multi-seam mining have been identified.The evaluation index and the risk assessment method of disaster risk have been established and the project cases have been applied and validated.The results show that:①The coal pillar will not only cause disaster in singleseam mining,but also more easily cause disaster in multi-seam mining.The instability of coal pillars can cause not only dynamical disasters such as rock falls and mine earthquakes,but also cause surface subsidence and other disasters.②When monitoring the linkage instability of residual coal pillar-rock strata,it is not only necessary to consider the monitoring of the apply load body(key block),the transition body(residual coal pillar)and the carrier body(interlayer rock and working face),but also to strengthen the monitoring of the fracture development height(linkage body).③According to the principles of objectivity,easy access and quantification,combined with investigation,analysis,and production and geological characteristics of this mining area,the main evaluation indexes of the degree of disaster caused by linkage instability of residual coal pillar-rock strata are determined as:microseismic energy,residual coal pillar damage degree,fracture development height.And the evaluation index classification table was also given.④According to the measured value of the evaluation index,the fuzzy comprehensive evaluation method was used to calculate the disaster risk degree in the studied mine belongs to class III,that is,medium risk level.The corresponding pressure relief technology was adopted on site,which achieved a good control effect,and also verified the accuracy and effectiveness of the risk evaluation results.