期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Enrichment conditions and resource potential of coal-rock gas in Ordos Basin,NW China
1
作者 NIU Xiaobing FAN Liyong +4 位作者 YAN Xiaoxiong ZHOU Guoxiao ZHANG Hui JING Xueyuan ZHANG Mengbo 《Petroleum Exploration and Development》 SCIE 2024年第5期1122-1137,共16页
To reveal the enrichment conditions and resource potential of coal-rock gas in the Ordos Basin,this paper presents a systematic research on the sedimentary environment,distribution,physical properties,reservoir charac... To reveal the enrichment conditions and resource potential of coal-rock gas in the Ordos Basin,this paper presents a systematic research on the sedimentary environment,distribution,physical properties,reservoir characteristics,gas-bearing characteristics and gas accumulation play of deep coals.The results show that thick coals are widely distributed in the Carboniferous–Permian of the Ordos Basin.The main coal seams Carboniferous 5~#and Permian 8~#in the Carboniferous–Permian have strong hydrocarbon generation capacity and high thermal evolution degree,which provide abundant materials for the formation of coal-rock gas.Deep coal reservoirs have good physical properties,especially porosity and permeability.Coal seams Carboniferous 5^(#)and Permian 8^(#)exhibit the average porosity of 4.1%and 6.4%,and the average permeability of 8.7×10^(-3)μm^(2)and 15.7×10^(-3)μm^(2),respectively.Cleats and fissures are developed in the coals,and together with the micropores,constitute the main storage space.With the increase of evolution degree,the micropore volume tends to increase.The development degree of cleats and fissures has a great impact on permeability.The coal reservoirs and their industrial compositions exhibit significantly heterogeneous distribution in the vertical direction.The bright coal seam,which is in the middle and upper section,less affected by ash filling compared with the lower section,and contains well-developed pores and fissures,is a high-quality reservoir interval.The deep coals present good gas-bearing characteristics in Ordos Basin,with the gas content of 7.5–20.0 m^(3)/t,and the proportion of free gas(greater than 10%,mostly 11.0%–55.1%)in coal-rock gas significantly higher than that in shallow coals.The enrichment degree of free gas in deep coals is controlled by the number of macropores and microfractures.The coal rock pressure testing shows that the coal-limestone and coal-mudstone combinations for gas accumulation have good sealing capacity,and the mudstone/limestone(roof)-coal-mudstone(floor)combination generally indicates high coal-rock gas values.The coal-rock gas resources in the Ordos Basin were preliminarily estimated by the volume method to be 22.38×10^(12)m^(3),and the main coal-rock gas prospects in the Ordos Basin were defined.In the central-east of the Ordos Basin,Wushenqi,Hengshan-Suide,Yan'an,Zichang,and Yichuan are coal-rock gas prospects for the coal seam#8 of the Benxi Formation,and Linxian West,Mizhi,Yichuan-Huangling,Yulin,and Wushenqi-Hengshan are coal-rock gas prospects for the coal seam#5 of the Shanxi Formation,which are expected to become new areas for increased gas reserves and production. 展开更多
关键词 coal-rock gas coalbed methane critical depth coal characteristics enrichment conditions gas accumulation play resource potential exploration direction Ordos Basin
下载PDF
Combustion characteristics of semicokes derived from pyrolysis of low rank bituminous coal 被引量:10
2
作者 Qian wei Xie Qiang +4 位作者 Huang Yuyi Dang Jiatao Sun Kaidi Yang Qian Wang Jincao 《International Journal of Mining Science and Technology》 SCIE EI 2012年第5期645-650,共6页
Various semicokes were obtained from medium-low temperature pyrolysis of Dongrong long flame coal.The proximate analysis,calorific value and Hardgrove grindability index(HGI) of semicokes were determined,and the ignit... Various semicokes were obtained from medium-low temperature pyrolysis of Dongrong long flame coal.The proximate analysis,calorific value and Hardgrove grindability index(HGI) of semicokes were determined,and the ignition temperature,burnout temperature,ignition index,burnout index,burnout ratio,combustion characteristic index of semicokes were measured and analyzed using thermogravimetry analysis(TGA).The effects of pyrolysis temperature,heating rate,and pyrolysis time on yield,composition and calorific value of long flame coal derived semicokes were investigated,especially the influence of pyrolysis temperature on combustion characteristics and grindability of the semicokes was studied combined with X-ray diffraction(XRD) analysis of semicokes.The results show that the volatile content,ash content and calorific value of semicokes pyrolyzed at all process parameters studied meet the technical specifications of the pulverized coal-fired furnaces(PCFF) referring to China Standards GB/T 7562-1998.The pyrolysis temperature is the most influential factor among pyrolysis process parameters.As pyrolysis temperature increases,the yield,ignition index,combustion reactivity and burnout index of semicokes show a decreasing tend,but the ash content increases.In the range of 400 and 450 °C,the grindability of semicokes is rational,especially the grindability of semicokes pyrolyzed at 450 °C is suitable.Except for the decrease of volatile content and increase of ash content,the decrease of combustion performance of semicokes pyrolyzed at higher temperature should be attributed to the improvement of the degree of structural ordering and the increase of aromaticity and average crystallite size of char.It is concluded that the semicokes pyrolyzed at the temperature of 450 °C is the proper fuel for PCFF. 展开更多
关键词 Long flame coal Medium-low temperature pyrolysis Semicoke Combustion characteristics Pulverized coal-fired furnaces
下载PDF
Failure characteristics of surface vertical wells for relieved coal gas and their influencing factors in Huainan mining area 被引量:3
3
作者 Xu Honkie Sang Shuxun +2 位作者 Fang Liangcai 6 Huang Huazhou Ren Bo 《Mining Science and Technology》 EI CAS 2011年第1期83-88,共6页
Based on data from through-hole and logging,we studied the failure characteristics of surface drainage wells for relieved coal gas in Huainan mining area and its influencing factors.The results show that the damaged p... Based on data from through-hole and logging,we studied the failure characteristics of surface drainage wells for relieved coal gas in Huainan mining area and its influencing factors.The results show that the damaged positions of drainage wells are mainly located at the thick clay layer in the low alluvium and the lithological interface in the upper section of bedrock in west mining area.The failure depth of casing is 244-670 m and concentrates at about 270-460 m deep.These damaged positions are mainly located in the bending zone according to three zones of rock layers in the vertical section above the roof divided. Generally,the casing begins to deform or damage before the face line about 30-150 m.Special formation structure and rock mass properties are the direct causes of the casing failure,high mining height and fast advancing speed are fundamental reasons for rock mass damage.However,the borehole configuration and spacing to the casing failure are not very clear. 展开更多
关键词 Huainan mining area Vertical wells for relieved coal gas Failure characteristics Influencing factors
下载PDF
Signal characteristics of coal and rock dynamics with micro-seismic monitoring technique 被引量:3
4
作者 Ding Yanlu Dou Linming +4 位作者 Cai Wu Chen Jianjun Kong Yong Su Zhenguo Li Zhenlei 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第4期683-690,共8页
In this study, differences of signal characteristics between mine shocks and coal and gas outbursts in coal mines were examined with the micro-seismic monitoring technique and time-frequency analysis. The duration of ... In this study, differences of signal characteristics between mine shocks and coal and gas outbursts in coal mines were examined with the micro-seismic monitoring technique and time-frequency analysis. The duration of the mine shock is short while the coal and gas outburst lasts longer. The outburst consists of three stages: the pre-shock, secondary shock and main shock stage, respectively. The velocity amplitude of the mine shock is between 10 s and 10-3 m/s, which is higher than that of the outburst with the same energy level. In addition, in both cases, the correlation between the velocity amplitude and energy is positive while the correlation between the signal frequency band distribution and energy is negative. The signal frequency band of the high energy mine shock is distributed between 0 and 50 Hz, and the low energy mine shock is between 50 and 100 Hz. The fractal characteristics of mine shocks were studied based on a fractal theory. The box dimensions of high energy mine shocks are lower than the low energy ones, however, the box dimensions of outbursts are higher than that of mine shocks with the same energy level. The higher box dimensions indicate more dangerous dynamic events. 展开更多
关键词 Mine shock coal and gas outburst Micro-seismic signal Spectrum characteristics Fractal characteristics
下载PDF
Characteristics of Coalbed Methane Resources of China
5
作者 LIN Dayang YE Jianping +1 位作者 QIN Yong TANG Shuheng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2000年第3期706-710,共5页
The paper deals with the coalbed methane gas-bearing characteristics such as the gas content, theoretical gas saturation, gas concentration and abundance, as well as coal reservoir characteristics such as the adsorpti... The paper deals with the coalbed methane gas-bearing characteristics such as the gas content, theoretical gas saturation, gas concentration and abundance, as well as coal reservoir characteristics such as the adsorption, desorption and permeability of China's coal reservoirs. The paper also introduces the resources of coalbed methane with a gas content ≥ 4 m3/t and their distribution in China. 展开更多
关键词 coalbed methane gas-bearing parameters coal reservoir characteristics coalbed methane resources
下载PDF
Effect of protective coal seam mining and gas extraction on gas transport in a coal seam 被引量:13
6
作者 Yao Banghua Ma Qingqing +2 位作者 Wei Jianping Ma Jianhong Cai Donglin 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第4期637-643,共7页
A gas–solid coupling model involving coal seam deformation,gas diffusion and seepage,gas adsorption and desorption was built to study the gas transport rule under the effect of protective coal seam mining.The researc... A gas–solid coupling model involving coal seam deformation,gas diffusion and seepage,gas adsorption and desorption was built to study the gas transport rule under the effect of protective coal seam mining.The research results indicate:(1) The depressurization effect changes the stress state of an overlying coal seam and causes its permeability to increase,thus gas in the protected coal seam will be desorbed and transported under the effect of a gas pressure gradient,which will cause a decrease in gas pressure.(2) Gas pressure can be further decreased by setting out gas extraction boreholes in the overlying coal seam,which can effectively reduce the coal and gas outburst risk.The research is of important engineering significance for studying the gas transport rule in protected coal seam and providing important reference for controlling coal and gas outbursts in deep mining in China. 展开更多
关键词 Protective coal seam mining Seepage characteristic coal and gas outburst Numerical simulation
下载PDF
Characteristics analysis of a novel centralized-driving flip-flow screen 被引量:9
7
作者 Peng Liping Li Fengming +3 位作者 Dong Hailin Liu Chusheng Zhao Yuemin Duan Chenlong 《International Journal of Mining Science and Technology》 SCIE EI 2014年第2期195-200,共6页
During screening operation, blinding or clogging of screen perforations generally occurs to reduce the sieving capacity and efficiency. Recently, the flip-flow screening has been widely recognized as a feasible method... During screening operation, blinding or clogging of screen perforations generally occurs to reduce the sieving capacity and efficiency. Recently, the flip-flow screening has been widely recognized as a feasible method to deal with the problem. In this paper, a novel centralized-driving flip-flow screen(CFS) was developed for the separation of fine and moist coal, and the key structures, namely, a centralized-driving mechanism and a quasi-circle beam mounted with the mat were designed for high reliability and stability. By means of a test on an experimental prototype, the effect of some factors, i.e., initial stretch and hardness of the polyurethane panel, respectively, and the rotation speed of the driving motor on the kinematic characteristic of the screen surface was investigated. Results show that without an initial stretch, the sieve mat generates the largest vibratory amplitude while the slacker the sieve mat initially is, the smaller amplitude it will accomplish. And an increase in the rotation speed could cause a rise in the vibratory amplitude. Unlike the two factors, the hardness does not have a definite effect on the kinematic performance, on which a further study is required. Finally, screening processing on a laboratory prototype was conducted to draw the conclusion that the developed CFS also has a high sieving efficiency for the fine and moist coal. 展开更多
关键词 Centralized-driving Flip-flow screen Fine and moist coal Kinematic characteristic Sieving capacity and efficiency
下载PDF
Coal forming environments and their relationship to tectonic activity in the Cévennes Stephanian coal basin 被引量:1
8
作者 王华 庄新国 +1 位作者 任建业 张瑞生 《Journal of Coal Science & Engineering(China)》 2002年第2期23-30,共8页
Coal forming environments in the tectonically controlled intermontane Stephanian Cévennes coal basin (Massif central, France) show a complex interelationship between structural and sedimentological features. The ... Coal forming environments in the tectonically controlled intermontane Stephanian Cévennes coal basin (Massif central, France) show a complex interelationship between structural and sedimentological features. The study of the general structural features and the geometry of the coal beds developed during the different stages in the evolution of the basin, and the spatial relation of the lithofacial units to the early tectonic activities, lead the authors to suggest the following model. The synsedimentary faults that occurred as both intrabasinal and marginal faults controlled not only the spatial distribution, shape and thickness of the detrital rock units and coal seams, but also caused the inversion of the tectonic style. The marginal faults exercised important controls on the geometry of the basin and the distribution of lithofacial units. However due to the subsidence of the central part of the basin and the depocenter, and the to differences in the timing and intensity of the displacement the coal enrichment zones shifted both vertically and laterally. This eventually resulted in the inversion of the whole tectonic framework from semi graben through graben to a new semi graben. The style and rate of the tectonic movement and basin filling that occurred in the Stephanian Cévennes coal basin were in turn closely linked with the tectonic movement in the surrounding area. Therefore the authors propose that the environment and processes of coal formation in this basin are closely linked to its tectonic evolution. 展开更多
关键词 Cévennes coal basin Stephanian characteristic of coal seam coal forming environment tectonic movement
下载PDF
Numerical simulation for propagation characteristics of shock wave and gas flow induced by outburst intensity 被引量:5
9
作者 Zhou Aitao Wang Kai +2 位作者 Wang Li Du Feng Li Zhilei 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第1期107-112,共6页
In order to analyze the propagation characteristics of shock wave and gas flow induced by outburst intensity, the governing equations of shock wave and gas flow propagation were put forward, and the numerical simulati... In order to analyze the propagation characteristics of shock wave and gas flow induced by outburst intensity, the governing equations of shock wave and gas flow propagation were put forward, and the numerical simulation boundary condition was obtained based on outburst characteristics. The propagation characteristics of shock wave and gas flow were simulated by Fluent software, and the simulation results were verified by experiments. The results show that air shock wave is formed due to air medium compressed by the transient high pressure gas which rapidly expands in the roadway; the shock wave and gas flow with high velocity are formed behind the shock wave front, which significantly decays due to limiting effect of the roadway wall. The attenuation degree is greater in the early stage than that in the late stage, and the velocity of gas convection transport is lower than the speed of the shock wave.The greater the outburst intensity is, the greater the pressure of the shock wave front is, and the higher the speed of the shock wave and gas flow is. 展开更多
关键词 coal and gas outburstOutburst intensityShock wave and gas flowPropagation characteristics
下载PDF
Strata behavior in extra-thick coal seam mining with upward slicing backfilling technology 被引量:1
10
作者 Deng Xuejie Zhang Jixiong +1 位作者 Kang Tao Han Xiaole 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2016年第4期587-592,共6页
Based on the character of upward slicing backfilling mining and the condition of Gonggeyingzi coal mine in Inner Mongolia,this paper describes the studies of the strata behavior and the stress distribution in the proc... Based on the character of upward slicing backfilling mining and the condition of Gonggeyingzi coal mine in Inner Mongolia,this paper describes the studies of the strata behavior and the stress distribution in the process of backfilling mining in extra-thick coal seams.This was achieved by setting up and analyzing the elastic foundation beam model using the ABAQUS software.The results show that:(1) With the gradual mining of different slices,the roof appears to bend continuously but does not break.The vertical stress in the roof decreases and the decreasing amplitude reduces,while the tensile stress in the roof grows with the mining slices and the maximum tensile stress will not exceed the allowable tensile stress.(2) The front vertical stress at the working face exceeds the rear vertical stress and both show a trend of decrease with decreasing amplitude of decrease.(3) The slices mined early have more influence on the surrounding rock than the later ones.Similarly,the strata behavior experiences the same trend.The field measured data show that the roof does not break during the mining process,which is consistent with the conclusion. 展开更多
关键词 Extra-thick coal seam Upward slicing backfilling mining Strata movement characteristics Strata behavior
下载PDF
Combustion effects and emission characteristics of SO2, CO, NOx and heavy metals during co-combustion of coal and dewatered sludge 被引量:9
11
作者 Yiying JIN Yangyang LI Fuqiang LIU 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2016年第1期201-210,共10页
The influences of dewatered sludge blending ratio in coal on flammability index (C) and combustion characteristic index (S) and release of sulfur dioxide (SO2), nitrogen oxide (NOx), carbon monoxide (CO) and... The influences of dewatered sludge blending ratio in coal on flammability index (C) and combustion characteristic index (S) and release of sulfur dioxide (SO2), nitrogen oxide (NOx), carbon monoxide (CO) and heavy metals (Hg, As, Cd, Pb and Cr) were studied. The impact on combustion characteristics could be ignored if less than 20% of dewatered sludge was added in coal. Besides, emission pattern experiments of NOx, SO2, CO and heavy metals were carried out in a high-temperature tubular furnace. Results showed that the conversion rate of NOx and total emission of SO2 reduced with the increase of sludge adding ratio, and a better effect of fixing sulfur could be obtained when the blending ratio reached 30%. Concentrations and distributions of five types of heavy metals in different residues (bottom ash and fly ash) as well as in flue gas were analyzed. It was shown that the characteristics of coal and sludge, as well as the volatilization of heavy metals had a great influence on the distribution of heavy metals. 展开更多
关键词 sewage sludge combustion characteristic coal emission heavy metals
原文传递
CBM geology conditions study of Gemudi syncline,Western Guizhou Province
12
作者 WU Cai-fang OU Zheng FENG Qing ZHANG Jie-fang 《Journal of Coal Science & Engineering(China)》 2010年第3期288-291,共4页
Through the analysis of the surrounding rock, coal seam burial depth, coal quality and hydrologic geological condition, the methane-bearing property characteristics of the coal reservoir in the Gemudi syncline were el... Through the analysis of the surrounding rock, coal seam burial depth, coal quality and hydrologic geological condition, the methane-bearing property characteristics of the coal reservoir in the Gemudi syncline were elucidated. Most of the wall rock of the coal reservoir is mudstone and silt, which is a favourable enclosing terrane. Burial depth of the main excavating coat seam is moderate. The groundwater activity is thin, and there are absolute groundwater systems between each coal seam, which make poor intercon- nections to accelerate CBM enrichment. In our research, the area coal reservoir meta- morphosis is high, CBM content is high, hole-cranny system development degree is high, and permeability of the great mass of the main coal seam exceeds 0.1×10^-3 μm2, The result demonstrates that the southeast of the Gemudi syncline has the best conditions for prospecting and exploiting CBM. 展开更多
关键词 Gemudi syncline CBM geological condition coal reservoir characteristics permeability
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部