期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Factors Influencing Proppant Transportation and Hydraulic Fracture Conductivity in Deep Coal Methane Reservoirs
1
作者 Fan Yang Honggang Mi 《Fluid Dynamics & Materials Processing》 EI 2024年第11期2637-2656,共20页
The gas production of deep coalbed methane wells in Linxing-Shenfu block decreases rapidly,the water output is high,the supporting effect is poor,the effective supporting fracture size is limited,and the migration mec... The gas production of deep coalbed methane wells in Linxing-Shenfu block decreases rapidly,the water output is high,the supporting effect is poor,the effective supporting fracture size is limited,and the migration mechanism of proppant in deep coal reservoir is not clear at present.To investigate the migration behavior of proppants in complex fractures during the volume reconstruction of deep coal and rock reservoirs,an optimization test on the conductivity of low-density proppants and simulations of proppant migration in complex fractures of deep coal reservoirs were conducted.The study systematically analyzed the impact of various fracture geometries,proppant types and fracturingfluid viscosities on proppant distribution.Furthermore,the study compared the outcomes of dynamic proppant transport experiments with simulation results.The results show that the numerical simulation is consistent with the results of the proppant dynamic sand-carrying experiment.Under the conditions of low viscosity and large pumping-rate,a high ratio of 40/70 mesh proppant can facilitate the movement of the proppant to the depths of fractures at all levels.The technical goal is to create comprehensive fracture support within intricate trapezoidal fractures in deep coal and rock reservoirs without inducing sand plugging.The sand ratio is controlled at 15%–20%,with a proppant combination ratio of 40/70:30/50:20/40=6:3:1.Proppant pumping operations can effectively address the issue of poor support in complex fractures in deep coal formations.The research results have been successfully applied to the development of deep coalbed methane in the Linxing-Shenfu block,Ordos Basin. 展开更多
关键词 Deep coal fracture reticular fracture proppant density fracture conductivity proppant transportation
下载PDF
Forecasting Fractures in Coal Seams by Using Azimuthal Anisotropy from P-Wave Seismic Data 被引量:9
2
作者 DONG Shou-hua YUE Jian-hua ZHANG Fen-xuan 《Journal of China University of Mining and Technology》 EI 2007年第1期11-14,共4页
If the thickness of coal seams and the lithology of both roofs and floors of coal seams have not changed at all or only a little, then it is thought that the elastic anisotropy of coal seams depends mainly on fracture... If the thickness of coal seams and the lithology of both roofs and floors of coal seams have not changed at all or only a little, then it is thought that the elastic anisotropy of coal seams depends mainly on fractures and obeys the horizontally symmetric model of an azimuth anisotropy. For a fixed offset, the amplitude A of the reflection P-wave and the cosine of 2φ has an approximately linear relation, (φ is the source-detector azimuth with respect to the fracture strike. Based on this relationship, many things can be done, such as the extraction of macro bins, the correction of residual normal moveout, the formation of azimuth gather, the transformation and normalization of azimuth gathers and the extraction of reflection wave amplitudes of coal seams. The least squares method was used to inverse theoretically the direction and density of fractures of coal seams. The result is in good agreement with the regional geological structure, indicating that the azimuth anisotropic analysis of the P-wave is feasible in evaluating the density and direction of fractures in coal seams. 展开更多
关键词 coal fracture azimuth anisotropic analysis P-WAVE
下载PDF
Gas desorption characteristics of the high-rank intact coal and fractured coal 被引量:15
3
作者 Lu Shouqing Cheng Yuanping +3 位作者 Qin Liming Li Wei Zhou Hongxing Guo Haijun 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第5期819-825,共7页
The objective of this work is to study the gas desorption characteristics of the high-rank intact coal and fractured coal.The gas adsorption,mercury porosimetry and gas desorption experiments were carried out in this ... The objective of this work is to study the gas desorption characteristics of the high-rank intact coal and fractured coal.The gas adsorption,mercury porosimetry and gas desorption experiments were carried out in this study.Then,the theories of thermodynamics,diffusion mechanism and desorption kinetics were used to estimate the gas desorption characteristics.The results of gas adsorption experiments show that the initial isosteric adsorption heat of the intact coal is greater than that of the fractured coal,indicating that the gas molecules desorb more easily from fractured coal than intact coal.Using the mercury porosimetry,we find that the diffusion channels of fractured coal are more developed than those of intact coal.The difficult diffusion form dominates in the intact coal during the gas diffusing,while the easy diffusion form dominates in the fractured coal.The results of gas desorption experiments show that the initial gas desorption volume and velocity of the fractured coal are both greater than those of the intact coal.Using the Fick diffusion law,the study calculates the gas diffusion coefficients of the intact coal and fractured coal.The diffusion coefficients of the fractured coal are 2 times and 10 times greater than those of the intact coal at the time of 0-120 and 0-10 min,respectively. 展开更多
关键词 Intact coal Fractured coal Isosteric adsorption heat Diffusion coefficient
下载PDF
Ultrasonic vibrations and coal permeability: Laboratory experimental investigations and numerical simulations 被引量:11
4
作者 Zhang Junwen Li Yulin 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第2期221-228,共8页
Ultrasonic vibrations in coal lead to cavitation bubble oscillation, growth, shrinkage, and collapse, and the strong vibration of cavitation bubbles not only makes coal pores break and cracks propagate, but plays an i... Ultrasonic vibrations in coal lead to cavitation bubble oscillation, growth, shrinkage, and collapse, and the strong vibration of cavitation bubbles not only makes coal pores break and cracks propagate, but plays an important role in enhancing the permeability of coal. In this paper, the influence of ultrasonic cavitation on coal and the effects of the sonic waves on crack generation, propagation, connection, as well as the effect of cracks on the coal permeability, are studied. The experimental results show that cracks in coal are generated even connected rapidly after ultrasonic cavitation. Under the effect of ultrasonic cavitation,the permeability increases between 30% and 60%, and the number of cracks in coal also significantly increased. Numerical experiments show that the effective sound pressure is beneficial to fracture propagation and connection, and it is closely related to the permeability. Moreover, the numerical simulations and physical experiments provide a guide for the coal permeability improvement. 展开更多
关键词 Ultrasonic cavitation Rock-coal coal fracture Permeability Experimental analysis
下载PDF
Research of the electrical anisotropic characteristics of water-conducting fractured zones in coal seams 被引量:7
5
作者 Su Ben-Yu Yue Jian-Hua 《Applied Geophysics》 SCIE CSCD 2017年第2期216-224,322,共10页
Water flooding disasters are one of the five natural coal-mining disasters that threaten the lives of coal miners. The main causes of this flooding are water-conducting fractured zones within coal seams. However, when... Water flooding disasters are one of the five natural coal-mining disasters that threaten the lives of coal miners. The main causes of this flooding are water-conducting fractured zones within coal seams. However, when resistivity methods are used to detect water-conducting fractured zones in coal seams, incorrect conclusions can be drawn because of electrical anisotropy within the water-conducting fractured zones. We present, in this paper, a new geo-electrical model based on the geology of water-conducting fractured zones in coal seams. Factors that influence electrical anisotropy were analyzed, including formation water resistivity, porosity, fracture density, and fracture surface roughness, pressure, and dip angle. Numerical simulation was used to evaluate the proposed electrical method. The results demonstrate a closed relationship between the shape of apparent resistivity and the strike and dip of a fracture. Hence, the findings of this paper provide a practical resistivity method for coal-mining production. 展开更多
关键词 water-conducting fractured zones in coal seams coalfield goaf electrical anisotropy surface roughness formation water resistivity formation pressure
下载PDF
Fractal characteristics of surface crack evolution in the process of gas-containing coal extrusion 被引量:12
6
作者 Chen Peng Wang Enyuan +3 位作者 Ou Jianchun Li Zhonghui Wei Mingyao Li Xuelong 《International Journal of Mining Science and Technology》 SCIE EI 2013年第1期121-126,共6页
In this paper, simulated experiment device of coal and gas outburst was employed to perform the experiment on gas-containing coal extrusion. In the experiment, coal surface cracks were observed with a high-speed camer... In this paper, simulated experiment device of coal and gas outburst was employed to perform the experiment on gas-containing coal extrusion. In the experiment, coal surface cracks were observed with a high-speed camera and then the images were processed by sketch. Based on the above description, the paper studied the fractal dimension values from different positions of coal surface as well as their changing laws with time. The results show that there is a growing parabola trend of crack dimension value in the process of coal extrusion. Accordingly, we drew the conclusion that extruded coal crack evolution is a process of fractal dimension value increase. On the basis of fractal dimension values taken from different parts of coal masses, a fractal dimension of the contour map was drawn. Thus, it is clear that the contour map involves different crack fractal dimension values from different positions. To be specific, where there are complicated force and violent movement in coal mass, there are higher fractal dimension values, i.e., the further the middle of observation surface is from the exit of coal mass, and the lower the fractal dimension value is. In line with fractal geometry and energy theory of coal and gas outburst, this study presents the relation between fractal dimension and energy in the process of extruding. In conclusion, the evolution of crack fractal dimension value can signify that of energy, which has laid a solid foundation for the quantification research on the mechanism of gas-containing coal extrusion. 展开更多
关键词 coal and gas outburst Fracture Surface crack Fractal dimension value Energy
下载PDF
Numerical simulation on the risk of roof water inrush in Wuyang Coal Mine 被引量:11
7
作者 Yao Banghua Bai Haibo Zhang Boyang 《International Journal of Mining Science and Technology》 2012年第2期273-277,共5页
Water-inrush in mine is one of the mine disasters caused by mining.In order to assess the risk of roof water-inrush in Wuyang Coal Mine based on the geological material of the coal mine,we built numerical models for t... Water-inrush in mine is one of the mine disasters caused by mining.In order to assess the risk of roof water-inrush in Wuyang Coal Mine based on the geological material of the coal mine,we built numerical models for the roof fracture and seepage development rule by using RFPA2D and COMSOL respectively,to analyze the changes in fracture zone,stress,water pressure and seepage vector with the advancement of working face,and compared the results with the field investigated data.The numerical simulation results indicate that:(1) with the advancement of the working faces,the stress relief range and fracture zone in the overlying strata increased rapidly up to about 90 m,and then tended to remain constant,reaching a final height of about 95 m which agrees with the field investigation;(2) the seepage flow constantly increased with a larger flow volume both in the front and rear area,where the stress concentration are the most serious. 展开更多
关键词 Fracture zoneNumerical simulationWater inrushWuyang coal mine
下载PDF
Experimental study on the variation law of coal temperature during excavation in coal mines
8
作者 Yi-Shan PAN Lian-Man XU Zhong-Hua LI Guo-Zhen LI 《Journal of Coal Science & Engineering(China)》 2013年第2期133-135,共3页
By testing the temperature of the coal and the stress of the working surface, we got the variation law of coal temperature and coal stress during the excavation. The result shows that the activities of mining affect t... By testing the temperature of the coal and the stress of the working surface, we got the variation law of coal temperature and coal stress during the excavation. The result shows that the activities of mining affect the coal temperature, the fluctuation of coal temperature and the coal stress is synchronous. During the smooth change of crustal stress, the coal temperature basically keeps unchanged, when the dynamic phenomenon appears, the coal temperature changes, as well the coal stress. Therefore, we can use the online coal temperature monitoring system to test the coal temperature of the working surface continuously, and it can provide basic information for forecasting coal mine power disaster before it happens. 展开更多
关键词 coal temperature coal stress coal fracturing gas desorption
下载PDF
CO_2 permeability of fractured coal subject to confining pressures and elevated temperature: Experiments and modeling 被引量:8
9
作者 JU Yang WANG JianGuo +3 位作者 WANG HuiJie ZHENG JiangTao RANJITH Pathegama G GAO Feng 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第12期1931-1942,共12页
The CO_2 permeability of fractured coal is of great significance to both coalbed gas extraction and CO_2 storage in coal seams, but the effects of high confining pressure, high injection pressure and elevated temperat... The CO_2 permeability of fractured coal is of great significance to both coalbed gas extraction and CO_2 storage in coal seams, but the effects of high confining pressure, high injection pressure and elevated temperature on the CO_2 permeability of fractured coal with different fracture extents have not been investigated thoroughly. In this paper, the CO_2 permeability of fractured coals sampled from a Pingdingshan coal mine in China and artificially fractured to a certain extent is investigated through undrained triaxial tests. The CO_2 permeability is measured under the confining pressure with a range of 10–25 MPa, injection pressure with a range of 6–12 MPa and elevated temperature with a range of 25–70°C. A mechanistic model is then proposed to characterize the CO_2 permeability of the fractured coals. The effects of thermal expansion, temperature-induced reduction of adsorption capacity, and thermal micro-cracking on the CO_2 permeability are explored. The test results show that the CO_2 permeability of naturally fractured coal saliently increases with increasing injection pressure. The increase of confining pressure reduces the permeability of both naturally fractured coal and secondarily fractured coal. It is also observed that initial fracturing by external loads can enhance the permeability, but further fracturing reduces the permeability. The CO_2 permeability decreases with the elevation of temperature if the temperature is lower than 44°C, but the permeability increases with temperature once the temperature is beyond 44°C. The mechanistic model well describes these compaction mechanisms induced by confining pressure, injection pressure and the complex effects induced by elevated temperature. 展开更多
关键词 CO2 permeability fractured coal confining pressure elevated temperature thermal effects mechanistic models
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部