Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery a...Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery and the high-value utilization of residual carbon(RC)in FS are the keys to realizing the win-win situation of the coal chemical industry in terms of economic and environmental benefits.The structural properties,such as pore,surface functional group,and microcrystalline structures,of RC in FS(FS-RC)not only affect the flotation recovery efficiency of FS-RC but also form the basis for the high-value utilization of FS-RC.In this paper,the characteristics of FS-RC in terms of pore structure,surface functional groups,and microcrystalline structure are sorted out in accordance with gasification type and FS particle size.The reasons for the formation of the special structural properties of FS-RC are analyzed,and their influence on the flotation separation and high-value utilization of FS-RC is summarized.Separation methods based on the pore structural characterist-ics of FS-RC,such as ultrasonic pretreatment-pore-blocking flotation and pore breaking-flocculation flotation,are proposed to be the key development technologies for improving FS-RC recovery in the future.The design of low-cost,low-dose collectors containing polar bonds based on the surface and microcrystalline structures of FS-RC is proposed to be an important breakthrough point for strengthening the flotation efficiency of FS-RC in the future.The high-value utilization of FS should be based on the physicochemical structural proper-ties of FS-RC and should focus on the environmental impact of hazardous elements and the recyclability of chemical waste liquid to es-tablish an environmentally friendly utilization method.This review is of great theoretical importance for the comprehensive understand-ing of the unique structural properties of FS-RC,the breakthrough of the technological bottleneck in the efficient flotation separation of FS,and the expansion of the field of the high value-added utilization of FS-RC.展开更多
Fine slag(FS)is an unavoidable by-product of coal gasification.FS,which is a simple heap of solid waste left in the open air,easily causes environmental pollution and has a low resource utilization rate,thereby restri...Fine slag(FS)is an unavoidable by-product of coal gasification.FS,which is a simple heap of solid waste left in the open air,easily causes environmental pollution and has a low resource utilization rate,thereby restricting the development of energy-saving coal gasification technologies.The multiscale analysis of FS performed in this study indicates typical grain size distribution,composition,crystalline structure,and chemical bonding characteristics.The FS primarily contained inorganic and carbon components(dry bases)and exhibited a"three-peak distribution"of the grain size and regular spheroidal as well as irregular shapes.The irregular particles were mainly adsorbed onto the structure and had a dense distribution and multiple pores and folds.The carbon constituents were primarily amorphous in structure,with a certain degree of order and active sites.C 1s XPS spectrum indicated the presence of C–C and C–H bonds and numerous aromatic structures.The inorganic components,constituting 90%of the total sample,were primarily silicon,aluminum,iron,and calcium.The inorganic components contained Si–O-Si,Si–O–Al,Si–O,SO_(4)^(2−),and Fe–O bonds.Fe 2p XPS spectrum could be deconvoluted into Fe 2p_(1/2) and Fe 2p_(3/2) peaks and satellite peaks,while Fe existed mainly in the form of Fe(III).The findings of this study will be beneficial in resource utilization and formation mechanism of fine slag in future.展开更多
Effective separation of residual carbon and ash is the basis for the resource utilization of coal gasification fine slag(CGFS).The conventional flotation process of CGFS has the bottlenecks of low carbon recovery and ...Effective separation of residual carbon and ash is the basis for the resource utilization of coal gasification fine slag(CGFS).The conventional flotation process of CGFS has the bottlenecks of low carbon recovery and high collector dosage.In order to address these issues,CGFS sample taken from Shaanxi,China was used as the study object in this paper.A new process of size classification-fine grain ultrasonic pretreatment flotation(SC-FGUF)was proposed and its separation effect was compared with that of wholegrain flotation(WGF)as well as size classification-fine grain flotation(SC-FGF).The mechanism of its enhanced separation effect was revealed through flotation kinetic fitting,flotation flow foam layer stability,particle size composition,surface morphology,pore structure,and surface chemical property analysis.The results showed that compared with WGF,pre-classification could reduce the collector dosage by 84.09%and the combination of pre-classification and ultrasonic pretreatment could increase the combustible recovery by 17.29%and up to 93.46%.The SC-FGUF process allows the ineffective adsorption of coarse residual carbon to collector during flotation stage to be reduced by pre-classification,and the tightly embedded state of fine CGFS particles is disrupted and surface oxidizing functional group occupancy was reduced by ultrasonic pretreatment,thus carbon and ash is easier to be separated in the flotation process.In addition,some of the residual carbon particles were broken down to smaller sizes in the ultrasonic pretreatment,which led to an increase in the stability of flotation flow foam layer and a decrease in the probability of detachment of residual carbon particles from the bubbles.Therefore,SCFGUF could increase the residual carbon recovery and reduce the flotation collector dosage,which is an innovative method for carbon-ash separation of CGFS with good application prospect.展开更多
Coal gasification fly ash(CGFA)is an industrial solid waste from the coal circulating fluidized bed(CFB)gasification process,and it needs to be effectively disposed to achieve sustainable development of the environmen...Coal gasification fly ash(CGFA)is an industrial solid waste from the coal circulating fluidized bed(CFB)gasification process,and it needs to be effectively disposed to achieve sustainable development of the environment.To realize the application of CGFA as a precursor of porous carbon materials,the physicochemical properties of three kinds of CGFA from industrial CFB gasifiers are analyzed.Then,the activation potential of CGFA is acquired via steam activation experiments in a tube furnace reactor.Finally,the fluidization activation technology of CGFA is practiced in a bench-scale CFB test rig,and its advantages are highlighted.The results show that CGFA is characterized by a high carbon content in the range of 54.06%–74.09%,an ultrafine particle size(d50:16.3–26.1 μm),and a relatively developed pore structure(specific surface area SSA:139.29–551.97 m^(2)·g^(-1)).The proportion of micropores in CGFA increases gradually with the coal rank.Steam activation experiments show that the pore development of CGFA mainly includes three stages:initial pore development,dynamic equilibrium between micropores and mesopores and pore collapse.The SSA of lignite fly ash(LFA),subbituminous fly ash(SBFA)and anthracite fly ash(AFA)is maximally increased by 105%,13%and 72%after steam activation;the order of the largest carbon reaction rate and decomposition ratio of steam among the three kinds of CGFA is SBFA>LFA>AFA.As the ratio of oxygen to carbon during the fluidization activation of LFA is from 0.09 to 0.19,the carbon conversion ratio increases from 14.4%to 26.8%and the cold gas efficiency increases from 6.8%to 10.2%.The SSA of LFA increases by up to 53.9%during the fluidization activation process,which is mainly due to the mesoporous development.Relative to steam activation in a tube furnace reactor,fluidization activation takes an extremely short time(seconds)to achieve the same activation effect.It is expected to further improve the activation effect of LFA by regulating the carbon conversion ratio range of 27%–35%to create pores in the initial development stage.展开更多
Coal gasification slag(CGS)is a type of solid waste produced during coal gasification,in which heavy metals severely restrict its resource utilization.In this work,the mineral occurrence and distribution of typical he...Coal gasification slag(CGS)is a type of solid waste produced during coal gasification,in which heavy metals severely restrict its resource utilization.In this work,the mineral occurrence and distribution of typical heavy metal Cr in CGS is investigated.The leaching behavior of Cr under different conditions is studied in detail.Acid leaching-selective oxidation-coprecipitation method is proposed based on the characteristics of Cr in CGS.The detoxification of Cr in CGS is realized,and the detoxification mechanism is clarified.Results show that Cr is highly enriched in CGS.The speciation of Cr is mainly residual fraction(74.47%-86.12%),which is combined with amorphous aluminosilicate.Cr^(3+)and Cr^(6+)account for 90.93%-94.82%and 5.18%-9.07%of total Cr,respectively.High acid concentration and high liquid-solid ratio are beneficial to destroy the lattice structure of amorphous aluminosilicate,thus improving the leaching efficiency of Cr,which can reach 97.93%under the optimal conditions.Acid leaching-selective oxidation-coprecipitation method can realize the detoxification of Cr in CGS.Under the optimal conditions,the removal rates of Fe^(3+)and Cr^(3+)in the leaching solution are 80.99%-84.79%and 70.58%-71.69%,respectively,while the loss rate of Al^(3+)is only 1.10%-3.35%.Detoxification slag exists in the form of Fe-Cr coprecipitation(Fe_(1-x)Cr_xOOH),which can be used for smelting.The detoxification acid leaching solution can be used to prepare inorganic polymer composite coagulant poly-aluminum chloride(PAC).This study can provide theoretical and data guidance for detoxification of heavy metal Cr in CGS and achieve resource utilization of coal gasification solid waste.展开更多
An integrated vacuum pressure swing adsorption(VPSA) and Rectisol process is proposed for CO_(2) capture from underground coal gasification(UCG) syngas. A ten-bed VPSA process with silica gel adsorbent is firstly desi...An integrated vacuum pressure swing adsorption(VPSA) and Rectisol process is proposed for CO_(2) capture from underground coal gasification(UCG) syngas. A ten-bed VPSA process with silica gel adsorbent is firstly designed to pre-separate and capture 74.57% CO_(2) with a CO_(2) purity of 98.35% from UCG syngas(CH_(4)/CO/CO_(2)/H_(2)/N_(2)= 30.77%/6.15%/44.10%/18.46%/0.52%, mole fraction, from Shaar Lake Mine Field,Xinjiang Province, China) with a feed pressure of 3.5 MPa. Subsequently, the Rectisol process is constructed to furtherly remove and capture the residual CO_(2)remained in light product gas from the VPSA process using cryogenic methanol(233.15 K, 100%(mass)) as absorbent. A final purified gas with CO_(2) concentration lower than 3% and a regenerated CO_(2) product with CO_(2) purity higher than 95% were achieved by using the Rectisol process. Comparisons indicate that the energy consumption is deceased from 2.143 MJ·kg^(-1) of the single Rectisol process to 1.008 MJ·kg^(-1) of the integrated VPSA & Rectisol process, which demonstrated that the deployed VPSA was an energy conservation process for CO_(2) capture from UCG syngas. Additionally, the high-value gas(e.g., CH_(4)) loss can be decreased and the effects of key operating parameters on the process performances were detailed.展开更多
Under the background of a transformation of the global energy structure,coal gasification technology has a wide application prospect,but its by-product,the coal gasification residue(CGR),is still not being efficiently...Under the background of a transformation of the global energy structure,coal gasification technology has a wide application prospect,but its by-product,the coal gasification residue(CGR),is still not being efficiently utilized for recycling.The CGR contains abundant carbon components,which could be applied to the microwave absorption field as the carbon matrix.In this study,Fe/CGR composites are fabricated via a two-step method,including the impregnation of Fe^(3+)and the reduction process.The influence of the different loading capacities of the Fe component on the morphology and electromagnetic properties is studied.Moreover,the loading content of Fe and the surface morphology of the Fe/CGR can be reasonably controlled by adjusting the concentration of the ferric nitrate solution.Meanwhile,Fe particles are evenly inserted on the CGR framework,which expands the Fe/CGR interfaces to enhance interfacial polarization,thus further improving the microwave-absorbing(MA)properties of composites.Particularly,as the Fe^(3+)concentration is 1.0 mol/L,the Fe/CGR composite exhibits outstanding performance.The reflection loss reaches-39.3 dB at 2.5 mm,and the absorption bandwidth covers 4.1 GHz at 1.5 mm.In this study,facile processability,resource recycling,appropriately matched impedance,and excellent MA performance are achieved.Finally,the Fe/CGR composites not only enhance the recycling of the CGR but also pioneer a new path for the synthesis of excellent absorbents.展开更多
The characteristics of the energy structure of rich coal,less oil and less gas,coupling with a high external dependence on oil and natural gas and the emphasis on the efficient and clean utilisation of coal,have broug...The characteristics of the energy structure of rich coal,less oil and less gas,coupling with a high external dependence on oil and natural gas and the emphasis on the efficient and clean utilisation of coal,have brought opportunities for coal chemical industry.However,with the large-scale popularisation of coal gasification technology,the production and resulting storage of coal gasification slag continue to increase,which not only result in serious environmental pollution and a waste of terrestrial resources,but also seriously affect the sustainable development of coal chemical enterprises.Hence,the treatment of coal gasification slag is extremely important.In this paper,the production,composition,morphology,particle size structure and water holding characteristics of coal gasification slag are introduced,and the methods of carbon ash separation of gasification slag,both domestically and abroad,are summarised.In addition,the paper also summarises the research progress on gasification slag in building materials,ecological restoration,residual carbon utilisation and other high-value utilisation,and ultimately puts forward the idea of the comprehensive utilisation of gasification slag.For large-scale consumption to solve the environmental problems of enterprises and achieve high-value utilisation to increase the economic benefits of enterprises,it is urgent to zealously design a reasonable and comprehensive utilisation technologies with simple operational processes,strong adaptability and economic benefits.展开更多
Diatomite is a kind of natural low-cost mineral material. It has a number of unique physical properties and has been widely used as an adsorbent in wastewater treatment. This study was conducted to investigate the aer...Diatomite is a kind of natural low-cost mineral material. It has a number of unique physical properties and has been widely used as an adsorbent in wastewater treatment. This study was conducted to investigate the aerobic biodegradation of coal gasification wastewater with and without diatomite addition. Experimental results indicated that diatomite added in the activated sludge system could promote the biomass and also enhance the performance of the sludge settling. The average mixed-liquor volatile suspended solids (MLVSS) is increased from 4055 mg.L^-1 to 4518 mg.L^-1 and the average settling volume (SV) are changed only from 45.9% to 47.1%. Diatomite additive could enhance the efficiency of chemical oxygen demand (COD) and total phenols removal from the wastewater. The COD removal increased from 73.3% to near 80% and the total phenols removal increased from 81.4% to 85.8%. The mechanisms of the increase of biomass and pollutants removal may correlates to the improvement of bioavailability and sludge settlement characteristics by diatomite added. Micrograph of the sludge in the diatomite-activated sludge system indicated that the diatomite added could be the carrier of the microbe and also affect the biomass and pollutant removal.展开更多
A three stage equilibrium model is developed for coal gasification in the Texaco type coal gasifiersbased on Aspen Plus to calculate the composition of product gas, carbon conversion, and gasification teml^erature. Th...A three stage equilibrium model is developed for coal gasification in the Texaco type coal gasifiersbased on Aspen Plus to calculate the composition of product gas, carbon conversion, and gasification teml^erature. The model is divided into three stages including pyrolysis and combustion stage, char gas reaction stage, and gas p.hase reaction stage. Part of the water produced in thepyrolysis and combust!on stag.e is assumed to be involved inthe second stage to react with the unburned carbon. Carbon conversion is then estimated in the second stage by steam participation ratio expressed as a function of temperature. And the gas product compositions are calculated from gas phase reactions in the third stage. The simulation results are consistent with published experimental data.展开更多
General pretreatment processes of ammonia stripping and phenols solvent extraction can reduce the concentration of toxic compounds of the coal gasification wastewater for the following biological treatment. However, s...General pretreatment processes of ammonia stripping and phenols solvent extraction can reduce the concentration of toxic compounds of the coal gasification wastewater for the following biological treatment. However, some emulsified coal tar still exists in the influent and many substances in coal tar are refractory and toxic to microorganisms. This study is mainly on the removal of emulsified coal tar by acidification demulsion. The experimental results show that the acidification process of the wastewater by pure hydrochloric acid can reduce the chemical oxygen demand (COD), total organic carbon (TOC), total phenolics and oil about 3.1%-11.3%, 6%-- 10.8%, 5.3%--8.6% and 25.2%--57.4% respectively with pH value in the range of 4 to 7. The analysis of molecular weight distribution indicates that compounds removed from the wastewater by this process are large molecular substances. The experiment also shows that the efficiency of COD removal in the demulsion process by different acids is different and the phosphoric acid is prominent. The preserved time of the wastewater also affects the efficiency of demulsion. Small amount low-cost solid additives including kaolin and diatomite can improve the rate of coal tar sedimentation and enhance the removal efficiency of organics in the phosphoric acidification process.展开更多
In situ coal gasification poses a potential environmental risk to groundwater pollution although it depends mainly on local hydrogeological conditions. In our investigation,the possible processes of groundwater pollut...In situ coal gasification poses a potential environmental risk to groundwater pollution although it depends mainly on local hydrogeological conditions. In our investigation,the possible processes of groundwater pollution origi-nating from underground coal gasification (UCG) were analyzed. Typical pollutants were identified and pollution con-trol measures are proposed. Groundwater pollution is caused by the diffusion and penetration of contaminants generated by underground gasification processes towards surrounding strata and the possible leaching of underground residue by natural groundwater flow after gasification. Typical organic pollutants include phenols,benzene,minor components such as PAHs and heterocyclics. Inorganic pollutants involve cations and anions. The natural groundwater flow after gasification through the seam is attributable to the migration of contaminants,which can be predicted by mathematical modeling. The extent and concentration of the groundwater pollution plume depend primarily on groundwater flow ve-locity,the degree of dispersion and the adsorption and reactions of the various contaminants. The adsorption function of coal and surrounding strata make a big contribution to the decrease of the contaminants over time and with the distance from the burn cavity. Possible pollution control measures regarding UCG include identifying a permanently,unsuitable zone,setting a hydraulic barrier and pumping contaminated water out for surface disposal. Mitigation measures during gasification processes and groundwater remediation after gasification are also proposed.展开更多
Two-stage underground coal gasification was studied to improve the caloric value of the syngas and to extend gas production times.A model test using the oxygen-enriched two-stage coal gasification method was carried o...Two-stage underground coal gasification was studied to improve the caloric value of the syngas and to extend gas production times.A model test using the oxygen-enriched two-stage coal gasification method was carried out.The composition of the gas produced,the time ratio of the two stages,and the role of the temperature field were analysed.The results show that oxygen-enriched two-stage gasification shortens the time of the first stage and prolongs the time of the second stage.Feed oxygen concentrations of 30%, 35%,40%,45%.60%,or 80%gave time ratios(first stage to second stage) of 1:0.12,1:0.21.1:0.51,1:0.64, 1:0.90.and 1:4.0 respectively.Cooling rates of the temperature field after steam injection decreased with time from about 19.1-27.4℃/min to 2.3-6.8℃/min.But this rate increased with increasing oxygen concentrations in the first stage.The caloric value of the syngas improves with increased oxygen concentration in the first stage.Injection of 80%oxygen-enriched air gave gas with the highest caloric value and also gave the longest production time.The caloric value of the gas obtained from the oxygenenriched two-stage gasification method lies in the range from 5.31 MJ/Nm^3 to 10.54 MJ/Nm^3.展开更多
Environmental benefits of underground coal gasification are evaluated. The results showed that through underground coal gasification, gangue discharge is eliminated, sulfur emission is reduced, and the amount of ash,...Environmental benefits of underground coal gasification are evaluated. The results showed that through underground coal gasification, gangue discharge is eliminated, sulfur emission is reduced, and the amount of ash, mercury, and tar discharge are decreased. Moreover, effect of underground gasification on underground water is analyzed and CO 2 disposal method is put forward.展开更多
To optimize the technological parameter of underground coal gasification (UCG), the experimental results of air gasification, air-steam gasification, oxygen-enrichment steam gasification, pure oxygen steam gasificat...To optimize the technological parameter of underground coal gasification (UCG), the experimental results of air gasification, air-steam gasification, oxygen-enrichment steam gasification, pure oxygen steam gasification and two-stage gasification were studied contrastively based on field trial at the Huating UCG project. The results indicate that the average low heat value of gas from air experiment is the lowest (4.1 MJ/Nm3) and the water gas from two-stage gasification experiment is the highest (10.72 MJ/Nm3). The gas productivity of air gasification is the highest and the pure oxygen steam gasification is the lowest. The gasification efficiency of air gasification, air-steam gasification, oxygen-enriched steam gasification, pure oxygen steam gasification and two-stage gasification is listed in ascending order, ranging from 69.88% to 84.81%. Described a contract study on results of a field test using steam and various levels of oxygen enrichment of 21%, 32%, 42% and 100%. The results show that, with the increasing of O2 content in gasifying agents, the gas caloricity rises, and the optimal O2 concentration range to increase the gas caloricity is 30%-40%. Meanwhile, the consumption of O2 and steam increase, and the air consumption and steam decomposition efficiency fall.展开更多
Coal combustion and gasification are the processes to utilize coal for production of electricity and many other applications. Global energy demand is increasing day by day. Coal is an abundant source of energy but not...Coal combustion and gasification are the processes to utilize coal for production of electricity and many other applications. Global energy demand is increasing day by day. Coal is an abundant source of energy but not a reliable source as it results into high CO2 emissions. Energy industries are expected to decrease the CO2 emission to prevent global warming. Coal gasification is a process that reduces the CO2 emission and emerges as a clean coal technology. Coal gasification process is regulated by several operating parameters. A Number of investigations have been carried out in this direction. A critical review of the work done by several researchers in the field of coal gasification has been compiled in this paper. The effect of several operating parameters such as coal rank, temperature, pressure, porosity, reaction time and catalyst on gasification has been presented here.展开更多
A N 2 flotation tank combined with coagulation was developed as a pretreatment equipment of biological process to remove oil and other pollutants in coal gasification wastewater( CGW). With optimal PAC dosage of 20 mg...A N 2 flotation tank combined with coagulation was developed as a pretreatment equipment of biological process to remove oil and other pollutants in coal gasification wastewater( CGW). With optimal PAC dosage of 20 mg / L,the sole coagulation process achieves removal efficiencies of 29. 34% and 26. 83% for oil and COD,respectively. For the sole N 2 floatation process,the optimal N 2 flux and HRT are 20 m3/ h and 20 min. Meanwhile,the oil and COD removal efficiencies are 35. 41% and 14. 26%,respectively. For the combined system of coagulation and N 2 floatation,the optimal parameter values are the same as the ones of separate processes. Correspondingly,the removal efficiencies are 46. 28% and 31. 89% for oil and COD, respectively. Besides,BOD 5 / COD of the effluent is improved. In contrast with conventional dissolved air floatation,the inert gas- N 2 prevents the formation of cyclopentenone, pyridine derivatives, and other heterocyclic aromatic hydrocarbons,thus improving the biodegradability of influent for the subsequent biological processes.展开更多
Mineral matter in a residue(RC G)from coal gasification(CG)was removed by two-stage acid leaching.Hierarchical activated carbon(HAC)was prepared by activating RC Gwith CO2.The performance of HAC on removing methylene ...Mineral matter in a residue(RC G)from coal gasification(CG)was removed by two-stage acid leaching.Hierarchical activated carbon(HAC)was prepared by activating RC Gwith CO2.The performance of HAC on removing methylene blue(MB)from an aqueous solution was investigated.HAC was characterized by N2 adsorption–desorption isotherm,Fourier transform infrared spectroscopy,and scanning electron microscopy.The results show that HAC exhibits hierarchical pore structure with high specific surface area(862.76 m2·g-1)and total pore volume(0.684 cm3·g-1),and abundant organic functional groups.The adsorption equilibrium data of MB on HAC are best fitted to the Redlich-Peterson.The kinetic data show that the pseudo-first-order model is more suitable at low MB concentration,while the advantages of the pseudo-second-orderand the Elovich models are more obvious as the concentration increases.According to the thermodynamic parameters,the HAC-MB adsorption process is spontaneous and endothermic.展开更多
X-ray fluorescence spectrometry(XRF),X-ray powder diffractometry(XRD) and scanning electron microscopy(SEM) were used to characterize the chemical composition,phase constituent and microstructure of the coal gas...X-ray fluorescence spectrometry(XRF),X-ray powder diffractometry(XRD) and scanning electron microscopy(SEM) were used to characterize the chemical composition,phase constituent and microstructure of the coal gasification slag.Sialon powders were synthesized by carbothermal reduction and nitridation using the coal gasification slag as raw materials.The experimental results showed that glass and amorphous carbon were the main phases,quartz and calcite as minor crystalline phases were also presented in porous coal gasification slag.Main constituents of coal gasification slag were SiO2,Al2O3,CaO and residual carbon.Sialon powder with Ca-α-Sialon as main crystalline phase can be synthesized when coal gasification slag powders were reduced and nitrided at 1500 ℃ for 9 h using nitrogen flow of 500 ml/min.The coal gasification slag is a valuable and economic starting material for preparing Sialon powders.展开更多
The field trail used a mixture of steam and air with various levels of oxygen en- richment.Steady conditions were achieved in the field trail which produced high quality hydrogen-enriched syngas.To understand and opti...The field trail used a mixture of steam and air with various levels of oxygen en- richment.Steady conditions were achieved in the field trail which produced high quality hydrogen-enriched syngas.To understand and optimize the UCG process,a simplified heat and mass transfer model was presented,providing a predictive tool for temperature and the major constituents of the syngas production.The model is compared with the field trail measurements for air and two levels of oxygen enrichment,showing reasonable agreement for the channel temperature and product syngas concentration profile.展开更多
基金the National Natural Science Foundation of China(No.52374279)the Natural Science Foundation of Shaanxi Province(No.2023-YBGY-055).
文摘Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery and the high-value utilization of residual carbon(RC)in FS are the keys to realizing the win-win situation of the coal chemical industry in terms of economic and environmental benefits.The structural properties,such as pore,surface functional group,and microcrystalline structures,of RC in FS(FS-RC)not only affect the flotation recovery efficiency of FS-RC but also form the basis for the high-value utilization of FS-RC.In this paper,the characteristics of FS-RC in terms of pore structure,surface functional groups,and microcrystalline structure are sorted out in accordance with gasification type and FS particle size.The reasons for the formation of the special structural properties of FS-RC are analyzed,and their influence on the flotation separation and high-value utilization of FS-RC is summarized.Separation methods based on the pore structural characterist-ics of FS-RC,such as ultrasonic pretreatment-pore-blocking flotation and pore breaking-flocculation flotation,are proposed to be the key development technologies for improving FS-RC recovery in the future.The design of low-cost,low-dose collectors containing polar bonds based on the surface and microcrystalline structures of FS-RC is proposed to be an important breakthrough point for strengthening the flotation efficiency of FS-RC in the future.The high-value utilization of FS should be based on the physicochemical structural proper-ties of FS-RC and should focus on the environmental impact of hazardous elements and the recyclability of chemical waste liquid to es-tablish an environmentally friendly utilization method.This review is of great theoretical importance for the comprehensive understand-ing of the unique structural properties of FS-RC,the breakthrough of the technological bottleneck in the efficient flotation separation of FS,and the expansion of the field of the high value-added utilization of FS-RC.
基金Scientific Research Foundation for the Introduction of Talent in Anhui University of Science and Technology(2023yjrc90)Graduate Research Project of Higher Education in Anhui Province(YJS20210377)+2 种基金Postgraduate Innovation Fund of Anhui University of Science and Technology(2021CX1002)University Synergy Innovation Program of Anhui Province(GXXT-2020-006)National Science Fund for Young Scientists(52200139).
文摘Fine slag(FS)is an unavoidable by-product of coal gasification.FS,which is a simple heap of solid waste left in the open air,easily causes environmental pollution and has a low resource utilization rate,thereby restricting the development of energy-saving coal gasification technologies.The multiscale analysis of FS performed in this study indicates typical grain size distribution,composition,crystalline structure,and chemical bonding characteristics.The FS primarily contained inorganic and carbon components(dry bases)and exhibited a"three-peak distribution"of the grain size and regular spheroidal as well as irregular shapes.The irregular particles were mainly adsorbed onto the structure and had a dense distribution and multiple pores and folds.The carbon constituents were primarily amorphous in structure,with a certain degree of order and active sites.C 1s XPS spectrum indicated the presence of C–C and C–H bonds and numerous aromatic structures.The inorganic components,constituting 90%of the total sample,were primarily silicon,aluminum,iron,and calcium.The inorganic components contained Si–O-Si,Si–O–Al,Si–O,SO_(4)^(2−),and Fe–O bonds.Fe 2p XPS spectrum could be deconvoluted into Fe 2p_(1/2) and Fe 2p_(3/2) peaks and satellite peaks,while Fe existed mainly in the form of Fe(III).The findings of this study will be beneficial in resource utilization and formation mechanism of fine slag in future.
基金supported by the National Natural Science Foundation of China(No.52374279)the Natural Science Foundation of Shaanxi Province(No.2023-YBGY-055).
文摘Effective separation of residual carbon and ash is the basis for the resource utilization of coal gasification fine slag(CGFS).The conventional flotation process of CGFS has the bottlenecks of low carbon recovery and high collector dosage.In order to address these issues,CGFS sample taken from Shaanxi,China was used as the study object in this paper.A new process of size classification-fine grain ultrasonic pretreatment flotation(SC-FGUF)was proposed and its separation effect was compared with that of wholegrain flotation(WGF)as well as size classification-fine grain flotation(SC-FGF).The mechanism of its enhanced separation effect was revealed through flotation kinetic fitting,flotation flow foam layer stability,particle size composition,surface morphology,pore structure,and surface chemical property analysis.The results showed that compared with WGF,pre-classification could reduce the collector dosage by 84.09%and the combination of pre-classification and ultrasonic pretreatment could increase the combustible recovery by 17.29%and up to 93.46%.The SC-FGUF process allows the ineffective adsorption of coarse residual carbon to collector during flotation stage to be reduced by pre-classification,and the tightly embedded state of fine CGFS particles is disrupted and surface oxidizing functional group occupancy was reduced by ultrasonic pretreatment,thus carbon and ash is easier to be separated in the flotation process.In addition,some of the residual carbon particles were broken down to smaller sizes in the ultrasonic pretreatment,which led to an increase in the stability of flotation flow foam layer and a decrease in the probability of detachment of residual carbon particles from the bubbles.Therefore,SCFGUF could increase the residual carbon recovery and reduce the flotation collector dosage,which is an innovative method for carbon-ash separation of CGFS with good application prospect.
基金financially supported by the Special Research Assistant Fund Project of Chinese Academy of Sciences.
文摘Coal gasification fly ash(CGFA)is an industrial solid waste from the coal circulating fluidized bed(CFB)gasification process,and it needs to be effectively disposed to achieve sustainable development of the environment.To realize the application of CGFA as a precursor of porous carbon materials,the physicochemical properties of three kinds of CGFA from industrial CFB gasifiers are analyzed.Then,the activation potential of CGFA is acquired via steam activation experiments in a tube furnace reactor.Finally,the fluidization activation technology of CGFA is practiced in a bench-scale CFB test rig,and its advantages are highlighted.The results show that CGFA is characterized by a high carbon content in the range of 54.06%–74.09%,an ultrafine particle size(d50:16.3–26.1 μm),and a relatively developed pore structure(specific surface area SSA:139.29–551.97 m^(2)·g^(-1)).The proportion of micropores in CGFA increases gradually with the coal rank.Steam activation experiments show that the pore development of CGFA mainly includes three stages:initial pore development,dynamic equilibrium between micropores and mesopores and pore collapse.The SSA of lignite fly ash(LFA),subbituminous fly ash(SBFA)and anthracite fly ash(AFA)is maximally increased by 105%,13%and 72%after steam activation;the order of the largest carbon reaction rate and decomposition ratio of steam among the three kinds of CGFA is SBFA>LFA>AFA.As the ratio of oxygen to carbon during the fluidization activation of LFA is from 0.09 to 0.19,the carbon conversion ratio increases from 14.4%to 26.8%and the cold gas efficiency increases from 6.8%to 10.2%.The SSA of LFA increases by up to 53.9%during the fluidization activation process,which is mainly due to the mesoporous development.Relative to steam activation in a tube furnace reactor,fluidization activation takes an extremely short time(seconds)to achieve the same activation effect.It is expected to further improve the activation effect of LFA by regulating the carbon conversion ratio range of 27%–35%to create pores in the initial development stage.
基金finally supported by the National Natural Science Foundation of China(52174390,U1810205)Innovation Academy for Green Manufacture of the Chinese Academy of Sciences China(IAGM2022D04)Strategic Priority Research Program of the Chinese Academy of Sciences China(XDA21040601)。
文摘Coal gasification slag(CGS)is a type of solid waste produced during coal gasification,in which heavy metals severely restrict its resource utilization.In this work,the mineral occurrence and distribution of typical heavy metal Cr in CGS is investigated.The leaching behavior of Cr under different conditions is studied in detail.Acid leaching-selective oxidation-coprecipitation method is proposed based on the characteristics of Cr in CGS.The detoxification of Cr in CGS is realized,and the detoxification mechanism is clarified.Results show that Cr is highly enriched in CGS.The speciation of Cr is mainly residual fraction(74.47%-86.12%),which is combined with amorphous aluminosilicate.Cr^(3+)and Cr^(6+)account for 90.93%-94.82%and 5.18%-9.07%of total Cr,respectively.High acid concentration and high liquid-solid ratio are beneficial to destroy the lattice structure of amorphous aluminosilicate,thus improving the leaching efficiency of Cr,which can reach 97.93%under the optimal conditions.Acid leaching-selective oxidation-coprecipitation method can realize the detoxification of Cr in CGS.Under the optimal conditions,the removal rates of Fe^(3+)and Cr^(3+)in the leaching solution are 80.99%-84.79%and 70.58%-71.69%,respectively,while the loss rate of Al^(3+)is only 1.10%-3.35%.Detoxification slag exists in the form of Fe-Cr coprecipitation(Fe_(1-x)Cr_xOOH),which can be used for smelting.The detoxification acid leaching solution can be used to prepare inorganic polymer composite coagulant poly-aluminum chloride(PAC).This study can provide theoretical and data guidance for detoxification of heavy metal Cr in CGS and achieve resource utilization of coal gasification solid waste.
基金financially supported by the Renewable Energy and Hydrogen Projects in National Key Research & Development Program of China (2019YFB1505000)。
文摘An integrated vacuum pressure swing adsorption(VPSA) and Rectisol process is proposed for CO_(2) capture from underground coal gasification(UCG) syngas. A ten-bed VPSA process with silica gel adsorbent is firstly designed to pre-separate and capture 74.57% CO_(2) with a CO_(2) purity of 98.35% from UCG syngas(CH_(4)/CO/CO_(2)/H_(2)/N_(2)= 30.77%/6.15%/44.10%/18.46%/0.52%, mole fraction, from Shaar Lake Mine Field,Xinjiang Province, China) with a feed pressure of 3.5 MPa. Subsequently, the Rectisol process is constructed to furtherly remove and capture the residual CO_(2)remained in light product gas from the VPSA process using cryogenic methanol(233.15 K, 100%(mass)) as absorbent. A final purified gas with CO_(2) concentration lower than 3% and a regenerated CO_(2) product with CO_(2) purity higher than 95% were achieved by using the Rectisol process. Comparisons indicate that the energy consumption is deceased from 2.143 MJ·kg^(-1) of the single Rectisol process to 1.008 MJ·kg^(-1) of the integrated VPSA & Rectisol process, which demonstrated that the deployed VPSA was an energy conservation process for CO_(2) capture from UCG syngas. Additionally, the high-value gas(e.g., CH_(4)) loss can be decreased and the effects of key operating parameters on the process performances were detailed.
基金supported by the National Nature Science Foundation of China(No.51802212)the National College Students’Innovation and Entrepreneurship Training Program(No.2021465)+2 种基金the Natural Science Foundation of Shanxi Province,China(No.201801D221119)the Open Foundation of China-Belarus Belt and Road Joint Laboratory on Electromagnetic Environment Effect(Nos.ZBKF2022030802 and ZBKF2022030702)the Graduate Education Innovation Programs of Taiyuan University of Science and Technology(No.XCX212003)。
文摘Under the background of a transformation of the global energy structure,coal gasification technology has a wide application prospect,but its by-product,the coal gasification residue(CGR),is still not being efficiently utilized for recycling.The CGR contains abundant carbon components,which could be applied to the microwave absorption field as the carbon matrix.In this study,Fe/CGR composites are fabricated via a two-step method,including the impregnation of Fe^(3+)and the reduction process.The influence of the different loading capacities of the Fe component on the morphology and electromagnetic properties is studied.Moreover,the loading content of Fe and the surface morphology of the Fe/CGR can be reasonably controlled by adjusting the concentration of the ferric nitrate solution.Meanwhile,Fe particles are evenly inserted on the CGR framework,which expands the Fe/CGR interfaces to enhance interfacial polarization,thus further improving the microwave-absorbing(MA)properties of composites.Particularly,as the Fe^(3+)concentration is 1.0 mol/L,the Fe/CGR composite exhibits outstanding performance.The reflection loss reaches-39.3 dB at 2.5 mm,and the absorption bandwidth covers 4.1 GHz at 1.5 mm.In this study,facile processability,resource recycling,appropriately matched impedance,and excellent MA performance are achieved.Finally,the Fe/CGR composites not only enhance the recycling of the CGR but also pioneer a new path for the synthesis of excellent absorbents.
基金financially supported by the National Key Research and Development Program of China(2019YFC1904302)Foundation of State Key Laboratory of High-efficiency Utilisation of Coal and Green Chemical Engineering(2021-K81)the Technology of Coal-to-liquids Research Institute of National Energy Group([2020]010)。
文摘The characteristics of the energy structure of rich coal,less oil and less gas,coupling with a high external dependence on oil and natural gas and the emphasis on the efficient and clean utilisation of coal,have brought opportunities for coal chemical industry.However,with the large-scale popularisation of coal gasification technology,the production and resulting storage of coal gasification slag continue to increase,which not only result in serious environmental pollution and a waste of terrestrial resources,but also seriously affect the sustainable development of coal chemical enterprises.Hence,the treatment of coal gasification slag is extremely important.In this paper,the production,composition,morphology,particle size structure and water holding characteristics of coal gasification slag are introduced,and the methods of carbon ash separation of gasification slag,both domestically and abroad,are summarised.In addition,the paper also summarises the research progress on gasification slag in building materials,ecological restoration,residual carbon utilisation and other high-value utilisation,and ultimately puts forward the idea of the comprehensive utilisation of gasification slag.For large-scale consumption to solve the environmental problems of enterprises and achieve high-value utilisation to increase the economic benefits of enterprises,it is urgent to zealously design a reasonable and comprehensive utilisation technologies with simple operational processes,strong adaptability and economic benefits.
基金Supported by the Shanghai Committee of Education (07ZZ158)
文摘Diatomite is a kind of natural low-cost mineral material. It has a number of unique physical properties and has been widely used as an adsorbent in wastewater treatment. This study was conducted to investigate the aerobic biodegradation of coal gasification wastewater with and without diatomite addition. Experimental results indicated that diatomite added in the activated sludge system could promote the biomass and also enhance the performance of the sludge settling. The average mixed-liquor volatile suspended solids (MLVSS) is increased from 4055 mg.L^-1 to 4518 mg.L^-1 and the average settling volume (SV) are changed only from 45.9% to 47.1%. Diatomite additive could enhance the efficiency of chemical oxygen demand (COD) and total phenols removal from the wastewater. The COD removal increased from 73.3% to near 80% and the total phenols removal increased from 81.4% to 85.8%. The mechanisms of the increase of biomass and pollutants removal may correlates to the improvement of bioavailability and sludge settlement characteristics by diatomite added. Micrograph of the sludge in the diatomite-activated sludge system indicated that the diatomite added could be the carrier of the microbe and also affect the biomass and pollutant removal.
基金Supported by the Major State Basic Research Development Program of China(2012CB720500)the National Natural Science Foundation of China(U1162202,61174118)+1 种基金the National Science Fund for Outstanding Young Scholars(61222303)Shanghai Leading Academic Discipline Project(B504)
文摘A three stage equilibrium model is developed for coal gasification in the Texaco type coal gasifiersbased on Aspen Plus to calculate the composition of product gas, carbon conversion, and gasification teml^erature. The model is divided into three stages including pyrolysis and combustion stage, char gas reaction stage, and gas p.hase reaction stage. Part of the water produced in thepyrolysis and combust!on stag.e is assumed to be involved inthe second stage to react with the unburned carbon. Carbon conversion is then estimated in the second stage by steam participation ratio expressed as a function of temperature. And the gas product compositions are calculated from gas phase reactions in the third stage. The simulation results are consistent with published experimental data.
文摘General pretreatment processes of ammonia stripping and phenols solvent extraction can reduce the concentration of toxic compounds of the coal gasification wastewater for the following biological treatment. However, some emulsified coal tar still exists in the influent and many substances in coal tar are refractory and toxic to microorganisms. This study is mainly on the removal of emulsified coal tar by acidification demulsion. The experimental results show that the acidification process of the wastewater by pure hydrochloric acid can reduce the chemical oxygen demand (COD), total organic carbon (TOC), total phenolics and oil about 3.1%-11.3%, 6%-- 10.8%, 5.3%--8.6% and 25.2%--57.4% respectively with pH value in the range of 4 to 7. The analysis of molecular weight distribution indicates that compounds removed from the wastewater by this process are large molecular substances. The experiment also shows that the efficiency of COD removal in the demulsion process by different acids is different and the phosphoric acid is prominent. The preserved time of the wastewater also affects the efficiency of demulsion. Small amount low-cost solid additives including kaolin and diatomite can improve the rate of coal tar sedimentation and enhance the removal efficiency of organics in the phosphoric acidification process.
基金Projects 20207014 and 50674084 supported by the National Natural Science Foundation of China
文摘In situ coal gasification poses a potential environmental risk to groundwater pollution although it depends mainly on local hydrogeological conditions. In our investigation,the possible processes of groundwater pollution origi-nating from underground coal gasification (UCG) were analyzed. Typical pollutants were identified and pollution con-trol measures are proposed. Groundwater pollution is caused by the diffusion and penetration of contaminants generated by underground gasification processes towards surrounding strata and the possible leaching of underground residue by natural groundwater flow after gasification. Typical organic pollutants include phenols,benzene,minor components such as PAHs and heterocyclics. Inorganic pollutants involve cations and anions. The natural groundwater flow after gasification through the seam is attributable to the migration of contaminants,which can be predicted by mathematical modeling. The extent and concentration of the groundwater pollution plume depend primarily on groundwater flow ve-locity,the degree of dispersion and the adsorption and reactions of the various contaminants. The adsorption function of coal and surrounding strata make a big contribution to the decrease of the contaminants over time and with the distance from the burn cavity. Possible pollution control measures regarding UCG include identifying a permanently,unsuitable zone,setting a hydraulic barrier and pumping contaminated water out for surface disposal. Mitigation measures during gasification processes and groundwater remediation after gasification are also proposed.
基金financial support of the National Natural Science Foundation of China(No.50876112)the Fundamental Research Funds for the Central Universities (No.2009QH13)the Program of International S&T Cooperation (No.2009DFR60180,No.2010DFR60610)
文摘Two-stage underground coal gasification was studied to improve the caloric value of the syngas and to extend gas production times.A model test using the oxygen-enriched two-stage coal gasification method was carried out.The composition of the gas produced,the time ratio of the two stages,and the role of the temperature field were analysed.The results show that oxygen-enriched two-stage gasification shortens the time of the first stage and prolongs the time of the second stage.Feed oxygen concentrations of 30%, 35%,40%,45%.60%,or 80%gave time ratios(first stage to second stage) of 1:0.12,1:0.21.1:0.51,1:0.64, 1:0.90.and 1:4.0 respectively.Cooling rates of the temperature field after steam injection decreased with time from about 19.1-27.4℃/min to 2.3-6.8℃/min.But this rate increased with increasing oxygen concentrations in the first stage.The caloric value of the syngas improves with increased oxygen concentration in the first stage.Injection of 80%oxygen-enriched air gave gas with the highest caloric value and also gave the longest production time.The caloric value of the gas obtained from the oxygenenriched two-stage gasification method lies in the range from 5.31 MJ/Nm^3 to 10.54 MJ/Nm^3.
基金TheHi TechResearchandDevelopmentProgramofChina (S 86 3)
文摘Environmental benefits of underground coal gasification are evaluated. The results showed that through underground coal gasification, gangue discharge is eliminated, sulfur emission is reduced, and the amount of ash, mercury, and tar discharge are decreased. Moreover, effect of underground gasification on underground water is analyzed and CO 2 disposal method is put forward.
文摘To optimize the technological parameter of underground coal gasification (UCG), the experimental results of air gasification, air-steam gasification, oxygen-enrichment steam gasification, pure oxygen steam gasification and two-stage gasification were studied contrastively based on field trial at the Huating UCG project. The results indicate that the average low heat value of gas from air experiment is the lowest (4.1 MJ/Nm3) and the water gas from two-stage gasification experiment is the highest (10.72 MJ/Nm3). The gas productivity of air gasification is the highest and the pure oxygen steam gasification is the lowest. The gasification efficiency of air gasification, air-steam gasification, oxygen-enriched steam gasification, pure oxygen steam gasification and two-stage gasification is listed in ascending order, ranging from 69.88% to 84.81%. Described a contract study on results of a field test using steam and various levels of oxygen enrichment of 21%, 32%, 42% and 100%. The results show that, with the increasing of O2 content in gasifying agents, the gas caloricity rises, and the optimal O2 concentration range to increase the gas caloricity is 30%-40%. Meanwhile, the consumption of O2 and steam increase, and the air consumption and steam decomposition efficiency fall.
文摘Coal combustion and gasification are the processes to utilize coal for production of electricity and many other applications. Global energy demand is increasing day by day. Coal is an abundant source of energy but not a reliable source as it results into high CO2 emissions. Energy industries are expected to decrease the CO2 emission to prevent global warming. Coal gasification is a process that reduces the CO2 emission and emerges as a clean coal technology. Coal gasification process is regulated by several operating parameters. A Number of investigations have been carried out in this direction. A critical review of the work done by several researchers in the field of coal gasification has been compiled in this paper. The effect of several operating parameters such as coal rank, temperature, pressure, porosity, reaction time and catalyst on gasification has been presented here.
基金Sponsored by the Sino-Dutch Research Program(Grant No.SDRP-WRZ)the State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology(Grant No.2013DX10)
文摘A N 2 flotation tank combined with coagulation was developed as a pretreatment equipment of biological process to remove oil and other pollutants in coal gasification wastewater( CGW). With optimal PAC dosage of 20 mg / L,the sole coagulation process achieves removal efficiencies of 29. 34% and 26. 83% for oil and COD,respectively. For the sole N 2 floatation process,the optimal N 2 flux and HRT are 20 m3/ h and 20 min. Meanwhile,the oil and COD removal efficiencies are 35. 41% and 14. 26%,respectively. For the combined system of coagulation and N 2 floatation,the optimal parameter values are the same as the ones of separate processes. Correspondingly,the removal efficiencies are 46. 28% and 31. 89% for oil and COD, respectively. Besides,BOD 5 / COD of the effluent is improved. In contrast with conventional dissolved air floatation,the inert gas- N 2 prevents the formation of cyclopentenone, pyridine derivatives, and other heterocyclic aromatic hydrocarbons,thus improving the biodegradability of influent for the subsequent biological processes.
基金financial support from the National Natural Science Foundation of China(51762042)the(2019PT-18)+1 种基金the Science and Technology Program of Shaanxi Province(2017GY-136,2018GY-086)the Shaanxi Province Education Department Key Scientific Research Project(18JS123)。
文摘Mineral matter in a residue(RC G)from coal gasification(CG)was removed by two-stage acid leaching.Hierarchical activated carbon(HAC)was prepared by activating RC Gwith CO2.The performance of HAC on removing methylene blue(MB)from an aqueous solution was investigated.HAC was characterized by N2 adsorption–desorption isotherm,Fourier transform infrared spectroscopy,and scanning electron microscopy.The results show that HAC exhibits hierarchical pore structure with high specific surface area(862.76 m2·g-1)and total pore volume(0.684 cm3·g-1),and abundant organic functional groups.The adsorption equilibrium data of MB on HAC are best fitted to the Redlich-Peterson.The kinetic data show that the pseudo-first-order model is more suitable at low MB concentration,while the advantages of the pseudo-second-orderand the Elovich models are more obvious as the concentration increases.According to the thermodynamic parameters,the HAC-MB adsorption process is spontaneous and endothermic.
文摘X-ray fluorescence spectrometry(XRF),X-ray powder diffractometry(XRD) and scanning electron microscopy(SEM) were used to characterize the chemical composition,phase constituent and microstructure of the coal gasification slag.Sialon powders were synthesized by carbothermal reduction and nitridation using the coal gasification slag as raw materials.The experimental results showed that glass and amorphous carbon were the main phases,quartz and calcite as minor crystalline phases were also presented in porous coal gasification slag.Main constituents of coal gasification slag were SiO2,Al2O3,CaO and residual carbon.Sialon powder with Ca-α-Sialon as main crystalline phase can be synthesized when coal gasification slag powders were reduced and nitrided at 1500 ℃ for 9 h using nitrogen flow of 500 ml/min.The coal gasification slag is a valuable and economic starting material for preparing Sialon powders.
基金the Cultivation Fund of the Key Scientific and Technical Innovation Project,Ministry of Education of Chinese(02019)Anhui Province Science and Technology Tackling Key Project(08010202058)
文摘The field trail used a mixture of steam and air with various levels of oxygen en- richment.Steady conditions were achieved in the field trail which produced high quality hydrogen-enriched syngas.To understand and optimize the UCG process,a simplified heat and mass transfer model was presented,providing a predictive tool for temperature and the major constituents of the syngas production.The model is compared with the field trail measurements for air and two levels of oxygen enrichment,showing reasonable agreement for the channel temperature and product syngas concentration profile.