期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Occurrence,leaching behavior,and detoxification of heavy metal Cr in coal gasification slag 被引量:2
1
作者 Jiangshan Qu Jianbo Zhang +7 位作者 Huiquan Li Shaopeng Li Da Shi Ruiqi Chang Wenfen Wu Ganyu Zhu Chennian Yang Chenye Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第6期11-19,共9页
Coal gasification slag(CGS)is a type of solid waste produced during coal gasification,in which heavy metals severely restrict its resource utilization.In this work,the mineral occurrence and distribution of typical he... Coal gasification slag(CGS)is a type of solid waste produced during coal gasification,in which heavy metals severely restrict its resource utilization.In this work,the mineral occurrence and distribution of typical heavy metal Cr in CGS is investigated.The leaching behavior of Cr under different conditions is studied in detail.Acid leaching-selective oxidation-coprecipitation method is proposed based on the characteristics of Cr in CGS.The detoxification of Cr in CGS is realized,and the detoxification mechanism is clarified.Results show that Cr is highly enriched in CGS.The speciation of Cr is mainly residual fraction(74.47%-86.12%),which is combined with amorphous aluminosilicate.Cr^(3+)and Cr^(6+)account for 90.93%-94.82%and 5.18%-9.07%of total Cr,respectively.High acid concentration and high liquid-solid ratio are beneficial to destroy the lattice structure of amorphous aluminosilicate,thus improving the leaching efficiency of Cr,which can reach 97.93%under the optimal conditions.Acid leaching-selective oxidation-coprecipitation method can realize the detoxification of Cr in CGS.Under the optimal conditions,the removal rates of Fe^(3+)and Cr^(3+)in the leaching solution are 80.99%-84.79%and 70.58%-71.69%,respectively,while the loss rate of Al^(3+)is only 1.10%-3.35%.Detoxification slag exists in the form of Fe-Cr coprecipitation(Fe_(1-x)Cr_xOOH),which can be used for smelting.The detoxification acid leaching solution can be used to prepare inorganic polymer composite coagulant poly-aluminum chloride(PAC).This study can provide theoretical and data guidance for detoxification of heavy metal Cr in CGS and achieve resource utilization of coal gasification solid waste. 展开更多
关键词 coal gasification slag Heavy metal DISTRIBUTIONS LEACHING DETOXIFICATION PRECIPITATION
下载PDF
Review of the characteristics and graded utilisation of coal gasification slag 被引量:44
2
作者 Xiaodong Liu Zhengwei Jin +7 位作者 Yunhuan Jing Panpan Fan Zhili Qi Weiren Bao Jiancheng Wang Xiaohui Yan Peng Lv Lianping Dong 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第7期92-106,共15页
The characteristics of the energy structure of rich coal,less oil and less gas,coupling with a high external dependence on oil and natural gas and the emphasis on the efficient and clean utilisation of coal,have broug... The characteristics of the energy structure of rich coal,less oil and less gas,coupling with a high external dependence on oil and natural gas and the emphasis on the efficient and clean utilisation of coal,have brought opportunities for coal chemical industry.However,with the large-scale popularisation of coal gasification technology,the production and resulting storage of coal gasification slag continue to increase,which not only result in serious environmental pollution and a waste of terrestrial resources,but also seriously affect the sustainable development of coal chemical enterprises.Hence,the treatment of coal gasification slag is extremely important.In this paper,the production,composition,morphology,particle size structure and water holding characteristics of coal gasification slag are introduced,and the methods of carbon ash separation of gasification slag,both domestically and abroad,are summarised.In addition,the paper also summarises the research progress on gasification slag in building materials,ecological restoration,residual carbon utilisation and other high-value utilisation,and ultimately puts forward the idea of the comprehensive utilisation of gasification slag.For large-scale consumption to solve the environmental problems of enterprises and achieve high-value utilisation to increase the economic benefits of enterprises,it is urgent to zealously design a reasonable and comprehensive utilisation technologies with simple operational processes,strong adaptability and economic benefits. 展开更多
关键词 coal gasification slag Morphological characteristics DEHYDRATION SEPARATION Comprehensive utilisation
下载PDF
Preparation of Sialon Powder from Coal Gasification Slag 被引量:3
3
作者 汤云 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第6期1044-1046,共3页
X-ray fluorescence spectrometry(XRF),X-ray powder diffractometry(XRD) and scanning electron microscopy(SEM) were used to characterize the chemical composition,phase constituent and microstructure of the coal gas... X-ray fluorescence spectrometry(XRF),X-ray powder diffractometry(XRD) and scanning electron microscopy(SEM) were used to characterize the chemical composition,phase constituent and microstructure of the coal gasification slag.Sialon powders were synthesized by carbothermal reduction and nitridation using the coal gasification slag as raw materials.The experimental results showed that glass and amorphous carbon were the main phases,quartz and calcite as minor crystalline phases were also presented in porous coal gasification slag.Main constituents of coal gasification slag were SiO2,Al2O3,CaO and residual carbon.Sialon powder with Ca-α-Sialon as main crystalline phase can be synthesized when coal gasification slag powders were reduced and nitrided at 1500 ℃ for 9 h using nitrogen flow of 500 ml/min.The coal gasification slag is a valuable and economic starting material for preparing Sialon powders. 展开更多
关键词 coal gasification slag CHARACTERIZATION MICROSTRUCTURE SIALON carbothermal reduction and nitridation
下载PDF
Structural properties of residual carbon in coal gasification fine slag and their influence on flotation separation and resource utilization:A review 被引量:5
4
作者 Rui Han Anning Zhou +4 位作者 Ningning Zhang Kaiqiang Guo Mengyan Cheng Heng Chen Cuicui Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期217-230,共14页
Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery a... Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery and the high-value utilization of residual carbon(RC)in FS are the keys to realizing the win-win situation of the coal chemical industry in terms of economic and environmental benefits.The structural properties,such as pore,surface functional group,and microcrystalline structures,of RC in FS(FS-RC)not only affect the flotation recovery efficiency of FS-RC but also form the basis for the high-value utilization of FS-RC.In this paper,the characteristics of FS-RC in terms of pore structure,surface functional groups,and microcrystalline structure are sorted out in accordance with gasification type and FS particle size.The reasons for the formation of the special structural properties of FS-RC are analyzed,and their influence on the flotation separation and high-value utilization of FS-RC is summarized.Separation methods based on the pore structural characterist-ics of FS-RC,such as ultrasonic pretreatment-pore-blocking flotation and pore breaking-flocculation flotation,are proposed to be the key development technologies for improving FS-RC recovery in the future.The design of low-cost,low-dose collectors containing polar bonds based on the surface and microcrystalline structures of FS-RC is proposed to be an important breakthrough point for strengthening the flotation efficiency of FS-RC in the future.The high-value utilization of FS should be based on the physicochemical structural proper-ties of FS-RC and should focus on the environmental impact of hazardous elements and the recyclability of chemical waste liquid to es-tablish an environmentally friendly utilization method.This review is of great theoretical importance for the comprehensive understand-ing of the unique structural properties of FS-RC,the breakthrough of the technological bottleneck in the efficient flotation separation of FS,and the expansion of the field of the high value-added utilization of FS-RC. 展开更多
关键词 coal gasification fine slag residual carbon pore structure surface functional groups microcrystalline structure flotation sep-aration resource utilization
下载PDF
Effective separation of coal gasification fine slag: Role of classification and ultrasonication in enhancing flotation
5
作者 Rui Han Anning Zhou +4 位作者 Ningning Zhang Zhen Li Mengyan Cheng Xiaoyi Chen Tianhao Nan 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第6期867-880,共14页
Effective separation of residual carbon and ash is the basis for the resource utilization of coal gasification fine slag(CGFS).The conventional flotation process of CGFS has the bottlenecks of low carbon recovery and ... Effective separation of residual carbon and ash is the basis for the resource utilization of coal gasification fine slag(CGFS).The conventional flotation process of CGFS has the bottlenecks of low carbon recovery and high collector dosage.In order to address these issues,CGFS sample taken from Shaanxi,China was used as the study object in this paper.A new process of size classification-fine grain ultrasonic pretreatment flotation(SC-FGUF)was proposed and its separation effect was compared with that of wholegrain flotation(WGF)as well as size classification-fine grain flotation(SC-FGF).The mechanism of its enhanced separation effect was revealed through flotation kinetic fitting,flotation flow foam layer stability,particle size composition,surface morphology,pore structure,and surface chemical property analysis.The results showed that compared with WGF,pre-classification could reduce the collector dosage by 84.09%and the combination of pre-classification and ultrasonic pretreatment could increase the combustible recovery by 17.29%and up to 93.46%.The SC-FGUF process allows the ineffective adsorption of coarse residual carbon to collector during flotation stage to be reduced by pre-classification,and the tightly embedded state of fine CGFS particles is disrupted and surface oxidizing functional group occupancy was reduced by ultrasonic pretreatment,thus carbon and ash is easier to be separated in the flotation process.In addition,some of the residual carbon particles were broken down to smaller sizes in the ultrasonic pretreatment,which led to an increase in the stability of flotation flow foam layer and a decrease in the probability of detachment of residual carbon particles from the bubbles.Therefore,SCFGUF could increase the residual carbon recovery and reduce the flotation collector dosage,which is an innovative method for carbon-ash separation of CGFS with good application prospect. 展开更多
关键词 coal gasification fine slag Size classification Ultrasonic pretreatment FLOTATION Carbon recovery
下载PDF
Structural and microwave absorption properties of CoFe_(2)O_(4)/residual carbon composites
6
作者 Yuanchun Zhang Shengtao Gao +3 位作者 Xingzhao Zhang Dacheng Ma Chuanlei Zhu Jun He 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期221-232,共12页
Electromagnetic interference,which necessitates the rapid advancement of substances with exceptional capabilities for bsorbing electromagnetic waves,is of urgent concern in contemporary society.In this work,CoFe_(2)O_... Electromagnetic interference,which necessitates the rapid advancement of substances with exceptional capabilities for bsorbing electromagnetic waves,is of urgent concern in contemporary society.In this work,CoFe_(2)O_(4)/residual carbon from coal gasification fine slag(CFO/RC)composites were created using a novel hydrothermal method.Various mechanisms for microwave absorption,including conductive loss,natural resonance,interfacial dipole polarization,and magnetic flux loss,are involved in these composites.Consequently,compared with pure residual carbon materials,this composite offers superior capabilities in microwave absorption.At 7.76GHz,the CFO/RC-2 composite achieves an impressive minimum reflection loss(RL_(min))of-43.99 dB with a thickness of 2.44 mm.Moreover,CFO/RC-3 demonstrates an effective absorption bandwidth(EAB)of up to 4.16 GHz,accompanied by a thickness of 1.18mm.This study revealed the remarkable capability of the composite to diminish electromagnetic waves,providing a new generation method for microwave absorbing materials of superior quality. 展开更多
关键词 coal gasification slag residual carbon hydrothermal method microwave absorption CoFe_(2)O_(4)
下载PDF
Refractories Utilizability for Slagging Gasifiers
7
作者 GUO Zongqi 《China's Refractories》 CAS 2006年第1期9-14,共6页
Slagging coal gasification process became a highlight of coal chemical industry in China during the last decade. Refractory lining' s life of slagging gasifiers is one of the most critical factors for a cost - effect... Slagging coal gasification process became a highlight of coal chemical industry in China during the last decade. Refractory lining' s life of slagging gasifiers is one of the most critical factors for a cost - effective operation. The paper introduces current status of coal gasification in China, lining structure of slagging gasifiers and performance of refractory lining. It also summarizes the major factors impacting on refractory wear in slagging coal gasifiers in four Chinese chemical plants, based on ten years of industrial experience. The utilizability is discussed in terms of cost -effectiveness of high chromia refractories and possibility of the alternatives. 展开更多
关键词 slagging coal gasification REFRACTORIES UTILIZATION REVIEW GASIFIER
下载PDF
Enhancing flotation recovery of residual carbon from gasification waste by mixing hydrophobic powder with diesel as collector 被引量:2
8
作者 Rui Han Ningning Zhang +3 位作者 Anning Zhou Zhen Li Jinzhou Qu Hong Wang 《Particuology》 SCIE EI CAS CSCD 2024年第6期211-217,共7页
Coal gasification fine slag(CGFS)is a solid waste containing residual carbon and ash generated during the coal gasification process,and the separation of the two components is the essential way to realize its environm... Coal gasification fine slag(CGFS)is a solid waste containing residual carbon and ash generated during the coal gasification process,and the separation of the two components is the essential way to realize its environmental pollution reduction and resource value increase.Froth flotation is the preferred method for separating CGFS,but there is a barrier of low carbon recovery in this process due to the extensive adsorption of collector by the well-developed pores on residual carbon.In this study,a sufficiently simple yet innovative collector,a mixture of hydrophobic powder and diesel,was proposed in an attempt to break the bottleneck.Flotation experiments with common diesel and this novel collector were performed respectively,and FTIR,XPS,and SEM-EDX were employed to analyze the collector action mechanism.Flotation results revealed that the novel collector could significantly improve the residual carbon recovery;test results demonstrated that the novel collector could increase the hydrophobic functional group content on the fine slag surface,and the hydrophobic powders in this novel collector mainly appeared at the pore openings of the flotation concentrate.The essence of the mechanism is that the hydrophobic powders play a dual role of blocking pores and providing adsorption sites,thus facilitating the spreading of diesel on the carbon surface and promoting its floatability.The study can provide creative ideas for the efficient disposal of coal gasification waste. 展开更多
关键词 coal gasification fine slag Carbon recovery COLLECTOR Fotation Hydrophobic powder
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部