Combined with highway construction, the analysis on the relationship betweentunnel construction and coal resource exploitation was processed, which was based onthe research of rational exploitation depth of coal.3D FE...Combined with highway construction, the analysis on the relationship betweentunnel construction and coal resource exploitation was processed, which was based onthe research of rational exploitation depth of coal.3D FEM numerical analysis for tunnelexcavation was carried out according to engineering geological features of coal measurestrata in the project area.Based on the analysis of displacement and stress of the surroundingrock in the tunnel after excavation, the characteristics for displacement andstress of the tunnel support structure were analyzed when the underlying coal bed wasexploited with sublevel and full caving method.In addition, combined with the related codeand standard, the economic and safe prohibiting exploited depth of the underlying coalbed was proposed, so that a scientific basis for tunnel construction of coal measure strataand reasonable exploitation of the mineral resources in complex geological conditions canbe offered.展开更多
Over the past 80 years,dozens of underground coal gasification(UCG)mine field tests have been carried out around the world.However,in the early days,only a small number of shallow UCG projects in the former Soviet Uni...Over the past 80 years,dozens of underground coal gasification(UCG)mine field tests have been carried out around the world.However,in the early days,only a small number of shallow UCG projects in the former Soviet Union achieved commercialised production.In this century,a few pilot projects in Australia also achieved short-term small-scale commercialised production using modern UCG technology.However,the commercialisation of UCG,especially medium-deep UCG projects with good development prospects but difficult underground engineering conditions,has not progressed smoothly around the world.Considering investment economy,a single gasifier must realise a high daily output and accumulated output,as well as hold a long gasification tunnel to control a large number of coal resources.However,a long gasification tunnel can easily be affected by blockages and failure,for which the remedial solutions are difficult and expensive,which greatly restricts the investment economy.The design of the underground gasifier determines the success or failure of UCG projects,and it also requires the related petroleum engineering technology.Combining the advantages of the linear horizontal well(L-CRIP)and parallel horizontal well(P-CRIP),this paper proposes a new design scheme for an“inclined ladder”underground gasifier.That is to say,the combination of the main shaft of paired P-CRIP and multiple branch horizontal well gasification tunnels is adopted to realise the control of a large number of coal resources in a single gasifier.The completion of the main shaft by well cementation is beneficial for maintaining the integrity of the main shaft and the stability of the main structure.The branch horizontal well is used as the gasification tunnel,but the length and number of retracting injection points are limited,effectively reducing the probability of blockage or failure.The branch horizontal well spacing can be adjusted flexibly to avoid minor faults and large cracks,which is conducive to increasing the resource utilisation rate.In addition,for multi-layer thin coal seams or ultra-thick coal seams,a multi-layer gasifier sharing vertical well sections can be deployed,thereby saving investment on the vertical well sections.Through preliminary analysis,this gasifier design scheme can be realised in engineering,making it suitable for largescale deployment where it can increase the resource utilisation rate and ensure stable and controllable operations.The new gasifier has outstanding advantages in investment economy,and good prospects for application in the commercial UCG projects of medium-deep coal seams.展开更多
This paper proposes the cooling system type and cooling equipment type which are deep mine with high temperature during the construction,and presents auxiliary cooling measures making up duct temperature rise since co...This paper proposes the cooling system type and cooling equipment type which are deep mine with high temperature during the construction,and presents auxiliary cooling measures making up duct temperature rise since compression and heat transfer temperature rise. The cooling system designed against Zhaolou mine's ground temperature and weather conditions,with its sprinkler room handling an average temperature difference up to 19.5~23.8 ℃,and the average enthalpy difference could reach 48.4~60.7 kJ/kg. At the same time,it gets a series of basic data used for mine construction during the cooling system design and equipment selection according to the measured results; using the analysis software Matlab,it obtains the change relations between the temperature of sprinkler room and fan export supply air temperature,wind casing temperature rise and fan export supply air temperature,working face temperature and supply air temperature,used for the mine cooling which has the similar conditions.展开更多
基金Supported by the National Natural Science Foundation Special Originality Innovation Research Colony of China(50621403)
文摘Combined with highway construction, the analysis on the relationship betweentunnel construction and coal resource exploitation was processed, which was based onthe research of rational exploitation depth of coal.3D FEM numerical analysis for tunnelexcavation was carried out according to engineering geological features of coal measurestrata in the project area.Based on the analysis of displacement and stress of the surroundingrock in the tunnel after excavation, the characteristics for displacement andstress of the tunnel support structure were analyzed when the underlying coal bed wasexploited with sublevel and full caving method.In addition, combined with the related codeand standard, the economic and safe prohibiting exploited depth of the underlying coalbed was proposed, so that a scientific basis for tunnel construction of coal measure strataand reasonable exploitation of the mineral resources in complex geological conditions canbe offered.
文摘Over the past 80 years,dozens of underground coal gasification(UCG)mine field tests have been carried out around the world.However,in the early days,only a small number of shallow UCG projects in the former Soviet Union achieved commercialised production.In this century,a few pilot projects in Australia also achieved short-term small-scale commercialised production using modern UCG technology.However,the commercialisation of UCG,especially medium-deep UCG projects with good development prospects but difficult underground engineering conditions,has not progressed smoothly around the world.Considering investment economy,a single gasifier must realise a high daily output and accumulated output,as well as hold a long gasification tunnel to control a large number of coal resources.However,a long gasification tunnel can easily be affected by blockages and failure,for which the remedial solutions are difficult and expensive,which greatly restricts the investment economy.The design of the underground gasifier determines the success or failure of UCG projects,and it also requires the related petroleum engineering technology.Combining the advantages of the linear horizontal well(L-CRIP)and parallel horizontal well(P-CRIP),this paper proposes a new design scheme for an“inclined ladder”underground gasifier.That is to say,the combination of the main shaft of paired P-CRIP and multiple branch horizontal well gasification tunnels is adopted to realise the control of a large number of coal resources in a single gasifier.The completion of the main shaft by well cementation is beneficial for maintaining the integrity of the main shaft and the stability of the main structure.The branch horizontal well is used as the gasification tunnel,but the length and number of retracting injection points are limited,effectively reducing the probability of blockage or failure.The branch horizontal well spacing can be adjusted flexibly to avoid minor faults and large cracks,which is conducive to increasing the resource utilisation rate.In addition,for multi-layer thin coal seams or ultra-thick coal seams,a multi-layer gasifier sharing vertical well sections can be deployed,thereby saving investment on the vertical well sections.Through preliminary analysis,this gasifier design scheme can be realised in engineering,making it suitable for largescale deployment where it can increase the resource utilisation rate and ensure stable and controllable operations.The new gasifier has outstanding advantages in investment economy,and good prospects for application in the commercial UCG projects of medium-deep coal seams.
文摘This paper proposes the cooling system type and cooling equipment type which are deep mine with high temperature during the construction,and presents auxiliary cooling measures making up duct temperature rise since compression and heat transfer temperature rise. The cooling system designed against Zhaolou mine's ground temperature and weather conditions,with its sprinkler room handling an average temperature difference up to 19.5~23.8 ℃,and the average enthalpy difference could reach 48.4~60.7 kJ/kg. At the same time,it gets a series of basic data used for mine construction during the cooling system design and equipment selection according to the measured results; using the analysis software Matlab,it obtains the change relations between the temperature of sprinkler room and fan export supply air temperature,wind casing temperature rise and fan export supply air temperature,working face temperature and supply air temperature,used for the mine cooling which has the similar conditions.