The paper presents the results of terrain subsidence monitoring in Poland's Upper Silesian Coal Basin(USCB)mining area using Differential Interferometry Synthetic Aperture Radar(DInSAR)and Persistent Scatterer Int...The paper presents the results of terrain subsidence monitoring in Poland's Upper Silesian Coal Basin(USCB)mining area using Differential Interferometry Synthetic Aperture Radar(DInSAR)and Persistent Scatterer Interferometry(PSI).The study area accounts for almost three million inhabitants where mining which started in the 19th century,has produced severe damage to buildings and urban infrastructures in past years.The analysis aimed to combine eight different datasets,processed in two techniques,coming from various sensors and covering different periods.As a result,a map of areas that have been exposed to subsidence within 3045 square kilometers was obtained.The map covers a period of twenty years of intensive mining activities,i.e.1992-2012.A total of 81 interferograms were used in the study.The interferograms allowed not only to determine subsidence troughs(basins)formed from 1992 to 2012 but also to observe subsidence development over time.The work also included five sets of PSI processing,covering different temporal and spatial ranges,which were used to determine zones of residual subsidence.Based on InSAR datasets,an area of 521 square kilometers under the influence of mining activities were determined.Within the subsiding zones,an area of 312.5 square kilometers of the rapid increase in subsidence was identified on the interferograms.The study of combined different InSAR datasets provided large-area and long-term information on the impact of mining activities in the Upper Silesia Coal Basin.展开更多
Surface subsidence induced by underground mining is a typical serious geohazard.Numerical approaches such as the discrete element method(DEM)and finite difference method(FDM)have been widely used to model and analyze ...Surface subsidence induced by underground mining is a typical serious geohazard.Numerical approaches such as the discrete element method(DEM)and finite difference method(FDM)have been widely used to model and analyze mining-induced surface subsidence.However,the DEM is typically computationally expensive,and is not capable of analyzing large-scale problems,while the mesh distortion may occur in the FDM modeling of largely deformed surface subsidence.To address the above problems,this paper presents a geometrically and locally adaptive remeshing method for the FDM modeling of largely deformed surface subsidence induced by underground mining.The essential ideas behind the proposed method are as follows:(i)Geometrical features of elements(i.e.the mesh quality),rather than the calculation errors,are employed as the indicator for determining whether to conduct the remeshing;and(ii)Distorted meshes with multiple attributes,rather than those with only a single attribute,are locally regenerated.In the proposed method,the distorted meshes are first adaptively determined based on the mesh quality,and then removed from the original mesh model.The tetrahedral mesh in the distorted area is first regenerated,and then the physical field variables of old mesh are transferred to the new mesh.The numerical calculation process recovers when finishing the regeneration and transformation.To verify the effectiveness of the proposed method,the surface deformation of the Yanqianshan iron mine,Liaoning Province,China,is numerically investigated by utilizing the proposed method,and compared with the numerical results of the DEM modeling.Moreover,the proposed method is applied to predicting the surface subsidence in Anjialing No.1 Underground Mine,Shanxi Province,China.展开更多
The base vector between 2 poins and a high-precision geodetic height difference can be obtained by GPS. If the geodetic height of a point is known, the geodetic height of each observation point in a net can be obtaine...The base vector between 2 poins and a high-precision geodetic height difference can be obtained by GPS. If the geodetic height of a point is known, the geodetic height of each observation point in a net can be obtained. When surveying the subsidence value in the mining-induced ground subsidence, the change of the height of monitoring point is needed. On the above theoretical basis, the problem involved in GPS observation of mining-induced ground subsidence and their counter measures were discussed, and an introduction was made that the subsidence value obtained in the monitoring mining-induced ground subsidence can use the change of height of geodetic as a alternative, the result of check on the accuracy and reliability of repetitions observations was analysed. Finally, the effect of errors on accuracy of GPS observation and their reduction measures were elaborated.展开更多
Fault is a common geological structure that has been revealed in the process of underground coal excavation and mining.The nature of its discontinuous structure controls the deformation,damage,and mechanics of the coa...Fault is a common geological structure that has been revealed in the process of underground coal excavation and mining.The nature of its discontinuous structure controls the deformation,damage,and mechanics of the coal or rock mass.The interaction between this discontinuous structure and mining activities is a key factor that dominates fault reactivation and the coal burst it can induce.This paper first summarizes investigations into the relationships between coal mining layouts and fault occurrences,along with relevant conceptual models for fault reactivation.Subsequently,it proposes mechanisms of fault reactivation and its induced coal burst based on the superposition of static and dynamic stresses,which include two kinds of fault reactivations from:mining-induced quasi-static stress(FRMSS)-dominated and seismic-based dynamic stress(FRSDS)-dominated.These two kinds of fault reactivations are then validated by the results of experimental investigations,numerical modeling,and in situ microseismic monitoring.On this basis,monitoring methods and prevention strategies for fault-induced coal burst are discussed and recommended.The results show that fault-induced coal burst is triggered by the superposition of high static stress in the fault pillar and dynamic stress from fault reactivation.High static stress comes from the interaction of the fault and the roof structure,and dynamic stress can be ascribed to FRMSS and FRSDS.The results in this paper could be of great significance in guiding the monitoring and prevention of fault-induced coal bursts.展开更多
Coal mining subsidence is a universal environmental-geological problem in mining areas. By selecting the Shen-Dong coal mining subsidence area as the research field, this paper studies the changes in precipitation inf...Coal mining subsidence is a universal environmental-geological problem in mining areas. By selecting the Shen-Dong coal mining subsidence area as the research field, this paper studies the changes in precipitation infiltration recharge in the circumstances of coal mining subsidence by means of field geological investigation and laboratory simulation experiments, which is expected to provide a scientific basis for eco-environmental restoration in the mining area. The results indicate that at the unstable stage of subsidence, three types of subsidence in the Shen-Dong mining area have positive effects on the precipitation infiltration recharge, and the type of full-thickness bedrock subsidence has the greatest influence. In the stable stage of subsidence, the precipitation infiltration process after long- term drought and the moisture migration in the aeration zone undergo three different stages: evaporation-infiltration before precipitation, infiltration-upward infiltration-infiltration during precipitation and evaporation-infiltration after precipitation. During a heavy rainfall infiltration process, the wetting front movement in fine sand, coarse sand and dualistic structure of fine-coarse sand consists of two stages: the stage of wetting front movement during precipitation, in which the wetting front movement distance has linear relationship with the depth, and the stage of wetting front movement after precipitation, in which the wetting front movement distance has the power function relationship with the depth. The wetting front movement velocity is influenced by the rainfall amount and the lithology in the aeration zone. However, as the depth increases, the movement velocity will decay exponentially.展开更多
The objective of this paper is to study the behavior of a low thick and low depth coal seam and the overburden rock mass. The mining method is room and pillar in retreat and partial pillar recovery. The excavation met...The objective of this paper is to study the behavior of a low thick and low depth coal seam and the overburden rock mass. The mining method is room and pillar in retreat and partial pillar recovery. The excavation method is conventional drill and blast because of the small production. The partial pillar recovery is about 30% of the previous pillar size, 7 m × 7 m. The roof displacement was monitored during retreat operation; the surface movement was also monitored. The effect of the blasting vibration on the final pillar strength had been considered. Due to blasting, the pillar reduced about 20%. The consequence is more pillar deformation and roof vertical displacement. The pillar retreat and ground movement were simulated in a three-dimensional numerical model. This model was created to predict the surface subsidence and compare to the subsidence measured. This study showed that the remaining pillar and low seam reduce the subsidence that was predicted with conventional methods.展开更多
Prediction of surface subsidence caused by longwall mining operation in inclined coal seams is often very challenging. The existing empirical prediction methods are inflexible for varying geological and mining conditi...Prediction of surface subsidence caused by longwall mining operation in inclined coal seams is often very challenging. The existing empirical prediction methods are inflexible for varying geological and mining conditions. An improved influence function method has been developed to take the advantage of its fundamentally sound nature and flexibility. In developing this method, the original Knothe function has been transformed to produce a continuous and asymmetrical subsidence influence function. The empirical equations for final subsidence parameters derived from col- lected longwall subsidence data have been incorporated into the mathematical models to improve the prediction accuracy. A number of demonstration cases for longwall mining operations in coal seams with varying inclination angles, depths and panel widths have been used to verify the applicability of the new subsidence prediction model.展开更多
The distribution of the final surface subsidence basin induced by longwall operations in inclined coal seam could be significantly different from that in flat coal seam and demands special prediction methods. Though m...The distribution of the final surface subsidence basin induced by longwall operations in inclined coal seam could be significantly different from that in flat coal seam and demands special prediction methods. Though many empirical prediction methods have been developed, these methods are inflexible for varying geological and mining conditions. An influence function method has been developed to take the advantage of its fundamentally sound nature and flexibility. In developing this method, significant modifications have been made to the original Knothe function to produce an asymmetrical influence function. The empirical equations for final subsidence parameters derived from US subsidence data and Chinese empirical values have been incorpo- rated into the mathematical models to improve the prediction accuracy. A corresponding computer program is developed. A number of subsidence cases for longwall mining operations in coal seams with varying inclination angles have been used to demonstrate the applicability of the developed subsidence prediction model.展开更多
Based on a great amount of practically observational data and by computer simulation, a formula for estimating the ground subsidence caused by coal mining was derived. Meanwhile, an empirical mathematical model for gr...Based on a great amount of practically observational data and by computer simulation, a formula for estimating the ground subsidence caused by coal mining was derived. Meanwhile, an empirical mathematical model for ground subsidence basin in coal mining was given.展开更多
To investigate the effects of seabuckthorn(Hippophae rhamnoides)on soil amelioration,using the space replacement method,soil physical and chemical indexes as well as the microorganism quantity and soil enzyme activiti...To investigate the effects of seabuckthorn(Hippophae rhamnoides)on soil amelioration,using the space replacement method,soil physical and chemical indexes as well as the microorganism quantity and soil enzyme activities were analyzed.The results showed that:the soil bulk density of surface soil decreased and soil porosity and field capacity increased after afforestation with seabuckthorn.The plant was found to effectively reduce the soil pH,increase the soil conductivity,soil organic matters and available nutrients.Soil microorganism quantity,soil enzyme activities were both higher in 0-20 cm layer than in 20-40 cm layer.With the increase years of remediation with seabuckthorn,the quantity of soil microorganism and enzyme activities were increasing to a higher level 5 to 8 years later.Our study indicates that seabuckthorn can effectively improve soil physical and chemical properties,increase the quantity of soil microorganisms and enzyme activities,which is of great significance for the ecosystem restoration in mining areas.展开更多
In this study, the spatial distributions of stress and fracture fields for three typical underground coal mining layouts, Le, non-pillar mining (NM), top-coal caving mining (TCM) and protective coal-seam mining (...In this study, the spatial distributions of stress and fracture fields for three typical underground coal mining layouts, Le, non-pillar mining (NM), top-coal caving mining (TCM) and protective coal-seam mining (PCM), are modeled using discrete element software UDEC, The numerical results show that different mining layouts can lead to different mining-induced stress fields, resulting in diverse fracture fields, For the PCM, the mining influenced area in front of the mining faces is the largest, and the stress concentration factor in front of the mining faces is the lowest, The spatial shapes of the mining-induced fracture fields under NM, TCM and PCM differ, and they are characterized by trapezoidal, triangular and tower shapes, respectively, The fractal dimensions of mining-induced fractures of the three mining layouts decrease in the order of PCM, TCM and NM, It is also shown that the PCM can result in a better gas control effect in coal mines with high outburst potential, The numerical results are expected to provide a basis for understanding of mining-induced gas seepage fields and provide a reference for high- efficiency coal mining,展开更多
The coupling mechanism between mining-induced mechanical behavior and gas permeability of coal is effectively obtained in laboratory.This study means significant understanding of the prevention of coal-gas outburst.Th...The coupling mechanism between mining-induced mechanical behavior and gas permeability of coal is effectively obtained in laboratory.This study means significant understanding of the prevention of coal-gas outburst.The testing samples of coal were drilled from the 14120 mining face at the depth of690 m.Based on the redistribution of stress during the excavation,the coupling test between mechanical state and seepage has been designed using the triaxial servo-controlled seepage equipment for thermofluid-solid coupling of coal containing methane.It is the result that there are two main factors influencing the mining-induced mechanical behavior of coal,such as the change ofσ_1-σ_3 andΔσ_1-Δσ_3.The failure mode mainly depends on the value ofσ_1-σ_3,and the peak strength value mainly depends on the value ofΔσ_1-Δσ_3.The difference of mechanical response between geostress and mining-induced stress has been obtained,which can be a theoretical support for safe mining such as reasonable gas drainage,prevention of coal-gas outburst and gas over-limit.展开更多
Using a minitype and stress-type test device for similar material simulation of coal-mining subsidence, the relation between tectonic stress and coal-mining subsidence was successfully simulated, furthermore, the test...Using a minitype and stress-type test device for similar material simulation of coal-mining subsidence, the relation between tectonic stress and coal-mining subsidence was successfully simulated, furthermore, the test period of similar material simulation was obviously shortened and the test process was more dexterous and convenient. To do simi-lar material simulation with the minitype and stress-type test device was feasible and high-efficient. Bringing two models with the same geological and mining conditions to bear lateral compressive stress and tensile stress respectively and simulating the process of underground mining, the test results indicate that: under the compressive stress, the col-lapse of the coal roof occurs belatedly and the damaged range in cover of coal seam is smaller, therefore the movement and deformation of the cover and its damage to the ground geological environment are not evident; whereas under tensile stress, the situation is contrary to which mentioned above. A conclusion was obtained from the test that the ground environment hazards in coal mining areas were controlled by the regional geo-logical tectonic stress field.展开更多
In order to explore the spatial distribution and variation characteristics of soil moisture in coal mining subsidence area in Mu Us sandy Land,and provide theoretical basis for the restoration of the mining area,exper...In order to explore the spatial distribution and variation characteristics of soil moisture in coal mining subsidence area in Mu Us sandy Land,and provide theoretical basis for the restoration of the mining area,experiments based on a linear sampling and classic statistical and geostatistical methods were conducted. Spatial distribution characteristics and variation of soil moisture in the typical 0 to 100 cm dune area in the subsidence area and the non-subsidence area( control) were studied. The results showed that in the typical sand dune location of nonsubsidence area( control),the probability distribution curves of soil moisture changes in all layers along vertical and horizontal directions were all normal distribution,and it was consistent with the temporal and spatial variation characteristics of soil moisture in conventional dunes in Mu Us sandy land. By contrast,two years after the coal mine collapsed,the variations of soil moisture in different layers along vertical and horizontal directions were different,and soil moisture loss was more serious than that of control dune by nearly 10% to 30%,and the standard deviation varied from 0. 54 to 1. 05,increasing by 52. 08% compared with the non-subsidence area( control). The probability of positive and negative deviation greater than 1 was over 50%,and the coefficient of variation varied from 0. 14 to 0. 28,which was 80% higher than that of nonsubsidence area( control). After collapsing,the average level of soil moisture,standard deviation,variance and variation coefficient had greatly changed,and influence of coal mining subsidence on soil moisture was the most in the middle layer( 30-70 cm),and was not obvious in the surface( 0-20 cm) and lower layer( 80-100 cm). In coal mining subsidence area,the dispersion degree of soil moisture in different layers along the vertical and horizontal direction was greatly improved,which increased spatial variation of soil moisture.展开更多
In recent years, many coal-producing countries have paid great atte ntion to the land subsidence caused by coal cutting. In China, because of the de nse population in coalfield areas, the land subsidence hazard is mor...In recent years, many coal-producing countries have paid great atte ntion to the land subsidence caused by coal cutting. In China, because of the de nse population in coalfield areas, the land subsidence hazard is more serious. A fter a brief analysis on the mechanism of land subsidence, this paper gives a co mprehensive and systematical account on all kinds of hazards caused by the land subsidence in China. The study shows that land subsidence has endangered land, b uildings, traffic and communication lines, dykes and dams. It also causes damage to ecological and social environment. In order to lessen the hazard of land sub sidence, preventive measures should be taken to reduce the collapse amount, such as extraction with stowing, banded mining system, succession and coordination m ining system, or high-pressure mudflow between rock strata. Measures of reinfor cing or moving certain buildings should also be taken to reduce the destructive degree. In order to harness the subsidence land and bring them under control for farming, measures should be taken such as filling with spoil or fine breeze, ex cavating the deeper and covering the shallower land.展开更多
Ground subsidence induced by extraction of coal seam belowground brings about changes in surface environment leading to trough and pot-hole subsidence.Pot-hole subsidence is extremely hazardous and does not give any p...Ground subsidence induced by extraction of coal seam belowground brings about changes in surface environment leading to trough and pot-hole subsidence.Pot-hole subsidence is extremely hazardous and does not give any prior indication before its occurrence.In India,several pot-holes have occurred in the coal mines of South Eastern Coalfields Limited triggering the need for in-depth studies.In line with the requirement,literature review and field investigations were conducted to develop an in-depth understanding of various parameters influencing the occurrence of pot-holes.The critical parameters identified were rock to soil ratio,depth to height of extraction ratio,brittleness index of rock and rock density.Risk assessment of pot-hole subsidence has been done by developing an empirical rating approach named as pot-hole subsidence rating(PHSR),involving the critical parameters with suitable corrections for certain structural and mining conditions to obtain corrected PHSR(CPHSR).CPHSR was then applied for all the 34pot-holes studied and it was found that all the pot-holes fall under Class I and Class II category of risk representing a very high to high risk class.An effort was made for the estimation of pot-hole depth utilizing the developed CPHSR in both the development and depillaring cases.The developed approach was found to yield consistent results in pot-hole depth prediction.展开更多
The target of the text is to scientifically appraise dynamic development of surface deformation in subsidence area and its influence on groundwork stability of natural pipe and then adopt some technological measures t...The target of the text is to scientifically appraise dynamic development of surface deformation in subsidence area and its influence on groundwork stability of natural pipe and then adopt some technological measures to ensure safe circulation of natural pipeline. Analysed the influence on natural pipeline from coal mining subsidence in the way of pipeline grade variation, vertical curve variation, transverse deformation, horizontal pull and compression deformation and pipe stress variation etc., and described detailed surface subsidence product and its used time among initial phase, active phase and decline phase in the course of surface movement deformation time. In the context of considering surface subsidence that doesn't reach basic latter end and residual subsidence quantity, the text confirmed the calculation method of residual deformation in surface subsidence area, and gave the technological measures about building natural gas pipeline in subsidence area finally.展开更多
Subsidence occurred in many parts of the world. particularly in densely populated deltaic regions, causing extremely expensive damage. It can be resulted from natural causes. man-made induced causes, or other mixed ca...Subsidence occurred in many parts of the world. particularly in densely populated deltaic regions, causing extremely expensive damage. It can be resulted from natural causes. man-made induced causes, or other mixed causes. For identifying surface subsidence, many techniques have been employed, for example, geodetic monitoring, airborne laser subsidence measurement system,differential S.A.R., interferometry DGPS, and satellite radar measurements. However. all these methods require large time span and a large amount of field work. With the development of GIS techniques, identification of surface subsidence is becoming a relative easy problem. Ruqigou coal mining area was selected as a case study to identify the surface subsidence with DEM (digital elevation model) overlaying techniques. The result shows that DEM overlaying technique is a very useful method on surface subsidence identification. The accuracy of the results are largely dependent on the precision of the data-input.展开更多
To investigate the ecosystem damage and environment pollution resulted from coal resources exploitation,based on remote sensing image,the landscape pattern was quantitatively analyzed with GIS and landscape pattern an...To investigate the ecosystem damage and environment pollution resulted from coal resources exploitation,based on remote sensing image,the landscape pattern was quantitatively analyzed with GIS and landscape pattern analysis software FRAGSTATS by utilizing multiform landscape pattern indexes,such as patch area,patch circumference,patch number,fractal dimension,fragmentation index,connectivity index and so on. Results indicate that the restored landscape type occupies the control status and accounts for the majority of the whole area,and needs to be further restored and adjusted because of its internal body with smaller patches,lower fractal dimension and better connectivity. The landscape type without restoration has destroyed the ecology and beauty of the whole landscape. In addition,some suggestive instructions for restoring various kinds of patches are put forward according to the quantitative analysis.展开更多
By combining expert consultation and field investigation,an evaluation system,consisting of 29 indices in 5 aspects of water safety,water ecology,water management,water landscape and water culture,was established for ...By combining expert consultation and field investigation,an evaluation system,consisting of 29 indices in 5 aspects of water safety,water ecology,water management,water landscape and water culture,was established for water ecological civilization construction in coal mining subsidence areas.The weight of the indices was determined using improved group-decision fuzzy analytic hierarchy process and fuzzy mathematical method,and their score was determined according to their value before the pilot and the value at the end of the pilot.Combined with the weight,the actual score of the indices was obtained.Finally,a comprehensive index of water ecological civilization in coal mining subsidence areas was obtained.Through the weight and score of the indices,the construction status,existing problems and future tasks of coal mining subsidence areas were analyzed,in order to provide a reference for the region to further clarify the direction and key tasks of water ecological civilization construction.展开更多
文摘The paper presents the results of terrain subsidence monitoring in Poland's Upper Silesian Coal Basin(USCB)mining area using Differential Interferometry Synthetic Aperture Radar(DInSAR)and Persistent Scatterer Interferometry(PSI).The study area accounts for almost three million inhabitants where mining which started in the 19th century,has produced severe damage to buildings and urban infrastructures in past years.The analysis aimed to combine eight different datasets,processed in two techniques,coming from various sensors and covering different periods.As a result,a map of areas that have been exposed to subsidence within 3045 square kilometers was obtained.The map covers a period of twenty years of intensive mining activities,i.e.1992-2012.A total of 81 interferograms were used in the study.The interferograms allowed not only to determine subsidence troughs(basins)formed from 1992 to 2012 but also to observe subsidence development over time.The work also included five sets of PSI processing,covering different temporal and spatial ranges,which were used to determine zones of residual subsidence.Based on InSAR datasets,an area of 521 square kilometers under the influence of mining activities were determined.Within the subsiding zones,an area of 312.5 square kilometers of the rapid increase in subsidence was identified on the interferograms.The study of combined different InSAR datasets provided large-area and long-term information on the impact of mining activities in the Upper Silesia Coal Basin.
基金supported by the National Natural Science Foundation of China(Grant Nos.11602235 and 41772326)the Fundamental Research Funds for the Central Universities of China(Grant No.2652018091)。
文摘Surface subsidence induced by underground mining is a typical serious geohazard.Numerical approaches such as the discrete element method(DEM)and finite difference method(FDM)have been widely used to model and analyze mining-induced surface subsidence.However,the DEM is typically computationally expensive,and is not capable of analyzing large-scale problems,while the mesh distortion may occur in the FDM modeling of largely deformed surface subsidence.To address the above problems,this paper presents a geometrically and locally adaptive remeshing method for the FDM modeling of largely deformed surface subsidence induced by underground mining.The essential ideas behind the proposed method are as follows:(i)Geometrical features of elements(i.e.the mesh quality),rather than the calculation errors,are employed as the indicator for determining whether to conduct the remeshing;and(ii)Distorted meshes with multiple attributes,rather than those with only a single attribute,are locally regenerated.In the proposed method,the distorted meshes are first adaptively determined based on the mesh quality,and then removed from the original mesh model.The tetrahedral mesh in the distorted area is first regenerated,and then the physical field variables of old mesh are transferred to the new mesh.The numerical calculation process recovers when finishing the regeneration and transformation.To verify the effectiveness of the proposed method,the surface deformation of the Yanqianshan iron mine,Liaoning Province,China,is numerically investigated by utilizing the proposed method,and compared with the numerical results of the DEM modeling.Moreover,the proposed method is applied to predicting the surface subsidence in Anjialing No.1 Underground Mine,Shanxi Province,China.
基金FoundatianitemProject (99 mining 20267) supported by Coal Science Fund .
文摘The base vector between 2 poins and a high-precision geodetic height difference can be obtained by GPS. If the geodetic height of a point is known, the geodetic height of each observation point in a net can be obtained. When surveying the subsidence value in the mining-induced ground subsidence, the change of the height of monitoring point is needed. On the above theoretical basis, the problem involved in GPS observation of mining-induced ground subsidence and their counter measures were discussed, and an introduction was made that the subsidence value obtained in the monitoring mining-induced ground subsidence can use the change of height of geodetic as a alternative, the result of check on the accuracy and reliability of repetitions observations was analysed. Finally, the effect of errors on accuracy of GPS observation and their reduction measures were elaborated.
基金This research was carried out by the following funded projects:National Natural Science Foundation of China(51604270,51874292,and 51804303)Fundamental Research Funds for the Central Universities(2017QNA26)+2 种基金Natural Science Foundation of Jiangsu Province(BK20180643)Independent Research Projects of State Key Laboratory of Coal Resources and Safe Mining,China University of Mining and Technology(SKLCRSM15X04)The first author also acknowledges the China Postdoctoral Council International Postdoctoral Exchange Fellowship Program(20170060).
文摘Fault is a common geological structure that has been revealed in the process of underground coal excavation and mining.The nature of its discontinuous structure controls the deformation,damage,and mechanics of the coal or rock mass.The interaction between this discontinuous structure and mining activities is a key factor that dominates fault reactivation and the coal burst it can induce.This paper first summarizes investigations into the relationships between coal mining layouts and fault occurrences,along with relevant conceptual models for fault reactivation.Subsequently,it proposes mechanisms of fault reactivation and its induced coal burst based on the superposition of static and dynamic stresses,which include two kinds of fault reactivations from:mining-induced quasi-static stress(FRMSS)-dominated and seismic-based dynamic stress(FRSDS)-dominated.These two kinds of fault reactivations are then validated by the results of experimental investigations,numerical modeling,and in situ microseismic monitoring.On this basis,monitoring methods and prevention strategies for fault-induced coal burst are discussed and recommended.The results show that fault-induced coal burst is triggered by the superposition of high static stress in the fault pillar and dynamic stress from fault reactivation.High static stress comes from the interaction of the fault and the roof structure,and dynamic stress can be ascribed to FRMSS and FRSDS.The results in this paper could be of great significance in guiding the monitoring and prevention of fault-induced coal bursts.
基金supported by the National Natural Science Foundation of China(No.41130637, No.40472124)International Cooperation Projects of Ministry of Science and Technology(2005DFA90200)
文摘Coal mining subsidence is a universal environmental-geological problem in mining areas. By selecting the Shen-Dong coal mining subsidence area as the research field, this paper studies the changes in precipitation infiltration recharge in the circumstances of coal mining subsidence by means of field geological investigation and laboratory simulation experiments, which is expected to provide a scientific basis for eco-environmental restoration in the mining area. The results indicate that at the unstable stage of subsidence, three types of subsidence in the Shen-Dong mining area have positive effects on the precipitation infiltration recharge, and the type of full-thickness bedrock subsidence has the greatest influence. In the stable stage of subsidence, the precipitation infiltration process after long- term drought and the moisture migration in the aeration zone undergo three different stages: evaporation-infiltration before precipitation, infiltration-upward infiltration-infiltration during precipitation and evaporation-infiltration after precipitation. During a heavy rainfall infiltration process, the wetting front movement in fine sand, coarse sand and dualistic structure of fine-coarse sand consists of two stages: the stage of wetting front movement during precipitation, in which the wetting front movement distance has linear relationship with the depth, and the stage of wetting front movement after precipitation, in which the wetting front movement distance has the power function relationship with the depth. The wetting front movement velocity is influenced by the rainfall amount and the lithology in the aeration zone. However, as the depth increases, the movement velocity will decay exponentially.
文摘The objective of this paper is to study the behavior of a low thick and low depth coal seam and the overburden rock mass. The mining method is room and pillar in retreat and partial pillar recovery. The excavation method is conventional drill and blast because of the small production. The partial pillar recovery is about 30% of the previous pillar size, 7 m × 7 m. The roof displacement was monitored during retreat operation; the surface movement was also monitored. The effect of the blasting vibration on the final pillar strength had been considered. Due to blasting, the pillar reduced about 20%. The consequence is more pillar deformation and roof vertical displacement. The pillar retreat and ground movement were simulated in a three-dimensional numerical model. This model was created to predict the surface subsidence and compare to the subsidence measured. This study showed that the remaining pillar and low seam reduce the subsidence that was predicted with conventional methods.
文摘Prediction of surface subsidence caused by longwall mining operation in inclined coal seams is often very challenging. The existing empirical prediction methods are inflexible for varying geological and mining conditions. An improved influence function method has been developed to take the advantage of its fundamentally sound nature and flexibility. In developing this method, the original Knothe function has been transformed to produce a continuous and asymmetrical subsidence influence function. The empirical equations for final subsidence parameters derived from col- lected longwall subsidence data have been incorporated into the mathematical models to improve the prediction accuracy. A number of demonstration cases for longwall mining operations in coal seams with varying inclination angles, depths and panel widths have been used to verify the applicability of the new subsidence prediction model.
文摘The distribution of the final surface subsidence basin induced by longwall operations in inclined coal seam could be significantly different from that in flat coal seam and demands special prediction methods. Though many empirical prediction methods have been developed, these methods are inflexible for varying geological and mining conditions. An influence function method has been developed to take the advantage of its fundamentally sound nature and flexibility. In developing this method, significant modifications have been made to the original Knothe function to produce an asymmetrical influence function. The empirical equations for final subsidence parameters derived from US subsidence data and Chinese empirical values have been incorpo- rated into the mathematical models to improve the prediction accuracy. A corresponding computer program is developed. A number of subsidence cases for longwall mining operations in coal seams with varying inclination angles have been used to demonstrate the applicability of the developed subsidence prediction model.
基金Poroject(971006) supported by the Mining Industry Foundation of Shandong Province China .
文摘Based on a great amount of practically observational data and by computer simulation, a formula for estimating the ground subsidence caused by coal mining was derived. Meanwhile, an empirical mathematical model for ground subsidence basin in coal mining was given.
基金supported by the Fund for 863 Program(2013AA102904)the central university basic research project(2009KD01).
文摘To investigate the effects of seabuckthorn(Hippophae rhamnoides)on soil amelioration,using the space replacement method,soil physical and chemical indexes as well as the microorganism quantity and soil enzyme activities were analyzed.The results showed that:the soil bulk density of surface soil decreased and soil porosity and field capacity increased after afforestation with seabuckthorn.The plant was found to effectively reduce the soil pH,increase the soil conductivity,soil organic matters and available nutrients.Soil microorganism quantity,soil enzyme activities were both higher in 0-20 cm layer than in 20-40 cm layer.With the increase years of remediation with seabuckthorn,the quantity of soil microorganism and enzyme activities were increasing to a higher level 5 to 8 years later.Our study indicates that seabuckthorn can effectively improve soil physical and chemical properties,increase the quantity of soil microorganisms and enzyme activities,which is of great significance for the ecosystem restoration in mining areas.
基金financially supported by the State Key Research Development Program of China(Grant No.2016YFC0600701)the National Natural Science Foundation of China(Grant No.51674170)
文摘In this study, the spatial distributions of stress and fracture fields for three typical underground coal mining layouts, Le, non-pillar mining (NM), top-coal caving mining (TCM) and protective coal-seam mining (PCM), are modeled using discrete element software UDEC, The numerical results show that different mining layouts can lead to different mining-induced stress fields, resulting in diverse fracture fields, For the PCM, the mining influenced area in front of the mining faces is the largest, and the stress concentration factor in front of the mining faces is the lowest, The spatial shapes of the mining-induced fracture fields under NM, TCM and PCM differ, and they are characterized by trapezoidal, triangular and tower shapes, respectively, The fractal dimensions of mining-induced fractures of the three mining layouts decrease in the order of PCM, TCM and NM, It is also shown that the PCM can result in a better gas control effect in coal mines with high outburst potential, The numerical results are expected to provide a basis for understanding of mining-induced gas seepage fields and provide a reference for high- efficiency coal mining,
基金funds supported by the State Key Basic Research Project of China(No.2011CB201201)
文摘The coupling mechanism between mining-induced mechanical behavior and gas permeability of coal is effectively obtained in laboratory.This study means significant understanding of the prevention of coal-gas outburst.The testing samples of coal were drilled from the 14120 mining face at the depth of690 m.Based on the redistribution of stress during the excavation,the coupling test between mechanical state and seepage has been designed using the triaxial servo-controlled seepage equipment for thermofluid-solid coupling of coal containing methane.It is the result that there are two main factors influencing the mining-induced mechanical behavior of coal,such as the change ofσ_1-σ_3 andΔσ_1-Δσ_3.The failure mode mainly depends on the value ofσ_1-σ_3,and the peak strength value mainly depends on the value ofΔσ_1-Δσ_3.The difference of mechanical response between geostress and mining-induced stress has been obtained,which can be a theoretical support for safe mining such as reasonable gas drainage,prevention of coal-gas outburst and gas over-limit.
基金Supported by the National Natural Science Foundation of China(40472104)
文摘Using a minitype and stress-type test device for similar material simulation of coal-mining subsidence, the relation between tectonic stress and coal-mining subsidence was successfully simulated, furthermore, the test period of similar material simulation was obviously shortened and the test process was more dexterous and convenient. To do simi-lar material simulation with the minitype and stress-type test device was feasible and high-efficient. Bringing two models with the same geological and mining conditions to bear lateral compressive stress and tensile stress respectively and simulating the process of underground mining, the test results indicate that: under the compressive stress, the col-lapse of the coal roof occurs belatedly and the damaged range in cover of coal seam is smaller, therefore the movement and deformation of the cover and its damage to the ground geological environment are not evident; whereas under tensile stress, the situation is contrary to which mentioned above. A conclusion was obtained from the test that the ground environment hazards in coal mining areas were controlled by the regional geo-logical tectonic stress field.
基金Supported by National Natural Science Foundation of China(41661062)Shaanxi Provincial Science and Technology Research and Development Plan Project(2014KJXX-21)Shaanxi Provincial Natural Science Fund Project(2014jm5126)
文摘In order to explore the spatial distribution and variation characteristics of soil moisture in coal mining subsidence area in Mu Us sandy Land,and provide theoretical basis for the restoration of the mining area,experiments based on a linear sampling and classic statistical and geostatistical methods were conducted. Spatial distribution characteristics and variation of soil moisture in the typical 0 to 100 cm dune area in the subsidence area and the non-subsidence area( control) were studied. The results showed that in the typical sand dune location of nonsubsidence area( control),the probability distribution curves of soil moisture changes in all layers along vertical and horizontal directions were all normal distribution,and it was consistent with the temporal and spatial variation characteristics of soil moisture in conventional dunes in Mu Us sandy land. By contrast,two years after the coal mine collapsed,the variations of soil moisture in different layers along vertical and horizontal directions were different,and soil moisture loss was more serious than that of control dune by nearly 10% to 30%,and the standard deviation varied from 0. 54 to 1. 05,increasing by 52. 08% compared with the non-subsidence area( control). The probability of positive and negative deviation greater than 1 was over 50%,and the coefficient of variation varied from 0. 14 to 0. 28,which was 80% higher than that of nonsubsidence area( control). After collapsing,the average level of soil moisture,standard deviation,variance and variation coefficient had greatly changed,and influence of coal mining subsidence on soil moisture was the most in the middle layer( 30-70 cm),and was not obvious in the surface( 0-20 cm) and lower layer( 80-100 cm). In coal mining subsidence area,the dispersion degree of soil moisture in different layers along the vertical and horizontal direction was greatly improved,which increased spatial variation of soil moisture.
文摘In recent years, many coal-producing countries have paid great atte ntion to the land subsidence caused by coal cutting. In China, because of the de nse population in coalfield areas, the land subsidence hazard is more serious. A fter a brief analysis on the mechanism of land subsidence, this paper gives a co mprehensive and systematical account on all kinds of hazards caused by the land subsidence in China. The study shows that land subsidence has endangered land, b uildings, traffic and communication lines, dykes and dams. It also causes damage to ecological and social environment. In order to lessen the hazard of land sub sidence, preventive measures should be taken to reduce the collapse amount, such as extraction with stowing, banded mining system, succession and coordination m ining system, or high-pressure mudflow between rock strata. Measures of reinfor cing or moving certain buildings should also be taken to reduce the destructive degree. In order to harness the subsidence land and bring them under control for farming, measures should be taken such as filling with spoil or fine breeze, ex cavating the deeper and covering the shallower land.
基金Financial support for this work is provided by M/s SECL,CIL,India
文摘Ground subsidence induced by extraction of coal seam belowground brings about changes in surface environment leading to trough and pot-hole subsidence.Pot-hole subsidence is extremely hazardous and does not give any prior indication before its occurrence.In India,several pot-holes have occurred in the coal mines of South Eastern Coalfields Limited triggering the need for in-depth studies.In line with the requirement,literature review and field investigations were conducted to develop an in-depth understanding of various parameters influencing the occurrence of pot-holes.The critical parameters identified were rock to soil ratio,depth to height of extraction ratio,brittleness index of rock and rock density.Risk assessment of pot-hole subsidence has been done by developing an empirical rating approach named as pot-hole subsidence rating(PHSR),involving the critical parameters with suitable corrections for certain structural and mining conditions to obtain corrected PHSR(CPHSR).CPHSR was then applied for all the 34pot-holes studied and it was found that all the pot-holes fall under Class I and Class II category of risk representing a very high to high risk class.An effort was made for the estimation of pot-hole depth utilizing the developed CPHSR in both the development and depillaring cases.The developed approach was found to yield consistent results in pot-hole depth prediction.
文摘The target of the text is to scientifically appraise dynamic development of surface deformation in subsidence area and its influence on groundwork stability of natural pipe and then adopt some technological measures to ensure safe circulation of natural pipeline. Analysed the influence on natural pipeline from coal mining subsidence in the way of pipeline grade variation, vertical curve variation, transverse deformation, horizontal pull and compression deformation and pipe stress variation etc., and described detailed surface subsidence product and its used time among initial phase, active phase and decline phase in the course of surface movement deformation time. In the context of considering surface subsidence that doesn't reach basic latter end and residual subsidence quantity, the text confirmed the calculation method of residual deformation in surface subsidence area, and gave the technological measures about building natural gas pipeline in subsidence area finally.
文摘Subsidence occurred in many parts of the world. particularly in densely populated deltaic regions, causing extremely expensive damage. It can be resulted from natural causes. man-made induced causes, or other mixed causes. For identifying surface subsidence, many techniques have been employed, for example, geodetic monitoring, airborne laser subsidence measurement system,differential S.A.R., interferometry DGPS, and satellite radar measurements. However. all these methods require large time span and a large amount of field work. With the development of GIS techniques, identification of surface subsidence is becoming a relative easy problem. Ruqigou coal mining area was selected as a case study to identify the surface subsidence with DEM (digital elevation model) overlaying techniques. The result shows that DEM overlaying technique is a very useful method on surface subsidence identification. The accuracy of the results are largely dependent on the precision of the data-input.
基金Sponsored by the National High Technology Research and Development Program of China(Grant No.2005AA644030)the National Key Technology R&D Program in the 11th Five Year Plan of China(Grant No.2006BAD16B09)
文摘To investigate the ecosystem damage and environment pollution resulted from coal resources exploitation,based on remote sensing image,the landscape pattern was quantitatively analyzed with GIS and landscape pattern analysis software FRAGSTATS by utilizing multiform landscape pattern indexes,such as patch area,patch circumference,patch number,fractal dimension,fragmentation index,connectivity index and so on. Results indicate that the restored landscape type occupies the control status and accounts for the majority of the whole area,and needs to be further restored and adjusted because of its internal body with smaller patches,lower fractal dimension and better connectivity. The landscape type without restoration has destroyed the ecology and beauty of the whole landscape. In addition,some suggestive instructions for restoring various kinds of patches are put forward according to the quantitative analysis.
基金Program for Science and Technology Development of Anhui Province(1604a0802110)Key Research and Development Program of Anhui Province(1804b06020346)Water Conservancy Science and Technology Plan Project of Anhui Province(slkj2016-03).
文摘By combining expert consultation and field investigation,an evaluation system,consisting of 29 indices in 5 aspects of water safety,water ecology,water management,water landscape and water culture,was established for water ecological civilization construction in coal mining subsidence areas.The weight of the indices was determined using improved group-decision fuzzy analytic hierarchy process and fuzzy mathematical method,and their score was determined according to their value before the pilot and the value at the end of the pilot.Combined with the weight,the actual score of the indices was obtained.Finally,a comprehensive index of water ecological civilization in coal mining subsidence areas was obtained.Through the weight and score of the indices,the construction status,existing problems and future tasks of coal mining subsidence areas were analyzed,in order to provide a reference for the region to further clarify the direction and key tasks of water ecological civilization construction.