Considering the fact that the temperature distribution in furnace of a tangential fired pulverized coal boiler is difficult to be measured and monitored, two-stage numerical simulation method was put forward. First, m...Considering the fact that the temperature distribution in furnace of a tangential fired pulverized coal boiler is difficult to be measured and monitored, two-stage numerical simulation method was put forward. First, multi-field coupling simulation in typical work conditions was carried out off-line with the software CFX-4.3, and then the expression of temperature profile varying with operating parameter was obtained. According to real-time operating parameters, the temperature at arbitrary point of the furnace can be calculated by using this expression. Thus the temperature profile can be shown on-line and monitoring for combustion state in the furnace is realized. The simul-(ation) model was checked by the parameters measured in an operating boiler, (DG130-9.8/540.) The maximum of relative error is less than 12% and the absolute error is less than 120℃, which shows that the proposed two-stage simulation method is reliable and able to satisfy the requirement of industrial application.展开更多
Based on the theory of continuum mechanics of multi-pbase media, a mathematical model and non-linear FEM equation of the coupling instability problem of solid-fluid biphase media for coal-methane outburst under finite...Based on the theory of continuum mechanics of multi-pbase media, a mathematical model and non-linear FEM equation of the coupling instability problem of solid-fluid biphase media for coal-methane outburst under finite deformation are established. The critical conditions of the surface instability are presented as the singularity of the total stiffness matrices of the coal body for coal-methaue outburst. That means the deformtion or the coal body emerges bifurcatiou phenomena. The numerical simulation of a typical outburst is made.展开更多
This paper took the abnormal geological objects with high or low resistivity in the coal face as the background to establish the physical model. 2D forward numerical simulation for electromagnetic wave equation was im...This paper took the abnormal geological objects with high or low resistivity in the coal face as the background to establish the physical model. 2D forward numerical simulation for electromagnetic wave equation was implemented by the finite-difference scheme. According to the simulative results, the attenuation-absorption coefficient were calculated respectively based on field intensity and frequency shift parameter. Research result indicates, when coal-bed contains high electric resistivity geological abnormal object or low electric resistivity geological abnormal object, absorption attenuation function researched by frequency shift parameter of electromagnetic wave signal is more sensitive than by electromagnetic field intensity parameter.展开更多
According to the research results in world, the paper comprehensively analyzed and gave a demonstration of mechanism of single-truss and its stressing advantage. Comparison and analysis effect were given to single-tru...According to the research results in world, the paper comprehensively analyzed and gave a demonstration of mechanism of single-truss and its stressing advantage. Comparison and analysis effect were given to single-truss and bolting supporting. By the way of element simulation. The paper shows that single truss supporting have better effect to bolting supporting to improving the stress condition of surrounding rocks, controlling the surrounding rocks plastic failure development zone and deformation effect of surrounding rocks, which provided the elementary theory basis to the research, experiment and expanding the single-truss bolting technology in colliery.展开更多
In view of the situation of excavation of should carry out simulation studies for the numerical open coal mine for the underground water disaster, we value of the water lowering project and improve the accuracy and th...In view of the situation of excavation of should carry out simulation studies for the numerical open coal mine for the underground water disaster, we value of the water lowering project and improve the accuracy and the level of the water lowering project. On the basis of the hydrological geological conditions of certain open mine digging, a more reasonable seepage numerical model was built according to MODFLOW. It was simulated in advance that the process of the confined water level descending with the time, and combining with the actual observations to test the correctness of the model. The calculation showed that the results coincided well with the results of actual measurement. Based on this, different water lowering numerical simulations were built for the open coal mine digging. It could be simulated and forecast that the changes of the groundwater level in drainage process within and outside the mine pit, and it was quantitatively assessed that the possible water lowering result of the opencast water drainage process, which provide an important basis for the actual water lowering project and the possible project disposal.展开更多
The present study examines the results of the researches related to the gob bulking factor carried out at home and abroad.A mathematical function of a three-dimensional gob bulking factor is described based on a three...The present study examines the results of the researches related to the gob bulking factor carried out at home and abroad.A mathematical function of a three-dimensional gob bulking factor is described based on a three-dimensional gob model.The method of taking value for interstice and permeability ratios is also proposed.The law of air leakage of fully mechanized top coal is researched in this study.The results show that the speed of air flow near the upper and lower crossheadings is higher than that in the central section of the gob at the same distance from the working face.When the amount of air at the working face exceeds a critical amount,the width of the spontaneous combustion zone in the upper and lower crossheadings is also larger than that in the central section.In this situation,the key is preventing the coal left in the upper and lower crossheadings from self-igniting.Reducing the amount of air at the working face can decrease the width of the spontaneous combustion zone,especially the width near the upper and lower crossheadings.This also moves the spontaneous combustion zone in the direction of the working face.It can prevent the coal in the gob from self-igniting by making the coal left in the crossheadings to be inert and by effectively controlling the amount of air at the working face.展开更多
Aiming at the limitation of the traditional method for determination of protection region, combined with the actual situation of a mine, a new method for determination of protection region was put forward (including ...Aiming at the limitation of the traditional method for determination of protection region, combined with the actual situation of a mine, a new method for determination of protection region was put forward (including the protection of working face layout and development direction), that is, gas flow observation analysis on the spot and gas content contrast method. The protection region was determined by gas flow observation analysis, gas content contrast, and computer numerical simulation combined with engineering practice. In the process of gas content test, the fixed sampling method "big hole drill reaming, small orifice drill rod connected with core tube" was employed. The results show that the determined protection region is in accordance with the actual site situation. The fixed sampling method ensures the accuracy of gas measurement of gas content.展开更多
Numerical simulation study is conducted for a pressurized spouted fluidized bed coal carbonizer, in which hydrodynamics of pressurized spouted fluidized bed, chemical reactions and energy balance are taken into accoun...Numerical simulation study is conducted for a pressurized spouted fluidized bed coal carbonizer, in which hydrodynamics of pressurized spouted fluidized bed, chemical reactions and energy balance are taken into account. The effect of operating conditions such as bed pressure, air and steam mass flow ratio, temperature on product compositions in the bed is investigated. According to the calculated results, bed pressure and bed temperature have the key effects on coal semi gasification.展开更多
Water injection, as a widely used technique to prevent coal burst, can restrain the fractured coal seam and released the energy storage. In this study, laboratory tests were frstly carried out on standard coal specime...Water injection, as a widely used technique to prevent coal burst, can restrain the fractured coal seam and released the energy storage. In this study, laboratory tests were frstly carried out on standard coal specimens with fve diferent water contents (i.e., 0%, 0.6%, 1.08%, 1.5%, 2.0%, and 2.3%). The failure mode, fragment size, and energy distribution characteristics of coal specimens were investigated. Experimental results show that strength, elastic strain energy, dissipated energy, brittleness index, as well as impact energy index decrease with increasing water content. Besides, the failure mode transitions gradually from splitting ejection to tensile-shear mixed failure mode as water content increases, and average fragment size shows positively related to water content. Moreover, scanning electron microscope tests results indicate that water in coal sample mainly causes the mineral softening and defects increase. Furthermore, a numerical model containing roadway excavation was established considering the water on coal burst prevention. Modelling results revealed that water injection can reduce degree of coal burst and ejection velocity of coal blocks, while it will raise up the depth of crack zone and surface displacement of roadway. Combined with laboratory tests and numerical results, the micro mechanism, energy mechanism, and engineering signifcance of water injection on coal burst prevention were fnally analyzed.展开更多
The fault is one important factor for the stability of overburden strata caused by steeply inclined coal seam. The stress and displacement change of overburden strata caused by steeply-inclined coal seam mining activi...The fault is one important factor for the stability of overburden strata caused by steeply inclined coal seam. The stress and displacement change of overburden strata caused by steeply-inclined coal seam mining activity under faulting was simulated by FLAC2D finite differential program on the basis of Zhaogezhuang mining example belonging to Kailuan Mining Group. From the results, the stress and displacement clouding image after mining became complex because of the fault, that is, a kind of weak structural plane. The stress concentration region concentrated around the goaf, and also around the fault plane. As the mining depth increases, the stress and displacement within the fault zone change significantly. This movement and deformation characteristic of overburden strata can provide theoretical basis for the similar mining condition.展开更多
Currently, numerical simulations of seismic channel waves for the advance detection of geological structures in coal mine roadways focus mainly on modeling two- dimensional wave fields and therefore cannot accurately ...Currently, numerical simulations of seismic channel waves for the advance detection of geological structures in coal mine roadways focus mainly on modeling two- dimensional wave fields and therefore cannot accurately simulate three-dimensional (3-D) full-wave fields or seismic records in a full-space observation system. In this study, we use the first-order velocity-stress staggered-grid finite difference algorithm to simulate 3-D full-wave fields with P-wave sources in front of coal mine roadways. We determine the three components of velocity Vx, Vy, and Vz for the same node in 3-D staggered-grid finite difference models by calculating the average value of Vy, and Vz of the nodes around the same node. We ascertain the wave patterns and their propagation characteristics in both symmetrical and asymmetric coal mine roadway models. Our simulation results indicate that the Rayleigh channel wave is stronger than the Love channel wave in front of the roadway face. The reflected Rayleigh waves from the roadway face are concentrated in the coal seam, release less energy to the roof and floor, and propagate for a longer distance. There are surface waves and refraction head waves around the roadway. In the seismic records, the Rayleigh wave energy is stronger than that of the Love channel wave along coal walls of the roadway, and the interference of the head waves and surface waves with the Rayleigh channel wave is weaker than with the Love channel wave. It is thus difficult to identify the Love channel wave in the seismic records. Increasing the depth of the receivers in the coal walls can effectively weaken the interference of surface waves with the Rayleigh channel wave, but cannot weaken the interference of surface waves with the Love channel wave. Our research results also suggest that the Love channel wave, which is often used to detect geological structures in coal mine stopes, is not suitable for detecting geological structures in front of coal mine roadways. Instead, the Rayleigh channel wave can be used for the advance detection of geological structures in coal mine roadways.展开更多
In light of the escalating global energy imperatives,mining of challenging-to-access resources,such as steeply inclined extra-thick coal seams(SIEC),has emerged as one of the future trends within the domain of energy ...In light of the escalating global energy imperatives,mining of challenging-to-access resources,such as steeply inclined extra-thick coal seams(SIEC),has emerged as one of the future trends within the domain of energy advancement.However,there is a risk of gas and coal spontaneous combustion coupling disasters(GCC)within the goaf of SIEC due to the complex goaf structure engendered by the unique mining methodologies of SIEC.To ensure that SIEC is mined safely and efficiently,this study conducts research on the GCC within the goaf of SIEC using field observation,theoretical analysis,and numerical modeling.The results demonstrate that the dip angle,the structural dimensions in terms of width-to-length ratio,and compressive strength of the overlying rock are the key factors contributing to the goaf instability of SIEC.The gangue was asymmetrically filled,primarily accumulating within the central and lower portions of the goaf,and the filling height increased proportionally with the advancing caving height,the expansion coefficient,and the thickness of the surrounding rock formation.The GCC occurs in the goaf of SIEC,with an air-return side range of 41 m and an air-intake side range of 14 m,at the intersection area of the“<”-shaped oxygen concentration distribution(coal spontaneous combustion)and the“>”-shaped gas concentration distribution(gas explosion).The optimal nitrogen flow rate is 1000 m3/h with an injection port situated 25 m away from the working face for the highest nitrogen diffusion efficacy and lowest risk of gas explosion,coal spontaneous combustion,and GCC.It has significant engineering applications for ensuring the safe mining of SIEC threatened by the GCC.展开更多
In this study, the spatial distributions of stress and fracture fields for three typical underground coal mining layouts, Le, non-pillar mining (NM), top-coal caving mining (TCM) and protective coal-seam mining (...In this study, the spatial distributions of stress and fracture fields for three typical underground coal mining layouts, Le, non-pillar mining (NM), top-coal caving mining (TCM) and protective coal-seam mining (PCM), are modeled using discrete element software UDEC, The numerical results show that different mining layouts can lead to different mining-induced stress fields, resulting in diverse fracture fields, For the PCM, the mining influenced area in front of the mining faces is the largest, and the stress concentration factor in front of the mining faces is the lowest, The spatial shapes of the mining-induced fracture fields under NM, TCM and PCM differ, and they are characterized by trapezoidal, triangular and tower shapes, respectively, The fractal dimensions of mining-induced fractures of the three mining layouts decrease in the order of PCM, TCM and NM, It is also shown that the PCM can result in a better gas control effect in coal mines with high outburst potential, The numerical results are expected to provide a basis for understanding of mining-induced gas seepage fields and provide a reference for high- efficiency coal mining,展开更多
Due to the change of initial stress state caused by roadway excavation, the permeability of the coal body may be changed during the excavation process. In this paper, according to the different stress states, the coal...Due to the change of initial stress state caused by roadway excavation, the permeability of the coal body may be changed during the excavation process. In this paper, according to the different stress states, the coal around the roadway was divided into the seepage open zone, seepage orientation zone, seepage decay zone and original seepage zone along the radial direction of the roadway. The loaded gassy coal was treated as a viscoelastic and plastic softened medium, and the mechanical behaviors of the viscoelastic zone, plastic softened zone and broken zone around the roadway were analyzed with the consideration of the loading creep, softening and expansion effect of the gassy coal. According to the law of conservation of mass and the Darcy law, the flow-solid coupled model for the gas transportation of the coal around the roadway was established considering the dynamic evolution of the adsorption characteristics, porosity and permeability of the coal, and the simulation software COMSOL was utilized to numerically simulate the stress state and gas flow regularity around the coal, which provided meaningful reference for investigating the stability of the coal and rock around the roadway.展开更多
Based on the assumption of a local non-equilibrium of heat transfer between a solid matrix and gas,a mathematic model of coal mine methane combustion in a porous medium was established,as well the solid-gas boundary c...Based on the assumption of a local non-equilibrium of heat transfer between a solid matrix and gas,a mathematic model of coal mine methane combustion in a porous medium was established,as well the solid-gas boundary conditions.We simulated numerically the flame propagation characteristics.The results show that the flame velocity in ceramic foam is higher than that of free laminar flows;the maximum flame velocity depends on the combined effects of a radiation extinction coefficient and convection heat transfer in ceramic foam and rises with an increase in the chemical equivalent ratio.The radiation extinction coefficient cannot be used alone to determine the heat regeneration effects in the design of ceramic foam burners.展开更多
Due to its low volatile characteristics of lean coal,it is difficult to catch fire and burn out.Therefore,high temperature is needed to maintain combustion efficiency,while,this leads to high nitrogen oxide emission.F...Due to its low volatile characteristics of lean coal,it is difficult to catch fire and burn out.Therefore,high temperature is needed to maintain combustion efficiency,while,this leads to high nitrogen oxide emission.For power plant boilers burning lean coal,stable combustion with lower nitrogen oxide emission is a challenging task.This study applied the 3D numerical simulation on the analysis of a novel de-coupling burner for low-volatile coal and its structure and operation parameters optimization.Results indicate that although it was more difficult for lean coal decoupling burner to ignite lean coal than high volatile coal,the burner formed a stepwise ignition trend,which promoted the rapid ignition of lean coal.Comparison of three central partition plate structure shows that in terms of characteristics of the flow field distribution,rich and lean separation and combustion,the structure with an inclination of 0°showed good performance,with its rich-lean air ratio being 0.85 and concentration ratio being 22.94,and there was an apparent decoupling combustion characteristic.Finally,the structure of the selected burner was optimized for its operational conditions.The optimal operating parameters was determined as the primary air velocity of 24.9 m·s^-1 and the mass flow rate of pulverized coal of 2.5 kg·s^-1,in which the pyrolysis products were utilized as reductive agent more fully.Eventually,the nitrogen oxide was efficiently reduced to nitrogen,which emission concentration was 61.88%lower than that in the design condition.展开更多
A full two-fluid model of reacting gas-particle flows and coal combustion is used to simulate coal combustion with and without inlet natural gas added in the inlet. The simulation results for the case without natural ...A full two-fluid model of reacting gas-particle flows and coal combustion is used to simulate coal combustion with and without inlet natural gas added in the inlet. The simulation results for the case without natural gas burning is in fair agreement with the experimental results reported in references. The simulation results of different natural gas adding positions indicate that the natural gas burning can form lean oxygen combustion enviroment at the combustor inlet region and the NOx concentration is reduced. The same result can be obtained from chemical equilibrium analysis.展开更多
According to the influence of the combination of short-distance coal seam group on mining roadway, using numerical simulation software FLAG2D to draw the abutment pressure distribution ahead the working face and the a...According to the influence of the combination of short-distance coal seam group on mining roadway, using numerical simulation software FLAG2D to draw the abutment pressure distribution ahead the working face and the area of influence in fully-mechanized mining conditions, the variation rules of surrounding rock supporting pressure of floor roadway and the deformation rules were summarized. GYS-300 anchor dynamometer was used to measure the roadway surface displacement, and the conclusions of numerical simulation were verified.展开更多
During the fully mechanized caving face re-recovery process, due to the influence of mining and the redistribution of surrounding rock stress, a higher advanced support pressure and lateral support pressure will be fo...During the fully mechanized caving face re-recovery process, due to the influence of mining and the redistribution of surrounding rock stress, a higher advanced support pressure and lateral support pressure will be formed around the working surface. The superimposed advanced and lateral support pressure will have a greater impact on the advanced support of the working surface roadway. In order to improve the stability of the surrounding rock, the three Hebi mines were used as the subject of the study. At the same time, Universal Distinct Element Code software was used to study the pressure distribution pattern of over-support at the working face. Finally, the results of the study are used as theoretical support and reference for the support scheme.展开更多
The development of more environment-friendly ways to dispose of oil sludge is currently regarded as a hot topic.In this context,gasification technologies are generally seen as a promising way to combine oil sludge wit...The development of more environment-friendly ways to dispose of oil sludge is currently regarded as a hot topic.In this context,gasification technologies are generally seen as a promising way to combine oil sludge with coal–water slurry(CWS)and generate resourceful fuel.In this study,a novel five-nozzle gasifier reactor was analyzed by means of a CFD(Computational fluid dynamic)method.Among several influential factors,special attention was paid to the height-to-diameter ratio of the gasifier and the mixing ratio of oil sludge,which are known to have a significant impact on the flow field,temperature distribution and gasifier performances.According to the numerical results,the optimal height-to-diameter ratio and oil mixing ratio are about 2.4:1 and 20%,respectively.Furthermore,the carbon conversion rate can become as high as 98.55%with the hydrolysis rate reaching a value of 53.88%.The consumption of raw coal and oxygen is generally reduced,while the effective gas production is increased to 50.93 mol/%.展开更多
文摘Considering the fact that the temperature distribution in furnace of a tangential fired pulverized coal boiler is difficult to be measured and monitored, two-stage numerical simulation method was put forward. First, multi-field coupling simulation in typical work conditions was carried out off-line with the software CFX-4.3, and then the expression of temperature profile varying with operating parameter was obtained. According to real-time operating parameters, the temperature at arbitrary point of the furnace can be calculated by using this expression. Thus the temperature profile can be shown on-line and monitoring for combustion state in the furnace is realized. The simul-(ation) model was checked by the parameters measured in an operating boiler, (DG130-9.8/540.) The maximum of relative error is less than 12% and the absolute error is less than 120℃, which shows that the proposed two-stage simulation method is reliable and able to satisfy the requirement of industrial application.
文摘Based on the theory of continuum mechanics of multi-pbase media, a mathematical model and non-linear FEM equation of the coupling instability problem of solid-fluid biphase media for coal-methane outburst under finite deformation are established. The critical conditions of the surface instability are presented as the singularity of the total stiffness matrices of the coal body for coal-methaue outburst. That means the deformtion or the coal body emerges bifurcatiou phenomena. The numerical simulation of a typical outburst is made.
基金Supported by the Program for the National Natural Science Foundation of China (50534080) the New Century Excellent Talents in University of China (NCET-05-0602)+1 种基金 the Research Fund for the Doctoral Program of Higher Education of China (20060424001) the Research Award Fund for the Excellent Youth Scientist of Shandong Province(2006BS08006).
文摘This paper took the abnormal geological objects with high or low resistivity in the coal face as the background to establish the physical model. 2D forward numerical simulation for electromagnetic wave equation was implemented by the finite-difference scheme. According to the simulative results, the attenuation-absorption coefficient were calculated respectively based on field intensity and frequency shift parameter. Research result indicates, when coal-bed contains high electric resistivity geological abnormal object or low electric resistivity geological abnormal object, absorption attenuation function researched by frequency shift parameter of electromagnetic wave signal is more sensitive than by electromagnetic field intensity parameter.
文摘According to the research results in world, the paper comprehensively analyzed and gave a demonstration of mechanism of single-truss and its stressing advantage. Comparison and analysis effect were given to single-truss and bolting supporting. By the way of element simulation. The paper shows that single truss supporting have better effect to bolting supporting to improving the stress condition of surrounding rocks, controlling the surrounding rocks plastic failure development zone and deformation effect of surrounding rocks, which provided the elementary theory basis to the research, experiment and expanding the single-truss bolting technology in colliery.
文摘In view of the situation of excavation of should carry out simulation studies for the numerical open coal mine for the underground water disaster, we value of the water lowering project and improve the accuracy and the level of the water lowering project. On the basis of the hydrological geological conditions of certain open mine digging, a more reasonable seepage numerical model was built according to MODFLOW. It was simulated in advance that the process of the confined water level descending with the time, and combining with the actual observations to test the correctness of the model. The calculation showed that the results coincided well with the results of actual measurement. Based on this, different water lowering numerical simulations were built for the open coal mine digging. It could be simulated and forecast that the changes of the groundwater level in drainage process within and outside the mine pit, and it was quantitatively assessed that the possible water lowering result of the opencast water drainage process, which provide an important basis for the actual water lowering project and the possible project disposal.
基金Financial support for this work was obtained from the National Natural Science Foundation of China(No.51074059)
文摘The present study examines the results of the researches related to the gob bulking factor carried out at home and abroad.A mathematical function of a three-dimensional gob bulking factor is described based on a three-dimensional gob model.The method of taking value for interstice and permeability ratios is also proposed.The law of air leakage of fully mechanized top coal is researched in this study.The results show that the speed of air flow near the upper and lower crossheadings is higher than that in the central section of the gob at the same distance from the working face.When the amount of air at the working face exceeds a critical amount,the width of the spontaneous combustion zone in the upper and lower crossheadings is also larger than that in the central section.In this situation,the key is preventing the coal left in the upper and lower crossheadings from self-igniting.Reducing the amount of air at the working face can decrease the width of the spontaneous combustion zone,especially the width near the upper and lower crossheadings.This also moves the spontaneous combustion zone in the direction of the working face.It can prevent the coal in the gob from self-igniting by making the coal left in the crossheadings to be inert and by effectively controlling the amount of air at the working face.
文摘Aiming at the limitation of the traditional method for determination of protection region, combined with the actual situation of a mine, a new method for determination of protection region was put forward (including the protection of working face layout and development direction), that is, gas flow observation analysis on the spot and gas content contrast method. The protection region was determined by gas flow observation analysis, gas content contrast, and computer numerical simulation combined with engineering practice. In the process of gas content test, the fixed sampling method "big hole drill reaming, small orifice drill rod connected with core tube" was employed. The results show that the determined protection region is in accordance with the actual site situation. The fixed sampling method ensures the accuracy of gas measurement of gas content.
文摘Numerical simulation study is conducted for a pressurized spouted fluidized bed coal carbonizer, in which hydrodynamics of pressurized spouted fluidized bed, chemical reactions and energy balance are taken into account. The effect of operating conditions such as bed pressure, air and steam mass flow ratio, temperature on product compositions in the bed is investigated. According to the calculated results, bed pressure and bed temperature have the key effects on coal semi gasification.
基金supported by the National Natural Science Foundation of China(Grant No:51974289)Natural Science Foundation of Anhui Province(Grant No:2108085ME155).
文摘Water injection, as a widely used technique to prevent coal burst, can restrain the fractured coal seam and released the energy storage. In this study, laboratory tests were frstly carried out on standard coal specimens with fve diferent water contents (i.e., 0%, 0.6%, 1.08%, 1.5%, 2.0%, and 2.3%). The failure mode, fragment size, and energy distribution characteristics of coal specimens were investigated. Experimental results show that strength, elastic strain energy, dissipated energy, brittleness index, as well as impact energy index decrease with increasing water content. Besides, the failure mode transitions gradually from splitting ejection to tensile-shear mixed failure mode as water content increases, and average fragment size shows positively related to water content. Moreover, scanning electron microscope tests results indicate that water in coal sample mainly causes the mineral softening and defects increase. Furthermore, a numerical model containing roadway excavation was established considering the water on coal burst prevention. Modelling results revealed that water injection can reduce degree of coal burst and ejection velocity of coal blocks, while it will raise up the depth of crack zone and surface displacement of roadway. Combined with laboratory tests and numerical results, the micro mechanism, energy mechanism, and engineering signifcance of water injection on coal burst prevention were fnally analyzed.
基金Project(20092142)supported by the Natural Science Foundation of Liaoning Province,China
文摘The fault is one important factor for the stability of overburden strata caused by steeply inclined coal seam. The stress and displacement change of overburden strata caused by steeply-inclined coal seam mining activity under faulting was simulated by FLAC2D finite differential program on the basis of Zhaogezhuang mining example belonging to Kailuan Mining Group. From the results, the stress and displacement clouding image after mining became complex because of the fault, that is, a kind of weak structural plane. The stress concentration region concentrated around the goaf, and also around the fault plane. As the mining depth increases, the stress and displacement within the fault zone change significantly. This movement and deformation characteristic of overburden strata can provide theoretical basis for the similar mining condition.
基金supported by National Natural Science Foundation of China(Nos.41204077,41372290,41572244,51034003,51174210,and 51304126)natural science foundation of Shandong Province(Nos.ZR2011EEZ002 and ZR2013EEQ019)State Key Research Development Program of China(No.2016YFC0600708-3)
文摘Currently, numerical simulations of seismic channel waves for the advance detection of geological structures in coal mine roadways focus mainly on modeling two- dimensional wave fields and therefore cannot accurately simulate three-dimensional (3-D) full-wave fields or seismic records in a full-space observation system. In this study, we use the first-order velocity-stress staggered-grid finite difference algorithm to simulate 3-D full-wave fields with P-wave sources in front of coal mine roadways. We determine the three components of velocity Vx, Vy, and Vz for the same node in 3-D staggered-grid finite difference models by calculating the average value of Vy, and Vz of the nodes around the same node. We ascertain the wave patterns and their propagation characteristics in both symmetrical and asymmetric coal mine roadway models. Our simulation results indicate that the Rayleigh channel wave is stronger than the Love channel wave in front of the roadway face. The reflected Rayleigh waves from the roadway face are concentrated in the coal seam, release less energy to the roof and floor, and propagate for a longer distance. There are surface waves and refraction head waves around the roadway. In the seismic records, the Rayleigh wave energy is stronger than that of the Love channel wave along coal walls of the roadway, and the interference of the head waves and surface waves with the Rayleigh channel wave is weaker than with the Love channel wave. It is thus difficult to identify the Love channel wave in the seismic records. Increasing the depth of the receivers in the coal walls can effectively weaken the interference of surface waves with the Rayleigh channel wave, but cannot weaken the interference of surface waves with the Love channel wave. Our research results also suggest that the Love channel wave, which is often used to detect geological structures in coal mine stopes, is not suitable for detecting geological structures in front of coal mine roadways. Instead, the Rayleigh channel wave can be used for the advance detection of geological structures in coal mine roadways.
基金support from the National Key R&D Program of China(Grant No.2022YFC3004704)the National Natural Science Foundation of China(Grant No.52374241)the National Natural Science Foundation of China Youth Foundation(Grant No.52104230).
文摘In light of the escalating global energy imperatives,mining of challenging-to-access resources,such as steeply inclined extra-thick coal seams(SIEC),has emerged as one of the future trends within the domain of energy advancement.However,there is a risk of gas and coal spontaneous combustion coupling disasters(GCC)within the goaf of SIEC due to the complex goaf structure engendered by the unique mining methodologies of SIEC.To ensure that SIEC is mined safely and efficiently,this study conducts research on the GCC within the goaf of SIEC using field observation,theoretical analysis,and numerical modeling.The results demonstrate that the dip angle,the structural dimensions in terms of width-to-length ratio,and compressive strength of the overlying rock are the key factors contributing to the goaf instability of SIEC.The gangue was asymmetrically filled,primarily accumulating within the central and lower portions of the goaf,and the filling height increased proportionally with the advancing caving height,the expansion coefficient,and the thickness of the surrounding rock formation.The GCC occurs in the goaf of SIEC,with an air-return side range of 41 m and an air-intake side range of 14 m,at the intersection area of the“<”-shaped oxygen concentration distribution(coal spontaneous combustion)and the“>”-shaped gas concentration distribution(gas explosion).The optimal nitrogen flow rate is 1000 m3/h with an injection port situated 25 m away from the working face for the highest nitrogen diffusion efficacy and lowest risk of gas explosion,coal spontaneous combustion,and GCC.It has significant engineering applications for ensuring the safe mining of SIEC threatened by the GCC.
基金financially supported by the State Key Research Development Program of China(Grant No.2016YFC0600701)the National Natural Science Foundation of China(Grant No.51674170)
文摘In this study, the spatial distributions of stress and fracture fields for three typical underground coal mining layouts, Le, non-pillar mining (NM), top-coal caving mining (TCM) and protective coal-seam mining (PCM), are modeled using discrete element software UDEC, The numerical results show that different mining layouts can lead to different mining-induced stress fields, resulting in diverse fracture fields, For the PCM, the mining influenced area in front of the mining faces is the largest, and the stress concentration factor in front of the mining faces is the lowest, The spatial shapes of the mining-induced fracture fields under NM, TCM and PCM differ, and they are characterized by trapezoidal, triangular and tower shapes, respectively, The fractal dimensions of mining-induced fractures of the three mining layouts decrease in the order of PCM, TCM and NM, It is also shown that the PCM can result in a better gas control effect in coal mines with high outburst potential, The numerical results are expected to provide a basis for understanding of mining-induced gas seepage fields and provide a reference for high- efficiency coal mining,
基金the financial support from the National Natural Science Foundation for Young Scientists of China (Nos.51604116 and 51604096)Natural Science Foundation ofHenbei Province (No.E2016508036)+1 种基金Hebei State Key Laboratory of Mine Disaster Prevention (No.KJZH2017K08)Basic and Frontier Technology Research Project of Henan Province in 2016 (No.162300410031)
文摘Due to the change of initial stress state caused by roadway excavation, the permeability of the coal body may be changed during the excavation process. In this paper, according to the different stress states, the coal around the roadway was divided into the seepage open zone, seepage orientation zone, seepage decay zone and original seepage zone along the radial direction of the roadway. The loaded gassy coal was treated as a viscoelastic and plastic softened medium, and the mechanical behaviors of the viscoelastic zone, plastic softened zone and broken zone around the roadway were analyzed with the consideration of the loading creep, softening and expansion effect of the gassy coal. According to the law of conservation of mass and the Darcy law, the flow-solid coupled model for the gas transportation of the coal around the roadway was established considering the dynamic evolution of the adsorption characteristics, porosity and permeability of the coal, and the simulation software COMSOL was utilized to numerically simulate the stress state and gas flow regularity around the coal, which provided meaningful reference for investigating the stability of the coal and rock around the roadway.
基金supported by the National Natural Science Foundation of China (No.50534090)the Science Foundation of China University of Mining and Technology (No.0E061046)
文摘Based on the assumption of a local non-equilibrium of heat transfer between a solid matrix and gas,a mathematic model of coal mine methane combustion in a porous medium was established,as well the solid-gas boundary conditions.We simulated numerically the flame propagation characteristics.The results show that the flame velocity in ceramic foam is higher than that of free laminar flows;the maximum flame velocity depends on the combined effects of a radiation extinction coefficient and convection heat transfer in ceramic foam and rises with an increase in the chemical equivalent ratio.The radiation extinction coefficient cannot be used alone to determine the heat regeneration effects in the design of ceramic foam burners.
基金supported by National Natural Science Foundation of China—Shanxi coal based low carbon joint fund(U1610254)Shanxi Province Basic Applied Research Youth Fund(201801D221345)2018 Xiangyuan County Solid Waste Comprehensive Utilization Science and Technology Projects(2018XYSDYY-14)。
文摘Due to its low volatile characteristics of lean coal,it is difficult to catch fire and burn out.Therefore,high temperature is needed to maintain combustion efficiency,while,this leads to high nitrogen oxide emission.For power plant boilers burning lean coal,stable combustion with lower nitrogen oxide emission is a challenging task.This study applied the 3D numerical simulation on the analysis of a novel de-coupling burner for low-volatile coal and its structure and operation parameters optimization.Results indicate that although it was more difficult for lean coal decoupling burner to ignite lean coal than high volatile coal,the burner formed a stepwise ignition trend,which promoted the rapid ignition of lean coal.Comparison of three central partition plate structure shows that in terms of characteristics of the flow field distribution,rich and lean separation and combustion,the structure with an inclination of 0°showed good performance,with its rich-lean air ratio being 0.85 and concentration ratio being 22.94,and there was an apparent decoupling combustion characteristic.Finally,the structure of the selected burner was optimized for its operational conditions.The optimal operating parameters was determined as the primary air velocity of 24.9 m·s^-1 and the mass flow rate of pulverized coal of 2.5 kg·s^-1,in which the pyrolysis products were utilized as reductive agent more fully.Eventually,the nitrogen oxide was efficiently reduced to nitrogen,which emission concentration was 61.88%lower than that in the design condition.
基金Supported by the National Natural Science Foundation of China (No. 50376068).
文摘A full two-fluid model of reacting gas-particle flows and coal combustion is used to simulate coal combustion with and without inlet natural gas added in the inlet. The simulation results for the case without natural gas burning is in fair agreement with the experimental results reported in references. The simulation results of different natural gas adding positions indicate that the natural gas burning can form lean oxygen combustion enviroment at the combustor inlet region and the NOx concentration is reduced. The same result can be obtained from chemical equilibrium analysis.
文摘According to the influence of the combination of short-distance coal seam group on mining roadway, using numerical simulation software FLAG2D to draw the abutment pressure distribution ahead the working face and the area of influence in fully-mechanized mining conditions, the variation rules of surrounding rock supporting pressure of floor roadway and the deformation rules were summarized. GYS-300 anchor dynamometer was used to measure the roadway surface displacement, and the conclusions of numerical simulation were verified.
文摘During the fully mechanized caving face re-recovery process, due to the influence of mining and the redistribution of surrounding rock stress, a higher advanced support pressure and lateral support pressure will be formed around the working surface. The superimposed advanced and lateral support pressure will have a greater impact on the advanced support of the working surface roadway. In order to improve the stability of the surrounding rock, the three Hebi mines were used as the subject of the study. At the same time, Universal Distinct Element Code software was used to study the pressure distribution pattern of over-support at the working face. Finally, the results of the study are used as theoretical support and reference for the support scheme.
基金Enterprise Horizontal Project(Project Contract No.2021K2450)Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(SJCX22_1437).
文摘The development of more environment-friendly ways to dispose of oil sludge is currently regarded as a hot topic.In this context,gasification technologies are generally seen as a promising way to combine oil sludge with coal–water slurry(CWS)and generate resourceful fuel.In this study,a novel five-nozzle gasifier reactor was analyzed by means of a CFD(Computational fluid dynamic)method.Among several influential factors,special attention was paid to the height-to-diameter ratio of the gasifier and the mixing ratio of oil sludge,which are known to have a significant impact on the flow field,temperature distribution and gasifier performances.According to the numerical results,the optimal height-to-diameter ratio and oil mixing ratio are about 2.4:1 and 20%,respectively.Furthermore,the carbon conversion rate can become as high as 98.55%with the hydrolysis rate reaching a value of 53.88%.The consumption of raw coal and oxygen is generally reduced,while the effective gas production is increased to 50.93 mol/%.