Focusing on the phenomenon of gypsum rain while wet desulphurization(WFGD) were adopted in coal fired power plant without GGH, the paper studied and put forward the solutions : (1) desulfurization facilities related e...Focusing on the phenomenon of gypsum rain while wet desulphurization(WFGD) were adopted in coal fired power plant without GGH, the paper studied and put forward the solutions : (1) desulfurization facilities related equipment modification;(2) optimal operation of existing desulfurization facilities.展开更多
Since the combustion system of coal-fired boiler in thermal power plant is characterized as time varying, strongly coupled, and nonlinear, it is hard to achieve a satisfactory performance by the conventional proportio...Since the combustion system of coal-fired boiler in thermal power plant is characterized as time varying, strongly coupled, and nonlinear, it is hard to achieve a satisfactory performance by the conventional proportional integral derivative (PID) control scheme. For the characteristics of the main steam pressure in coal-fired power plant boiler, the sliding mode control system with Smith predictive structure is proposed to look for performance and robustness improvement. First, internal model control (IMC) and Smith predictor (SP) is used to deal with the time delay, and sliding mode controller (SMCr) is designed to overcome the model mismatch. Simulation results show the effectiveness of the proposed controller compared with conventional ones.展开更多
The development of electrical engineering and electronic, communications, smart power grid, and ultra-high voltage transmission technologies have driven the energy system revolution to the next generation: the energy ...The development of electrical engineering and electronic, communications, smart power grid, and ultra-high voltage transmission technologies have driven the energy system revolution to the next generation: the energy internet. Progressive penetration of intermittent renewable energy sources into the energy system has led to unprecedented challenges to the currently wide use of coal-fired power generation technologies. Here, the applications and prospects of advanced coal-fired power generation technologies are analyzed. These technologies can be summarized into three categories:(1) large-scale and higher parameters coal-fired power generation technologies, including 620/650/700 oC ultra-supercritical thermal power and double reheat ultra-supercritical coal-fired power generation technologies;(2) system innovation and specific, highefficiency thermal cycles, which consist of renewable energy-aided coal-fired power generation technologies, a supercritical CO_2 Brayton cycle for coal-fired power plants, large-scale air-cooling coal-fired power plant technologies, and innovative layouts for waste heat utilization and enhanced energy cascade utilization;(3) coal-fired power generation combined with poly-generation technologies, which are represented by integrated gasification combined cycle(IGCC) and integrated gasification fuel cell(IGFC) technologies. Concerning the existing coal-fired power units, which are responsible for peak shaving, possible strategies for enhancing flexibility and operational stability are discussed. Furthermore, future trends for coal-fired power plants coupled with cyber-physical system(CPS) technologies are introduced. The development of advanced, coal-fired power generation technologies demonstrates the progress of science and is suitable for the sustainable development of human society.展开更多
Nowadays, the worsening environmental issue caused by CO2 emission is greatly aggravated by human activity. Many CO2 reduction technologies are under fast development. Among these, monoethanolamine (MEA) based CO2 cap...Nowadays, the worsening environmental issue caused by CO2 emission is greatly aggravated by human activity. Many CO2 reduction technologies are under fast development. Among these, monoethanolamine (MEA) based CO2 capture technology has been paid great attention. However, when connecting the CO2 capture process with a coal-fired power plant, the huge energy and efficiency penalty caused by CO2 capture has become a serious problem for its application. Thus, it is of great significance to reduce the related energy consumption. Based on an existing coal-fired power plant, this paper proposes a new way for the decarburized retrofitting of the coal-fired power plant, which helps to improve the overall efficiency of the power plant with less energy and efficiency penalty. The decarburized retrofitting scheme proposed will provide a new route for the CO2 capture process in China.展开更多
According to the new report released by the International Energy Agency,as the pandemic starts to mitigate and the global economy gradually recovers,demand for power has been rising.In 2021,the world’s coal-fired pow...According to the new report released by the International Energy Agency,as the pandemic starts to mitigate and the global economy gradually recovers,demand for power has been rising.In 2021,the world’s coal-fired power generation increased by 9%over the previous year,while in 2020 power generation fell by 4%.The report shows that the rising demands for power,coupled with inadequate low-carbon power generation have made many developed economies more dependent on fossil fuel power.The rise of natural gas prices to a historical high has also stimulated demand for coal.展开更多
The physical,chemical and mineral facies properties of the flyash from Xiezhuang Coal Refuse Fired Power Plant have been studied by means of naked eyes,microscope,chemical composition analysis and XRD analysis,and com...The physical,chemical and mineral facies properties of the flyash from Xiezhuang Coal Refuse Fired Power Plant have been studied by means of naked eyes,microscope,chemical composition analysis and XRD analysis,and compared with that of the flyash from Taian Coal Fired Power Plant.The result shows that the flyash from coal refuse fired power plant is of better quality in making construction items,for being brighter in color,fine and high activity.Some ways of comprehensive utilization of the ash have been suggested in this paper.展开更多
With a particular reference to China Huaneng Group's practices in CO_2 capture, this article presents a brief ing on the current development of CO_2 capture technologies in coal-fired power plants both in China an...With a particular reference to China Huaneng Group's practices in CO_2 capture, this article presents a brief ing on the current development of CO_2 capture technologies in coal-fired power plants both in China and abroad. Sooner or later, the integration of CO_2 capture and storage (CCS) facility with coal-fired power plant will be inevitably put on the agenda of developers.展开更多
According to statistics, the average dust collection efficiency of flue gas emission in the large and medium- sized power plants in Zhejiang Province at present has attained higher than 97% which surpasses the 95% sta...According to statistics, the average dust collection efficiency of flue gas emission in the large and medium- sized power plants in Zhejiang Province at present has attained higher than 97% which surpasses the 95% standard as stipulated by the Ministry of Electric Power. The dust collection efficiency of the Beilungang Power Plant has already attained 99.92%. In recent years, Zhejiang Electric Power Corporation has stipulated that all the newly constructed generating units shall be equipped with high efficiency electrostatic precipitator (ESP) while the existing power plants shall speed up their renovation work for their dust collectors. In combination with the fourth stage project of the Taizhou Power Plant, the improvement work of the dust展开更多
Dry deposition samples were collected in a weekly basis during 2010 in a site located at the Mexican Pacific Coast: Manzanillo, Colima. Samples were collected with an automatic wet/dry deposition sampler using nylon f...Dry deposition samples were collected in a weekly basis during 2010 in a site located at the Mexican Pacific Coast: Manzanillo, Colima. Samples were collected with an automatic wet/dry deposition sampler using nylon filters as surrogate surfaces. Samples were extracted with deionized water and analyzed for pH, conductivity, Na+, K+, Ca2+, Mg2+, NH4-, NO3-, SO42- and Cl-. Nitrate and sulfate were the most abundant ions, contributing with 53% to the total ionic mass;and their levels exceeded the hemispheric background concentrations proposed for marine remote sites. The influence of the power plants burning combustoleo located upwind the sampling site was completely evident. From meteorological analysis, it could be observed that the sampling site was all time under the influence of power plants as a result of the effect of breezes. However, in spite of the high levels of NO3- and SO42- found in the samples collected, pH value average was almost neutral, with 28% of samples slightly acid. Potassium was the most abundant cation and from the quantification of the neutralization effect of the main alkaline components, the prevalence role of K+ was completely evident, suggesting the influence of the mining complex Pe?a Colorada located upwind the sampling site, where amyl xanthate potassium is used as collector in tailing dams. Dry deposition fluxes were estimated for all ions measured. Nitrogen dry deposition at Manzanillo is already in the upper extreme of the threshold value reported for sensible ecosystems. On the other hand, sulfur deposition exceeded slightly the critical load value reported for some ecosystems in Europe. Even at this moment, nitrogen and sulfur deposition is not a problem, it is necessary to take steps to avoid that total deposition of these elements exceeds critical loads, considering that results reported in this study not include the wet deposition fluxes.展开更多
The UK government implements carbon price floor to provide long-term incentive to invest in low-carbon technology, thus, fossil-fuel power plants have to face increasing carbon price. This report addresses the effect ...The UK government implements carbon price floor to provide long-term incentive to invest in low-carbon technology, thus, fossil-fuel power plants have to face increasing carbon price. This report addresses the effect of carbon price floor on levelised cost of gas-fired generation technology through the levelised cost of electricity (LCOE) ap-proach with the estimation of carbon price floor. Finally, the comparison of levelised cost of electricity for all generation technology in the UK will be shown and discussed.展开更多
统筹推进我国燃煤发电(简称“煤电”)转型升级,推动煤电功能定位转变,是实现“双碳”目标和加快构建新型电力系统的重要任务。针对我国燃煤发电转型升级的迫切需求,该文分析当前我国煤电的装机规模及其特点,评估了煤电的能耗、灵活性和...统筹推进我国燃煤发电(简称“煤电”)转型升级,推动煤电功能定位转变,是实现“双碳”目标和加快构建新型电力系统的重要任务。针对我国燃煤发电转型升级的迫切需求,该文分析当前我国煤电的装机规模及其特点,评估了煤电的能耗、灵活性和碳排放3方面的发展水平,解析我国煤电未来发展方向,重点探讨了煤电热力系统重构、煤电与储能融合、煤电与其他能源及碳捕集、利用与封存(carbon capture,utilization and storage,CCUS)的互补集成、“安全、高效、清洁、低碳、灵活”多目标协同4个方面的发展路径,提出新一代煤电高质量发展的基本思路。面向新形势下“安全、高效、清洁、低碳、灵活”的发展目标,未来我国煤电机组需要开展热力系统深度重构,通过热力系统的大范围重新设计、优化或改造,提高机组效率和灵活性、降低能耗和碳排放;可以将储热、飞轮、压缩空气等储能与煤电系统有机融合,突破煤电机组自身调节潜力约束,拓宽煤电机组的调节区间,提升机组变负荷能力和效率;充分利用煤电机组内丰富的物质流和能量流,可将煤电与其他能源或系统在多个环节匹配耦合,实现整体的多能互补能量梯级利用,提升总体能效与低碳水平;应重点从设计和运行两个维度实现多目标协同,在设计阶段注重高效清洁技术的集成与智能化、自动化,在运行过程中采用智能化、精细化控制策略。该文旨在增强煤电战略价值认知,为我国煤电转型升级提供理论参考和路径建议,助力新一代煤电在推进“双碳”进程和构建新型电力系统中发挥更广泛、更积极作用。展开更多
文摘Focusing on the phenomenon of gypsum rain while wet desulphurization(WFGD) were adopted in coal fired power plant without GGH, the paper studied and put forward the solutions : (1) desulfurization facilities related equipment modification;(2) optimal operation of existing desulfurization facilities.
基金Supported by the National Natural Science Foundation of China (61174059, 60934007, 61233004)the National Basic Research Program of China (2013CB035406)Shanghai Rising-Star Tracking Program (11QH1401300)
文摘Since the combustion system of coal-fired boiler in thermal power plant is characterized as time varying, strongly coupled, and nonlinear, it is hard to achieve a satisfactory performance by the conventional proportional integral derivative (PID) control scheme. For the characteristics of the main steam pressure in coal-fired power plant boiler, the sliding mode control system with Smith predictive structure is proposed to look for performance and robustness improvement. First, internal model control (IMC) and Smith predictor (SP) is used to deal with the time delay, and sliding mode controller (SMCr) is designed to overcome the model mismatch. Simulation results show the effectiveness of the proposed controller compared with conventional ones.
基金supported by the National Nature Science Foundation of China(Grant No.51821004)supported by National Soft Science Projects:"Frontier tracking research on science and technology in the field of energy" program
文摘The development of electrical engineering and electronic, communications, smart power grid, and ultra-high voltage transmission technologies have driven the energy system revolution to the next generation: the energy internet. Progressive penetration of intermittent renewable energy sources into the energy system has led to unprecedented challenges to the currently wide use of coal-fired power generation technologies. Here, the applications and prospects of advanced coal-fired power generation technologies are analyzed. These technologies can be summarized into three categories:(1) large-scale and higher parameters coal-fired power generation technologies, including 620/650/700 oC ultra-supercritical thermal power and double reheat ultra-supercritical coal-fired power generation technologies;(2) system innovation and specific, highefficiency thermal cycles, which consist of renewable energy-aided coal-fired power generation technologies, a supercritical CO_2 Brayton cycle for coal-fired power plants, large-scale air-cooling coal-fired power plant technologies, and innovative layouts for waste heat utilization and enhanced energy cascade utilization;(3) coal-fired power generation combined with poly-generation technologies, which are represented by integrated gasification combined cycle(IGCC) and integrated gasification fuel cell(IGFC) technologies. Concerning the existing coal-fired power units, which are responsible for peak shaving, possible strategies for enhancing flexibility and operational stability are discussed. Furthermore, future trends for coal-fired power plants coupled with cyber-physical system(CPS) technologies are introduced. The development of advanced, coal-fired power generation technologies demonstrates the progress of science and is suitable for the sustainable development of human society.
文摘Nowadays, the worsening environmental issue caused by CO2 emission is greatly aggravated by human activity. Many CO2 reduction technologies are under fast development. Among these, monoethanolamine (MEA) based CO2 capture technology has been paid great attention. However, when connecting the CO2 capture process with a coal-fired power plant, the huge energy and efficiency penalty caused by CO2 capture has become a serious problem for its application. Thus, it is of great significance to reduce the related energy consumption. Based on an existing coal-fired power plant, this paper proposes a new way for the decarburized retrofitting of the coal-fired power plant, which helps to improve the overall efficiency of the power plant with less energy and efficiency penalty. The decarburized retrofitting scheme proposed will provide a new route for the CO2 capture process in China.
文摘According to the new report released by the International Energy Agency,as the pandemic starts to mitigate and the global economy gradually recovers,demand for power has been rising.In 2021,the world’s coal-fired power generation increased by 9%over the previous year,while in 2020 power generation fell by 4%.The report shows that the rising demands for power,coupled with inadequate low-carbon power generation have made many developed economies more dependent on fossil fuel power.The rise of natural gas prices to a historical high has also stimulated demand for coal.
文摘The physical,chemical and mineral facies properties of the flyash from Xiezhuang Coal Refuse Fired Power Plant have been studied by means of naked eyes,microscope,chemical composition analysis and XRD analysis,and compared with that of the flyash from Taian Coal Fired Power Plant.The result shows that the flyash from coal refuse fired power plant is of better quality in making construction items,for being brighter in color,fine and high activity.Some ways of comprehensive utilization of the ash have been suggested in this paper.
文摘With a particular reference to China Huaneng Group's practices in CO_2 capture, this article presents a brief ing on the current development of CO_2 capture technologies in coal-fired power plants both in China and abroad. Sooner or later, the integration of CO_2 capture and storage (CCS) facility with coal-fired power plant will be inevitably put on the agenda of developers.
文摘According to statistics, the average dust collection efficiency of flue gas emission in the large and medium- sized power plants in Zhejiang Province at present has attained higher than 97% which surpasses the 95% standard as stipulated by the Ministry of Electric Power. The dust collection efficiency of the Beilungang Power Plant has already attained 99.92%. In recent years, Zhejiang Electric Power Corporation has stipulated that all the newly constructed generating units shall be equipped with high efficiency electrostatic precipitator (ESP) while the existing power plants shall speed up their renovation work for their dust collectors. In combination with the fourth stage project of the Taizhou Power Plant, the improvement work of the dust
文摘Dry deposition samples were collected in a weekly basis during 2010 in a site located at the Mexican Pacific Coast: Manzanillo, Colima. Samples were collected with an automatic wet/dry deposition sampler using nylon filters as surrogate surfaces. Samples were extracted with deionized water and analyzed for pH, conductivity, Na+, K+, Ca2+, Mg2+, NH4-, NO3-, SO42- and Cl-. Nitrate and sulfate were the most abundant ions, contributing with 53% to the total ionic mass;and their levels exceeded the hemispheric background concentrations proposed for marine remote sites. The influence of the power plants burning combustoleo located upwind the sampling site was completely evident. From meteorological analysis, it could be observed that the sampling site was all time under the influence of power plants as a result of the effect of breezes. However, in spite of the high levels of NO3- and SO42- found in the samples collected, pH value average was almost neutral, with 28% of samples slightly acid. Potassium was the most abundant cation and from the quantification of the neutralization effect of the main alkaline components, the prevalence role of K+ was completely evident, suggesting the influence of the mining complex Pe?a Colorada located upwind the sampling site, where amyl xanthate potassium is used as collector in tailing dams. Dry deposition fluxes were estimated for all ions measured. Nitrogen dry deposition at Manzanillo is already in the upper extreme of the threshold value reported for sensible ecosystems. On the other hand, sulfur deposition exceeded slightly the critical load value reported for some ecosystems in Europe. Even at this moment, nitrogen and sulfur deposition is not a problem, it is necessary to take steps to avoid that total deposition of these elements exceeds critical loads, considering that results reported in this study not include the wet deposition fluxes.
文摘The UK government implements carbon price floor to provide long-term incentive to invest in low-carbon technology, thus, fossil-fuel power plants have to face increasing carbon price. This report addresses the effect of carbon price floor on levelised cost of gas-fired generation technology through the levelised cost of electricity (LCOE) ap-proach with the estimation of carbon price floor. Finally, the comparison of levelised cost of electricity for all generation technology in the UK will be shown and discussed.
文摘统筹推进我国燃煤发电(简称“煤电”)转型升级,推动煤电功能定位转变,是实现“双碳”目标和加快构建新型电力系统的重要任务。针对我国燃煤发电转型升级的迫切需求,该文分析当前我国煤电的装机规模及其特点,评估了煤电的能耗、灵活性和碳排放3方面的发展水平,解析我国煤电未来发展方向,重点探讨了煤电热力系统重构、煤电与储能融合、煤电与其他能源及碳捕集、利用与封存(carbon capture,utilization and storage,CCUS)的互补集成、“安全、高效、清洁、低碳、灵活”多目标协同4个方面的发展路径,提出新一代煤电高质量发展的基本思路。面向新形势下“安全、高效、清洁、低碳、灵活”的发展目标,未来我国煤电机组需要开展热力系统深度重构,通过热力系统的大范围重新设计、优化或改造,提高机组效率和灵活性、降低能耗和碳排放;可以将储热、飞轮、压缩空气等储能与煤电系统有机融合,突破煤电机组自身调节潜力约束,拓宽煤电机组的调节区间,提升机组变负荷能力和效率;充分利用煤电机组内丰富的物质流和能量流,可将煤电与其他能源或系统在多个环节匹配耦合,实现整体的多能互补能量梯级利用,提升总体能效与低碳水平;应重点从设计和运行两个维度实现多目标协同,在设计阶段注重高效清洁技术的集成与智能化、自动化,在运行过程中采用智能化、精细化控制策略。该文旨在增强煤电战略价值认知,为我国煤电转型升级提供理论参考和路径建议,助力新一代煤电在推进“双碳”进程和构建新型电力系统中发挥更广泛、更积极作用。