Solar-driven interfacial water evaporation(SIWE)offers a superb way to leverage concentrated solar heat to minimize energy dissipation during seawater desalination.It also engenders overlapped temperaturesalinity grad...Solar-driven interfacial water evaporation(SIWE)offers a superb way to leverage concentrated solar heat to minimize energy dissipation during seawater desalination.It also engenders overlapped temperaturesalinity gradient(TSG)between water-air interface and adjacent seawater,affording opportunities of harnessing electricity.However,the efficiency of conventional SIWE technologies is limited by significant challenges,including salt passivation to hinder evaporation and difficulties in exploiting overlapped TSG simultaneously.Herein,we report self-sustaining hybrid SIWE for not only sustainable seawater desalination but also efficient electricity generation from TSG.It enables spontaneous circulation of salt flux upon seawater evaporation,inducing a self-cleaning evaporative interface without salt passivation for stable steam generation.Meanwhile,this design enables spatial separation and simultaneous utilization of overlapped TSG to enhance electricity generation.These benefits render a remarkable efficiency of90.8%in solar energy utilization,manifesting in co-generation of solar steam at a fast rate of 2.01 kg m^(-2)-h^(-1)and electricity power of 1.91 W m^(-2)with high voltage.Directly interfacing the hybrid SIWE with seawater electrolyzer constructs a system for water-electricity-hydrogen co-generation without external electricity supply.It produces hydrogen at a rapid rate of 1.29 L h^(-1)m^(-2)and freshwater with 22 times lower Na+concentration than the World Health Organization(WHO)threshold.展开更多
A membrane-less constructed wetland microbial fuel cell (CW-MFC) is constructed and operated under continuous flow with a hydraulic retention time (HRT) of 2 d. Fed with glucose, the CW-MFC generates a stable curr...A membrane-less constructed wetland microbial fuel cell (CW-MFC) is constructed and operated under continuous flow with a hydraulic retention time (HRT) of 2 d. Fed with glucose, the CW-MFC generates a stable current density of over 2 A/m3 with a resistor of 1 kΩ and has a chemical oxygen demand (COD) removal efficiency of more than 90% after the startup of 2 to 3 d. A series of systems with the electrode spacings of 10, 20, 30 and 40 cm are compared. It is found that the container with the electrode spacing of 20 cm gains the highest voltage of 560 mV, the highest power density of 0. 149 W/m 3, and the highest Coulombic efficiency of 0.313%. It also has the highest COD removal efficiency of 94. 9%. In addition, the dissolved oxygen (DO) concentrations are observed as the lowest level in the middle of all the CW-MFC reactors. The results show that the more COD is removed, the greater power is generated, and the relatively higher Coulombic efficiency will be achieved. The present study indicates that the CW-MFC process can be used as a cost-effective and environmentally friendly wastewater treatment with simultaneous power generation.展开更多
Electricity consumption increases rapidly with the rapid development of China. The environmental damage costs of electricity generation are very important for both policy analysis and the proper management of the envi...Electricity consumption increases rapidly with the rapid development of China. The environmental damage costs of electricity generation are very important for both policy analysis and the proper management of the environment. A method was developed in this work to estimate gross environmental damage costs according to emission inventory and environmental cost factors, and to extend the costs from provincial to national level with population density. In this paper, sulfur dioxide (SO2), nitrogen oxides (NOx), particulate matter less than 10 μm in diameter (PM10), and carbon dioxide (CO2) from fossil fired power plants over 6000 kW were selected as index pollutants to quantify the environmental costs of damages on human health and global warming. With the new developed method, environmental damage costs, caused by 3 types of fired power plants in 30 provinces and 6 economic sectors during the years 2000 to 2003, were evaluated and analyzed. It can be seen that the calculated total national environmental damage costs of electricity have rapidly increased from 94930.87×106 USD in 2000 to about 141041.39×106 USD in 2003, with an average annual growth rate of 14.11%. Environmental damage costs of SO2, NOx, PM10, and CO2 are 69475.69×106, 30079.29×106, 28931.84×106, and 12554.57×106 USD and account for 49.26%, 21.33%, 20.51%, and 8.90% of total environmental costs in fossil electricity generation, respectively. With regard to regional distribution, external costs caused by fossil electricity generation are mainly concentrated in the more populated and industrialized areas of China, i.e., the Eastern Central and Southeastern areas.展开更多
It is the purpose of the present paper to convert hydraulic energy to electric energy and saves both the pressure and electrical energy for re - use during the next system upstroke using two secondary units coupled to...It is the purpose of the present paper to convert hydraulic energy to electric energy and saves both the pressure and electrical energy for re - use during the next system upstroke using two secondary units coupled to induction motor to drive cylinder loads. During upstroke operation, the variable pump/motor (P/M) driven by both electric motor and the second (P/M) works as hydraulic pump and output flow to the cylinders which drive the load. During load deceleration, the cylinders work as pump while the operation of the two secondary units are reversed, the variable (P/M) works as a motor generating a torque with the electric motor to drive the other (P/M) which transforms mechanical energy to hydraulic energy that is saved in the accumulator. When the energy storage capacity of the accumulator is attained as the operation continues, energy storage to the accumulator is thermostatically stopped while the induction motor begins to work as a generator and generates electricity that is stored in the power distribution unit. Simulations were performed using a limited PT2 Block, i.e. 2nd-order transfer function with limitation of slope and signal output to determine suitable velocity of the cylinder which will match high performance and system stability. A mathematical model suited to the simulation of the hydraulic accumulator both in an open-or close-loop system is presented. The quest for improvement of lower energy capacity storage, saving and re-utilization of the conventional accumulator resulting in the short cycle time usage of hydraulic accumulators both in domestic and industrial purposes necessitates this research. The outcome of the research appears to be very efficient for generating fluctuation free electricity, power quality and reliability, energy saving/reutilization and system noise reduction.展开更多
Many recent studies are concerned with low cost,easy to handle and alternative renewable energy as a feasible solution for the upcoming crisis of energy shortage.Microalgae are unicellular entities the can only depend...Many recent studies are concerned with low cost,easy to handle and alternative renewable energy as a feasible solution for the upcoming crisis of energy shortage.Microalgae are unicellular entities the can only depend on CO_(2),water and solar power to cover their nutritional needs.The current study is concerned with using algal cells in a polymeric hydrogel,as a cheap source of energy for electricity generation.Chlorella vulgaris has been proved to be a promising algal species for electricity generation,as compared with Micractinium reisseri.PVA hydrogel has been used for the immobilization of both algal species in order to protect them from the adverse surrounding conditions in addition to its ability to slowly release the required water molecules according to needs.Under these conditions,C.vulgaris showed the ability to generate 60 mV compared with 15 mV generated by M.reisseri.Scanning electron micrographs showed nano-threads that bind the C.vulgaris cells to each other,indicating the ability of algae to create nanowires that facilitate the electron transfer among algal cells and from cells to the nearest electrode.However,we would expect an increase in the produced potential with simultaneous amendment of environmentally polluted water,such as sewage or waste water.Both of FTIR and raman spectroscopy proved the presence of the characteristic groups of PVA hydrogel and proved the proper integration of the algal cells inside the hydrogel cavities.展开更多
The global Electricity Sector and its customers are faced with a number of challenges that are unparalleled since the advent of widespread electrification. Challenges including climate change, escalating energy prices...The global Electricity Sector and its customers are faced with a number of challenges that are unparalleled since the advent of widespread electrification. Challenges including climate change, escalating energy prices, energy security and energy efficiency are converging to drive fundamental change in the way energy is produced, delivered and utilized. The electricity system of the future must produce and distribute electricity that is reliable, affordable and clean. To accomplish these goals, both the electricity grid and the existing regulatory system must be smarter. This paper explores smart grid technologies, distributed generation systems, R & D efforts across Europe and the United States, and technical, economical and regulatory barriers facing modern utilities.展开更多
The working mechanism of MFC used for simultaneous nitrogen removal and electricity generation was studied.The results show that the electrode biofilms and suspension had different modes of electron transfer.The micro...The working mechanism of MFC used for simultaneous nitrogen removal and electricity generation was studied.The results show that the electrode biofilms and suspension had different modes of electron transfer.The microorganisms growing on the electrodes and bioflocs could transfer electrons by direct contact and intermediaries respectively.The electrode biofilms and bioflocs were dominant in different functional spaces,and played a synergistic role in the process of contaminant removal,but showed a certain competitive relationship in the process of electricity generation.This study can provide a theoretical basis for the development of a new low-consumption wastewater treatment technology and promote technological innovation in wastewater treatment.展开更多
The Multi Year Tariff Order (MYTO) is the Nigerian Electricity Regulatory Commission (NERC) pricing framework for determining the Nigerian Electricity Supply Industry (NESI) pricing model. One of the objectives of the...The Multi Year Tariff Order (MYTO) is the Nigerian Electricity Regulatory Commission (NERC) pricing framework for determining the Nigerian Electricity Supply Industry (NESI) pricing model. One of the objectives of the NERC’s MYTO pricing model is to ensure regulated electricity end user tariff without compromising return on investment. Achieving this objective is imperative to attract investors in the growing Nigerian electricity market. However, NESI has hitherto been faced with challenges ranging from its inability to provide sufficient power to its customers to not being viable enough to provide return on capital invested. In this paper, sensitivity analysis of power plant operation and performance parameters on the cost of electricity (CoE) generation using MYTO (power generation) pricing model were evaluated. Thermodynamic modeling and simulation of an open cycle gas turbine (OCGT) was carried out to augment scarce data on power plant performance and operation in Nigeria. Sensitivity analysis was carried out using probabilistic method based on Monte Carlo simulation (MCS) implemented in commercial software (@ Risk®). The result highlighted sensitivity of the model input parameters to cost of electricity generation based on technical and financial assumptions of MYTO model. Seven most influential parameters affecting generation cost were identified. These parameters and their correlation coefficients are given as: 1) foreign exchange rate, 0.76;2) cost of fuel, 0.51;3) thermal efficiency, -0.23;4) variable operation and maintenance cost, 0.22;5) fixed operating and maintenance cost, -0.03;6) capacity factor, -0.02;and 7) average capacity degradation, 0.01. Based on the gas turbine engine and input parameter distributions statistics for this study, the generation cost lies between 9.84 to 15.45 N/kWh and the probabilities of CoE within these values were established.展开更多
Coal, petroleum and natural gas will still be the basis of economic development for a long time. However, with a rapider consumption speed, these fossil fuels will be exhausted in the near future. In addition, the usa...Coal, petroleum and natural gas will still be the basis of economic development for a long time. However, with a rapider consumption speed, these fossil fuels will be exhausted in the near future. In addition, the usage of these fossil fuels can also cause environmental pollution and greenhouse effect. To deal with energy security and environmental crisis, it is wise to work towards three directions: energy saving and emission reduction, energy recovery, exploration of new renewable energy. Currently, the electricity generation technology using piezoelectric material to recover the compressional or vibrational energy begins to draw attention. However, most of the researches are devoted to designing small self-powered devices. This paper presents an overview of the feasibility of piezoelectric power generation system for electric power system, in which the fundamentals of piezoelectric power generation and the feasible structure of the system are discussed.展开更多
According to the US Energy Information Administration, about 4118 billion kilowatt-hours (kWh) electricity was generated at large-scale generation facilities in 2019. About 63% of this was from fossil fuels, e.g., coa...According to the US Energy Information Administration, about 4118 billion kilowatt-hours (kWh) electricity was generated at large-scale generation facilities in 2019. About 63% of this was from fossil fuels, e.g., coal, natural gas, petroleum, and other gases. Environmental exposure to particulates, sulfur dioxide, nitrogen oxides, mercury, arsenic, radioactive fly ash, and other pollutants are extremely detrimental to the human cardiovascular, respiratory, and nervous systems. Such exposure increases the risk of lung cancer, stroke, heart disease, chronic respiratory diseases, respiratory infections, and other illnesses. In light of the challenges associated with renewables providing large quantities of base load power, as well as other factors, the benefits offered by nuclear power should be reexamined by policy makers to move the country towards a more ecological and ethical method of electric power production. This paper offers a concise analysis of many of the salient issues, comparing electricity generation from coal plants and light water nuclear reactors.展开更多
In this study, a circular plate that is installing a piezoelectric element at its center is adopted as energy-harvesting system and is subjected to a harmonic point force. Because this system cannot avoid the influenc...In this study, a circular plate that is installing a piezoelectric element at its center is adopted as energy-harvesting system and is subjected to a harmonic point force. Because this system cannot avoid the influence of its acoustic radiation, the influence is considered theoretically using the equation of plate motion taking into account its radiation impedance and is estimated by the electricity generation efficiency, which is derived from the ratio of the electric power in the electricity generation and the mechanical power supplied to the plate. As a result, the efficiency is suppressed by the acoustic radiation from the plate, so that the efficiencies are so different in whether to take into consideration the radiation impedance or not. Because those results are verified by the electricity generation experiment and radiation acoustic energy has a hopeful prospect for improving the performance of this system, mechanical-acoustic coupling is used to make the most of the acoustic energy. Therefore, a cylinder that has the above plates at both ends is also adopted as the electricity generation system and mechanical-acoustic coupling is caused between the plate vibrations and an internal sound field into the cylindrical enclosure by subjecting one side of each plate to a harmonic point force. Then, the effect of coupling is evaluated by comparing with the efficiencies in the electricity generation system of only plate. Specifically, because the radiation impedance increases with the plate thickness, i.e., with the natural frequency of the plate, it is demonstrated that the effect of coupling becomes remarkable with increasing the thickness on the electricity generation efficiency.展开更多
For the implementation of power market in China,medium-and Iong-term security checks are essential for bilateral transactions,of which the electricity quantity that constitutes the generation feasible region(GFR)is th...For the implementation of power market in China,medium-and Iong-term security checks are essential for bilateral transactions,of which the electricity quantity that constitutes the generation feasible region(GFR)is the target.However,uncertainties from load forecasting errors and transmission contingencies are threats to medium-and Iong-term electricity tradi ng in terms of their in flue nces on the GFR.In this paper,we prese nt a graphic distortio n pattern in a typical threegenerator system using the Monte Carlo method and projection theory based on security constrained economic dispatch.The underlying potential risk to GFR from uncertainties is clearly visualized,and their impact characteristics are discussed.A case study on detailed GFR distortion was included to dem on strate the effectiveness of this visualization model.The result implies that a small uncertainty could distort the GFR to a remarkable extent and that different line-contingency precipitates disparate the GFR distortion patterns,thereby eliciting great emphasis on load forecasting and line reliability in electricity transacti ons.展开更多
A study was carried out to analyse the extent to which diverse species of aquatic weeds that have proliferated in the Shire River in Malawi in recent years affect the generation of electricity at Nkula Hydro-Electric ...A study was carried out to analyse the extent to which diverse species of aquatic weeds that have proliferated in the Shire River in Malawi in recent years affect the generation of electricity at Nkula Hydro-Electric Station in Mwanza District of the southern region of the country. Specifically, the study endeavoured to establish whether frequent power interruptions that Malawi is facing are the result of the problems caused by aquatic weeds in the Shire River which are believed to disturb proper functioning of the machines at the power station. Study results revealed that as much as the aquatic weeds impede power generation such as blocking the turbines, problems of low power generation that result into frequent and persistent load shedding are not entirely due to aquatic weeds. Problems of inefficient machines and shut down of machines are due to serving, which appeared to be the major cause.展开更多
Besides pumped hydropower, Compressed Air Energy Storage (CAES) is the other solution for large energy storage capacity. It can balance fluctuations in supply and demand of electricity. CAES is essential part of smart...Besides pumped hydropower, Compressed Air Energy Storage (CAES) is the other solution for large energy storage capacity. It can balance fluctuations in supply and demand of electricity. CAES is essential part of smart power grids. Linked with the flow structure and dynamic characteristic of electricity generation subsystem and its components, a simulation model is proposed. Thermo-dynamical performance on off-design conditions have been analyzed with constant air mass flux and constant gas combustion temperature. Some simulation diagrams of curve are plotted too. The contrast of varied operation mode thermal performance is made between CAES power plant and simple gas turbine power plant.展开更多
The study takes motivation from provincial and national issues regarding waste management and electricity production in Canada.Most sources include previous research relating pyrolysis’applications in different parts...The study takes motivation from provincial and national issues regarding waste management and electricity production in Canada.Most sources include previous research relating pyrolysis’applications in different parts of the world.The research included 2-3 weeks of extensive reading of previous research and understanding the theory relating polymers.Research has been conducted to understand why polymers have the properties that they do.Thorough analysis about the chemical reactions relating polymers on a small and large scale is conducted.More research was conducted relating to socio-economic conditions of Canada and Singapore for application purposes.Findings of the research point to an addition the Canadian government can uphold i.e.,build more plastic pyrolysis plants in different regions for waste management.Our findings also suggest that the short term spending on such projects can yield long term benefits.This research is important because it will solve Canada’s non-recyclable waste problems,it will help bring in a new source of electricity and it will help increase the budget of municipalities in the long run.This paper is not just informative on polymers,but also will help readers understand issues regarding Canadian waste management and propose possible solutions.展开更多
In the first half of 1996, electricity generation in China had steadily, grown with a total electricity generation accumulated to 508.3 TWh, it was 47.5% of the planned figure in the year, and 8.3% higher than the sam...In the first half of 1996, electricity generation in China had steadily, grown with a total electricity generation accumulated to 508.3 TWh, it was 47.5% of the planned figure in the year, and 8.3% higher than the same period of previous year. Among the generation, hydro-electricity amounted to 78.2 TWh, 5.39% lower than previous year, thermal electricity amounted to 424.55 TWh, 10.87% higher than previous year, nuclear electricity amounted to 5.52 TWh, 47.15% higher than previous year. The steady growth of thermal electricity might attribute to newly installed generating capacity in one hand, and the展开更多
基金This work was supported by the National Key Research and Development Program of China(2022YFB4101600,2022YFB4101605)the National Natural Science Foundation of China(52372175,51972040)+1 种基金the Innovation and Technology Fund of Dalian(N2023JJ12GX020,2022JJ12GX023)Liaoning Normal University 2022 Outstanding Research Achievements Cultivation Fund(No.22GDL002).The authors also acknowledge the assistance of the DUT Instrumental Analysis Center.
文摘Solar-driven interfacial water evaporation(SIWE)offers a superb way to leverage concentrated solar heat to minimize energy dissipation during seawater desalination.It also engenders overlapped temperaturesalinity gradient(TSG)between water-air interface and adjacent seawater,affording opportunities of harnessing electricity.However,the efficiency of conventional SIWE technologies is limited by significant challenges,including salt passivation to hinder evaporation and difficulties in exploiting overlapped TSG simultaneously.Herein,we report self-sustaining hybrid SIWE for not only sustainable seawater desalination but also efficient electricity generation from TSG.It enables spontaneous circulation of salt flux upon seawater evaporation,inducing a self-cleaning evaporative interface without salt passivation for stable steam generation.Meanwhile,this design enables spatial separation and simultaneous utilization of overlapped TSG to enhance electricity generation.These benefits render a remarkable efficiency of90.8%in solar energy utilization,manifesting in co-generation of solar steam at a fast rate of 2.01 kg m^(-2)-h^(-1)and electricity power of 1.91 W m^(-2)with high voltage.Directly interfacing the hybrid SIWE with seawater electrolyzer constructs a system for water-electricity-hydrogen co-generation without external electricity supply.It produces hydrogen at a rapid rate of 1.29 L h^(-1)m^(-2)and freshwater with 22 times lower Na+concentration than the World Health Organization(WHO)threshold.
基金The Fundamental Research Funds for the Central Universitiesthe National Natural Science Foundation of China (No.51109038)
文摘A membrane-less constructed wetland microbial fuel cell (CW-MFC) is constructed and operated under continuous flow with a hydraulic retention time (HRT) of 2 d. Fed with glucose, the CW-MFC generates a stable current density of over 2 A/m3 with a resistor of 1 kΩ and has a chemical oxygen demand (COD) removal efficiency of more than 90% after the startup of 2 to 3 d. A series of systems with the electrode spacings of 10, 20, 30 and 40 cm are compared. It is found that the container with the electrode spacing of 20 cm gains the highest voltage of 560 mV, the highest power density of 0. 149 W/m 3, and the highest Coulombic efficiency of 0.313%. It also has the highest COD removal efficiency of 94. 9%. In addition, the dissolved oxygen (DO) concentrations are observed as the lowest level in the middle of all the CW-MFC reactors. The results show that the more COD is removed, the greater power is generated, and the relatively higher Coulombic efficiency will be achieved. The present study indicates that the CW-MFC process can be used as a cost-effective and environmentally friendly wastewater treatment with simultaneous power generation.
基金Project (No. 056846) supported by the National Development and Reform Commission of China (NDRC)
文摘Electricity consumption increases rapidly with the rapid development of China. The environmental damage costs of electricity generation are very important for both policy analysis and the proper management of the environment. A method was developed in this work to estimate gross environmental damage costs according to emission inventory and environmental cost factors, and to extend the costs from provincial to national level with population density. In this paper, sulfur dioxide (SO2), nitrogen oxides (NOx), particulate matter less than 10 μm in diameter (PM10), and carbon dioxide (CO2) from fossil fired power plants over 6000 kW were selected as index pollutants to quantify the environmental costs of damages on human health and global warming. With the new developed method, environmental damage costs, caused by 3 types of fired power plants in 30 provinces and 6 economic sectors during the years 2000 to 2003, were evaluated and analyzed. It can be seen that the calculated total national environmental damage costs of electricity have rapidly increased from 94930.87×106 USD in 2000 to about 141041.39×106 USD in 2003, with an average annual growth rate of 14.11%. Environmental damage costs of SO2, NOx, PM10, and CO2 are 69475.69×106, 30079.29×106, 28931.84×106, and 12554.57×106 USD and account for 49.26%, 21.33%, 20.51%, and 8.90% of total environmental costs in fossil electricity generation, respectively. With regard to regional distribution, external costs caused by fossil electricity generation are mainly concentrated in the more populated and industrialized areas of China, i.e., the Eastern Central and Southeastern areas.
文摘It is the purpose of the present paper to convert hydraulic energy to electric energy and saves both the pressure and electrical energy for re - use during the next system upstroke using two secondary units coupled to induction motor to drive cylinder loads. During upstroke operation, the variable pump/motor (P/M) driven by both electric motor and the second (P/M) works as hydraulic pump and output flow to the cylinders which drive the load. During load deceleration, the cylinders work as pump while the operation of the two secondary units are reversed, the variable (P/M) works as a motor generating a torque with the electric motor to drive the other (P/M) which transforms mechanical energy to hydraulic energy that is saved in the accumulator. When the energy storage capacity of the accumulator is attained as the operation continues, energy storage to the accumulator is thermostatically stopped while the induction motor begins to work as a generator and generates electricity that is stored in the power distribution unit. Simulations were performed using a limited PT2 Block, i.e. 2nd-order transfer function with limitation of slope and signal output to determine suitable velocity of the cylinder which will match high performance and system stability. A mathematical model suited to the simulation of the hydraulic accumulator both in an open-or close-loop system is presented. The quest for improvement of lower energy capacity storage, saving and re-utilization of the conventional accumulator resulting in the short cycle time usage of hydraulic accumulators both in domestic and industrial purposes necessitates this research. The outcome of the research appears to be very efficient for generating fluctuation free electricity, power quality and reliability, energy saving/reutilization and system noise reduction.
基金funding this work through General Research Project under grant number(R.G.P.1/26/38).
文摘Many recent studies are concerned with low cost,easy to handle and alternative renewable energy as a feasible solution for the upcoming crisis of energy shortage.Microalgae are unicellular entities the can only depend on CO_(2),water and solar power to cover their nutritional needs.The current study is concerned with using algal cells in a polymeric hydrogel,as a cheap source of energy for electricity generation.Chlorella vulgaris has been proved to be a promising algal species for electricity generation,as compared with Micractinium reisseri.PVA hydrogel has been used for the immobilization of both algal species in order to protect them from the adverse surrounding conditions in addition to its ability to slowly release the required water molecules according to needs.Under these conditions,C.vulgaris showed the ability to generate 60 mV compared with 15 mV generated by M.reisseri.Scanning electron micrographs showed nano-threads that bind the C.vulgaris cells to each other,indicating the ability of algae to create nanowires that facilitate the electron transfer among algal cells and from cells to the nearest electrode.However,we would expect an increase in the produced potential with simultaneous amendment of environmentally polluted water,such as sewage or waste water.Both of FTIR and raman spectroscopy proved the presence of the characteristic groups of PVA hydrogel and proved the proper integration of the algal cells inside the hydrogel cavities.
文摘The global Electricity Sector and its customers are faced with a number of challenges that are unparalleled since the advent of widespread electrification. Challenges including climate change, escalating energy prices, energy security and energy efficiency are converging to drive fundamental change in the way energy is produced, delivered and utilized. The electricity system of the future must produce and distribute electricity that is reliable, affordable and clean. To accomplish these goals, both the electricity grid and the existing regulatory system must be smarter. This paper explores smart grid technologies, distributed generation systems, R & D efforts across Europe and the United States, and technical, economical and regulatory barriers facing modern utilities.
基金Supported by Natural Science Foundation of Shandong Province,China(ZR2019QEE039)Natural Science Foundation of Zhejiang Province,China(LY18E080007)National Natural Science Foundation of China(51808494)
文摘The working mechanism of MFC used for simultaneous nitrogen removal and electricity generation was studied.The results show that the electrode biofilms and suspension had different modes of electron transfer.The microorganisms growing on the electrodes and bioflocs could transfer electrons by direct contact and intermediaries respectively.The electrode biofilms and bioflocs were dominant in different functional spaces,and played a synergistic role in the process of contaminant removal,but showed a certain competitive relationship in the process of electricity generation.This study can provide a theoretical basis for the development of a new low-consumption wastewater treatment technology and promote technological innovation in wastewater treatment.
文摘The Multi Year Tariff Order (MYTO) is the Nigerian Electricity Regulatory Commission (NERC) pricing framework for determining the Nigerian Electricity Supply Industry (NESI) pricing model. One of the objectives of the NERC’s MYTO pricing model is to ensure regulated electricity end user tariff without compromising return on investment. Achieving this objective is imperative to attract investors in the growing Nigerian electricity market. However, NESI has hitherto been faced with challenges ranging from its inability to provide sufficient power to its customers to not being viable enough to provide return on capital invested. In this paper, sensitivity analysis of power plant operation and performance parameters on the cost of electricity (CoE) generation using MYTO (power generation) pricing model were evaluated. Thermodynamic modeling and simulation of an open cycle gas turbine (OCGT) was carried out to augment scarce data on power plant performance and operation in Nigeria. Sensitivity analysis was carried out using probabilistic method based on Monte Carlo simulation (MCS) implemented in commercial software (@ Risk®). The result highlighted sensitivity of the model input parameters to cost of electricity generation based on technical and financial assumptions of MYTO model. Seven most influential parameters affecting generation cost were identified. These parameters and their correlation coefficients are given as: 1) foreign exchange rate, 0.76;2) cost of fuel, 0.51;3) thermal efficiency, -0.23;4) variable operation and maintenance cost, 0.22;5) fixed operating and maintenance cost, -0.03;6) capacity factor, -0.02;and 7) average capacity degradation, 0.01. Based on the gas turbine engine and input parameter distributions statistics for this study, the generation cost lies between 9.84 to 15.45 N/kWh and the probabilities of CoE within these values were established.
文摘Coal, petroleum and natural gas will still be the basis of economic development for a long time. However, with a rapider consumption speed, these fossil fuels will be exhausted in the near future. In addition, the usage of these fossil fuels can also cause environmental pollution and greenhouse effect. To deal with energy security and environmental crisis, it is wise to work towards three directions: energy saving and emission reduction, energy recovery, exploration of new renewable energy. Currently, the electricity generation technology using piezoelectric material to recover the compressional or vibrational energy begins to draw attention. However, most of the researches are devoted to designing small self-powered devices. This paper presents an overview of the feasibility of piezoelectric power generation system for electric power system, in which the fundamentals of piezoelectric power generation and the feasible structure of the system are discussed.
文摘According to the US Energy Information Administration, about 4118 billion kilowatt-hours (kWh) electricity was generated at large-scale generation facilities in 2019. About 63% of this was from fossil fuels, e.g., coal, natural gas, petroleum, and other gases. Environmental exposure to particulates, sulfur dioxide, nitrogen oxides, mercury, arsenic, radioactive fly ash, and other pollutants are extremely detrimental to the human cardiovascular, respiratory, and nervous systems. Such exposure increases the risk of lung cancer, stroke, heart disease, chronic respiratory diseases, respiratory infections, and other illnesses. In light of the challenges associated with renewables providing large quantities of base load power, as well as other factors, the benefits offered by nuclear power should be reexamined by policy makers to move the country towards a more ecological and ethical method of electric power production. This paper offers a concise analysis of many of the salient issues, comparing electricity generation from coal plants and light water nuclear reactors.
文摘In this study, a circular plate that is installing a piezoelectric element at its center is adopted as energy-harvesting system and is subjected to a harmonic point force. Because this system cannot avoid the influence of its acoustic radiation, the influence is considered theoretically using the equation of plate motion taking into account its radiation impedance and is estimated by the electricity generation efficiency, which is derived from the ratio of the electric power in the electricity generation and the mechanical power supplied to the plate. As a result, the efficiency is suppressed by the acoustic radiation from the plate, so that the efficiencies are so different in whether to take into consideration the radiation impedance or not. Because those results are verified by the electricity generation experiment and radiation acoustic energy has a hopeful prospect for improving the performance of this system, mechanical-acoustic coupling is used to make the most of the acoustic energy. Therefore, a cylinder that has the above plates at both ends is also adopted as the electricity generation system and mechanical-acoustic coupling is caused between the plate vibrations and an internal sound field into the cylindrical enclosure by subjecting one side of each plate to a harmonic point force. Then, the effect of coupling is evaluated by comparing with the efficiencies in the electricity generation system of only plate. Specifically, because the radiation impedance increases with the plate thickness, i.e., with the natural frequency of the plate, it is demonstrated that the effect of coupling becomes remarkable with increasing the thickness on the electricity generation efficiency.
基金the National Key R&D Program of China under Grant No.2020YFB0905900in part by the State Grid Corporation of China project“Research on inter-provincial price coupling mechanism of national unified electricity spot market”.
文摘For the implementation of power market in China,medium-and Iong-term security checks are essential for bilateral transactions,of which the electricity quantity that constitutes the generation feasible region(GFR)is the target.However,uncertainties from load forecasting errors and transmission contingencies are threats to medium-and Iong-term electricity tradi ng in terms of their in flue nces on the GFR.In this paper,we prese nt a graphic distortio n pattern in a typical threegenerator system using the Monte Carlo method and projection theory based on security constrained economic dispatch.The underlying potential risk to GFR from uncertainties is clearly visualized,and their impact characteristics are discussed.A case study on detailed GFR distortion was included to dem on strate the effectiveness of this visualization model.The result implies that a small uncertainty could distort the GFR to a remarkable extent and that different line-contingency precipitates disparate the GFR distortion patterns,thereby eliciting great emphasis on load forecasting and line reliability in electricity transacti ons.
文摘A study was carried out to analyse the extent to which diverse species of aquatic weeds that have proliferated in the Shire River in Malawi in recent years affect the generation of electricity at Nkula Hydro-Electric Station in Mwanza District of the southern region of the country. Specifically, the study endeavoured to establish whether frequent power interruptions that Malawi is facing are the result of the problems caused by aquatic weeds in the Shire River which are believed to disturb proper functioning of the machines at the power station. Study results revealed that as much as the aquatic weeds impede power generation such as blocking the turbines, problems of low power generation that result into frequent and persistent load shedding are not entirely due to aquatic weeds. Problems of inefficient machines and shut down of machines are due to serving, which appeared to be the major cause.
文摘Besides pumped hydropower, Compressed Air Energy Storage (CAES) is the other solution for large energy storage capacity. It can balance fluctuations in supply and demand of electricity. CAES is essential part of smart power grids. Linked with the flow structure and dynamic characteristic of electricity generation subsystem and its components, a simulation model is proposed. Thermo-dynamical performance on off-design conditions have been analyzed with constant air mass flux and constant gas combustion temperature. Some simulation diagrams of curve are plotted too. The contrast of varied operation mode thermal performance is made between CAES power plant and simple gas turbine power plant.
文摘The study takes motivation from provincial and national issues regarding waste management and electricity production in Canada.Most sources include previous research relating pyrolysis’applications in different parts of the world.The research included 2-3 weeks of extensive reading of previous research and understanding the theory relating polymers.Research has been conducted to understand why polymers have the properties that they do.Thorough analysis about the chemical reactions relating polymers on a small and large scale is conducted.More research was conducted relating to socio-economic conditions of Canada and Singapore for application purposes.Findings of the research point to an addition the Canadian government can uphold i.e.,build more plastic pyrolysis plants in different regions for waste management.Our findings also suggest that the short term spending on such projects can yield long term benefits.This research is important because it will solve Canada’s non-recyclable waste problems,it will help bring in a new source of electricity and it will help increase the budget of municipalities in the long run.This paper is not just informative on polymers,but also will help readers understand issues regarding Canadian waste management and propose possible solutions.
文摘In the first half of 1996, electricity generation in China had steadily, grown with a total electricity generation accumulated to 508.3 TWh, it was 47.5% of the planned figure in the year, and 8.3% higher than the same period of previous year. Among the generation, hydro-electricity amounted to 78.2 TWh, 5.39% lower than previous year, thermal electricity amounted to 424.55 TWh, 10.87% higher than previous year, nuclear electricity amounted to 5.52 TWh, 47.15% higher than previous year. The steady growth of thermal electricity might attribute to newly installed generating capacity in one hand, and the