The rich coal-bed methane resources in the Turpan-Hami Basin are mainly located in the Shisanjianfang,Hami,Shanshan,Sha'erhu,Kekeya,Kerjian,Aidinghu inclines and the Dananhu coal-bed methane reservoirs. The big-ge...The rich coal-bed methane resources in the Turpan-Hami Basin are mainly located in the Shisanjianfang,Hami,Shanshan,Sha'erhu,Kekeya,Kerjian,Aidinghu inclines and the Dananhu coal-bed methane reservoirs. The big-ger coal-bed reservoirs are sitting at a depth of less than 1500 m. The coalbed methane generation,storage and confin-ing conditions of the Turpan-Hami basin can be indicated by eight key parameters. They are coal-bed thickness,coal rank,missing period,permeability,Langmuir volume,rock covering ability,structural confinement and hydrodynamic sealing environment. These parameters constitute a comprehensive appraisal index system of the coal-bed methane res-ervoir characteristics of the Turpan-Hami basin. In these parameters,the missing period of coal-bed methane is indi-cated by a stratum missing intensity factor. It reflects the relative exposure period of coal series. The results of a fuzzy comprehensive judgment showed that the Shisanjianfang coal-bed methane reservoir has the best prospects for exploita-tion and the Sha'erhu,Shanshan,Hami coal-bed methane reservoirs are next in line.展开更多
Coal-bed methane is accumulated in micro-fissures and cracks in coal seams. The coal seam is the source terrace and reservoir bed of the coal-bed methane (Qian et al., 1996). Anisotropy of coal seams is caused by the ...Coal-bed methane is accumulated in micro-fissures and cracks in coal seams. The coal seam is the source terrace and reservoir bed of the coal-bed methane (Qian et al., 1996). Anisotropy of coal seams is caused by the existence of fissures. Based on the theory of S wave splitting: an S wave will be divided into two S waves with nearly orthogonal polarization directions when passing through anisotropic media, i.e. the fast S wave with its direction of propagation parallel to that of the fissure and slow S wave with the direction of propagation perpendicular to that of the fissure.展开更多
This study presents the first demonstration project in China for treatment of coal-bed methane(CBM) co-produced water and recycling.The work aims to provide a research and innovation base for solving the pollution pro...This study presents the first demonstration project in China for treatment of coal-bed methane(CBM) co-produced water and recycling.The work aims to provide a research and innovation base for solving the pollution problem of CBM extraction water.The reverse osmosis(RO) unit is applied to the treatment of CBM co-produced water.The results indicate that system operation is stable,the removal efficiency of the total dissolved solids(TDS) is as high as 97.98%,and Fe,Mn,and F-are almost completely removed.There is no suspended solids(SS) detected in the treated water.Furthermore,a model for the RO membrane separation process is developed to describe the quantitative relationship between key physical quantities-membrane length,flow velocity,salt concentration,driving pressure and water recovery rate,and the water recovery restriction equation based on mass balance is developed.This model provides a theoretical support for the RO system design and optimization.The TDS in the CBM co-produced water are removed to meet the "drinking water standards" and "groundwater quality standards" of China and can be used as drinking water,irrigation water,and livestock watering.In addition,the cost for treatment of CBM co-produced water is assessed,and the RO technology is an efficient and cost-effective treatment method to remove pollutants.展开更多
As a new-replacement of energy resource, coal bed methane is the important gas resource with great strategic significance. There are several number of Mesozoic coal-bearing basins in Jiamusi landmass, eastern Heilongj...As a new-replacement of energy resource, coal bed methane is the important gas resource with great strategic significance. There are several number of Mesozoic coal-bearing basins in Jiamusi landmass, eastern Heilongjiang Province. Theresult of the resource assessment revealed that the total resource less than 1 500 m,s depth in the area is about 2 100×108m3. It shows that Jiamusi landmass has great potential of coal-bed gas and is one of the most prospecting districts for developing coal-bed gas in CBM-province Northeast China.展开更多
When the gas flow in the compact porous medium at low speed,it has slippage effect which is caused by the gas molecular collision whit the solidskeleton.Using the gas transfusion slippage effect at researching the coa...When the gas flow in the compact porous medium at low speed,it has slippage effect which is caused by the gas molecular collision whit the solidskeleton.Using the gas transfusion slippage effect at researching the coal bed transfusion rule,established the transfusion mathematical model of the coal bed which had considered the slippage effect. Observing the influence of the different toencircle presses,the different hole press and the different actual stress to the coal bed by using the three-axles permeameter.Thus sum- marized the transfusion rule of the coal bed.The experiment indicates that the bigger of the surrounding pressure,the more obvious of the slippage effect.At the same condition of axial pressure and the surrounding pressure,with the increase of the hole pressure,the coal permeability became bigger and then smaller.The coal body effective tress and the permeability curve nearly also has the same change tendency.Thus we can draws the conclusion that the transfusion of the gas in the coal bed generally has the slippage effect.展开更多
The coalbed methane (CBM) resources in North China amounts up to 60% of total resources in China. North China is the most important CBM accumulation area in China. The coal beds of the Upper Paleozoic Taiyuan and Shan...The coalbed methane (CBM) resources in North China amounts up to 60% of total resources in China. North China is the most important CBM accumulation area in China. The coal beds of the Upper Paleozoic Taiyuan and Shanxi formations have a stable distribution. The coal reservoir of target areas such as Jincheng, Yanquan-Shouyang, Hancheng, Liulin, etc. have good CBM-bearing characteristics, high permeability and appropriate reservoir pressure, and these areas are the preferred target areas of CBM developing in China. The coal reservoirs of Wupu, Sanjiaobei, Lu'an, Xinmi, Anyang-Hebi, Jiaozuo, Xinggong and Huainan also have as good CBM-bearing characteristics, but the physical properties of coal reservoirs vary observably. So, further work should be taken to search for districts with high pressure, high permeability and good CBM-bearing characteristics. Crustal stresses have severe influence on the permeability of coal reservoirs in North China. From west to east, the crustal stress gradient increases, while the coal reservoirs permeability decreases.展开更多
Methanogens and sulfate reducing bacteria were detected by the 16SrRNA sequencing of coalbed methane(CBM)co-produced water in the south of the Qinshui Basin,which is indicative of the presence of secondary biological ...Methanogens and sulfate reducing bacteria were detected by the 16SrRNA sequencing of coalbed methane(CBM)co-produced water in the south of the Qinshui Basin,which is indicative of the presence of secondary biological gas in the south of this basin,in contradiction to the previous understanding of thermogenic gas.This work systematically collected water samples from the CBM wells in the Shizhuangnan Block and analyzed the microbial geochemical characteristics from the aspects of water ions,hydrogen and oxygen isotopes,dissolved inorganic carbon and microbial diversity.It is shown that the Shizhuangnan Block has a nearly SN-trending monoclinic structure,and the elevation of coal seam decreases gradually from the east to west.Because of the water blocking effect of Sitou fault in the west,the precipitation flowed from the east to west,and gradually transited to stagnant flow area.The concentration variation of some ions such as Na^+,K^+,Ca2^+,Mg2^+,Cl^-,HCO3^-and total dissolved solids(TDS)suggest the variation of redox condition in the coal reservoir water.The 16SrDNA sequencing analysis of the collected water samples detected the presence of methanogens and sulfate reduction bacteria.The presence of methane production zone and sulfate methane transition zone(SMTZ)was identified.The effect of methanogens in the methane production zone leads to an increase in the methane concentration,resulting in a high gas content in the study area.In the SMTZ,most methane is consumed by anaerobic oxidation due to high sulfate concentrations.展开更多
Inspired by successful development of shale gas in USA and influenced by hydrocarbon resources shortage currently, China has strengthened shale gas research and accelerated its exploration process. In order to enrich ...Inspired by successful development of shale gas in USA and influenced by hydrocarbon resources shortage currently, China has strengthened shale gas research and accelerated its exploration process. In order to enrich coalbed methane (CBM) and shale gas geological theory and promote their development process, this paper compared shale gas with CBM in accumulation, distribution, reservoir and production. It expatiated on the background and significance of the combined research and development, and analyzed the geological foundation and future prospects. Our investigation demonstrated that there are many sets of coal-bearing strata in Shanxi formation of Permian system in Ordos in North China, Longtan formation of Upper Permian and Xujiahe formation of Upper Triassic in Southern Yangtze region, Xishanyao formation of Middle Jurassic in Turpan-Hami Basin and Junggar Basin in Northwest China, and Shahezi formation of Cretaceous in Songliao Basin in northeast China. In these regions, shales which are interbeded with coal seams have the characters of big thickness, continuous distribution, high content of organic matter, good parent material and high maturity, accord with the basic geological conditions to format shale gas and CBM reservoir and composite gas reservoir, thus form appropriate regions and layers to carry out joint research and exploration with good prospects for development.展开更多
Objective The production of coal fines is very common in the development of coalbed methane(CBM)in the eastern margin of the Ordos Basin,China.A large amount of produced coal fines seriously affect the productivity ...Objective The production of coal fines is very common in the development of coalbed methane(CBM)in the eastern margin of the Ordos Basin,China.A large amount of produced coal fines seriously affect the productivity of CBM wells(Wei Yingchun et al.,2013).Therefore,the production problems of CBM wells caused by coal fines have attracted extensive attention.展开更多
Coalbed methane(CBM)drilling and completion technologies(DCTs)are signifcant basis for achieving efcient CBM exploration and exploitation.Characteristics of CBM reservoirs vary in diferent regions around the world,the...Coalbed methane(CBM)drilling and completion technologies(DCTs)are signifcant basis for achieving efcient CBM exploration and exploitation.Characteristics of CBM reservoirs vary in diferent regions around the world,thereby,it is crucial to develop,select and apply the optimum DCTs for each diferent CBM reservoir.This paper frstly reviews the development history of CBM DCTs throughout worldwide and clarifes its overall development tendency.Secondly,diferent well types and its characteristics of CBM exploitation are summarized,and main application scopes of these well types are also discussed.Then,the key technologies of CBM drilling(directional drilling tools,measurement while drilling,geo-steering drilling,magnetic guidance drilling,underbalanced drilling and drilling fuids),and the key technologies of CBM completion(open-hole,cavity and under-ream completion,cased-hole completion,screen pipe completion and horizontal well completion)are summarized and analyzed,it is found that safe,economic and efcient development of CBM is inseparable from the support of advanced technologies.Finally,based on the current status of CBM development,the achievements,existing challenges and future prospects are summarized and discussed from the perspective of CBM DCTs.展开更多
Wellbore instability is a key problem restricting efficient production of coal-bed methane. In order to perform thorough and systematic research regarding coal-bed wellbore stability problems, a new discrete element m...Wellbore instability is a key problem restricting efficient production of coal-bed methane. In order to perform thorough and systematic research regarding coal-bed wellbore stability problems, a new discrete element model which fully considers the features of cleat coal-beds is established based on the Kirsch equation. With this model, the safe pipe tripping speed, drilling fluid density window and coal- bed collapse/fracture pressure are determined; in addition, the relationships between pipe tripping speed and pipe size, cleat size, etc. and wellbore stability are analyzed in the coal-bed drilling and pipe tripping processes. The case studies show the following results: the wellbore collapses (collapse pressure: 4.33 MPa) or fractures (fracture pressure: 12.7 MPa) in certain directions as a result of swab or surge pressure when the pipe tripping speed is higher than a certain value; the cleat face size has a great influence on wellbore stability, and if the drilling fluid pressure is too low, the wellbore is prone to collapse when the ratio of the face cleat size to butt cleat size is reduced; however, if the drilling fluid pressure is high enough, the butt cleat size has no influence on the wellbore fracture; the factors influencing coal-bed stability include the movement length, pipe size, borehole size.展开更多
Based on long-term dynamic tracing of dissolved inorganic carbon(DIC)and stable carbon isotope(δ13CDIC)in produced water from 20 coalbed methane(CBM)wells in western Guizhou,the spatial-temporal dynamic variations of...Based on long-term dynamic tracing of dissolved inorganic carbon(DIC)and stable carbon isotope(δ13CDIC)in produced water from 20 coalbed methane(CBM)wells in western Guizhou,the spatial-temporal dynamic variations ofδ13CDIC of the GP well group produced in multi-layer commingled manner were analyzed,and the relationship between the value ofδ13CDIC and CBM productivity was examined.The produced water samples of typical wells in the GP well group were amplified and sequenced using 16S rDNA,and a geological response model ofδ13CDIC in produced water from CBM wells with multi-coal seams was put forward.The research shows that:δ13CDIC in produced water from medium-rank coal seams commonly show positive anomalies,the produced water contains more than 15 species of methanogens,and Methanobacterium is the dominant genus.The dominant methanogens sequence numbers in the produced water are positively correlated withδ13CDIC,and the positive anomaly of v is caused by reduction of methanogens,and especially hydrogenotrophic methanogens.Vertical segmentation of sedimentary facies and lithology in stratum with multi-coal seams will result in permeability and water cut segmentation,which will lead to the segmentation ofδ13CDIC and archaea community in produced water,so in the strata with better permeability and high water cut,theδ13CDIC of the produced water is abnormally enriched,and the dominant archaea is mainly Methanobacterium.In the strata with weak permeability and low water cut,theδ13CDIC of the produced water is small,and the microbial action is weak.The shallow layer close to the coal seam outcrop is likely to be affected by meteoric precipitation,so theδ13CDIC of the produced water is smaller.The geological response model ofδ13CDIC in produced water from multi-coal seams CBM wells in the medium-rank coal reveals the geological mechanism and microbial action mechanism of theδ13CDIC difference in the produced water from the multi-coal seams CBM wells.It also provides effective geochemical evidence for the superimposed fluid system controlled by sedimentary facies,and can also be used for the contribution analysis of the produced gas and water by the multi-layer CBM wells.展开更多
Coal during its carbonization process produces a gas, which, mainly formed by methane, can be used. The use of CBM (Coal bed methane) as an energetic resource is not much known in Spain. This work is the first step to...Coal during its carbonization process produces a gas, which, mainly formed by methane, can be used. The use of CBM (Coal bed methane) as an energetic resource is not much known in Spain. This work is the first step to enhance the development of this resource in Castilla y León Guardo-Barruelo basin. A review of the state of the art is introduced, taking into account all the factors that can influence in the development of a CBM project. Then CBM resources have been quantified for Guardo-Barruelo basin accurately for every coal bed. After that, technical feasibility has been used to evaluate total amount of gas that can be recovered.展开更多
Coalbed methane (CBM) is a kind of burgeoning and enormously potential clean energy resource, and the temperature of the thermogenic CBM generation is close to that of the partial annealing zone (PAZ) of apatite fissi...Coalbed methane (CBM) is a kind of burgeoning and enormously potential clean energy resource, and the temperature of the thermogenic CBM generation is close to that of the partial annealing zone (PAZ) of apatite fission tracks (AFT). In this study the thermo-tectonic history of the Huainan Coalfield and the potential CBM resource were studied and discussed by using the AFT method. The AFT data indicate that the apparent ages of AFT vary from 45.5 to 199.1 Ma. They are younger than the ages of their host strata (255–1800 Ma) except one sample, and the single-grain ages of AFT can be classified as a single age group for each sample. In combination with the geological setting, modeling results of the AFT ages, average lengths, and the thermal history based on the AFT single-grain ages and length distributions, some preliminary conclusions can be drawn as follows: (1) at least three thermo-tectonic events (in the periods of ~240, 140 and 80 Ma, respectively) have occurred in the study area since the Late Paleozoic. The occurrence of both the first (during 240–220 Ma) and second (during 160–120 Ma) thermo-tectonic events is possibly responsible for the establishment of the patterns of gas generation and reservoir formation. The second thermo-tectonic event also led to slight accumulation of hydrocarbons and generation of thermogenic gas; (2) the AFT ages of most coal-bearing strata lie between 50 and 70 Ma. They should represent the cooling ages and the ages of inferred uplift and denudation, as well as the possible CBM release history. Therefore, the maximum burial depth of coal-bearing strata and the denudation thickness of the overlying strata are over 3000 and 2000 m in the Upper Cretaceous and Paleogene series, respectively; and (3) subsequently, a spot of secondary biogenic and scarcely thermogenic gas generation occurred due to negligible sedimentation during the Neogene and Quaternary periods. Thus, it can be presumed that subsequent tectonism would destroy the CBM reservoir after its formation in the Huainan Coalfield, especially in its structural development region. These AFT data may be helpful for a better understanding of the thermo-tectonic history of the Huainan Coalfield, as well as of CBM generation, storage and release in the Huainan Coalfield.展开更多
The purification of low-grade coal-bed methane is extremely important,but challenging,due to the very similar physical properties of CH_(4)and N2.Herein,we proposed a dual polarization strategy by employing triazine a...The purification of low-grade coal-bed methane is extremely important,but challenging,due to the very similar physical properties of CH_(4)and N2.Herein,we proposed a dual polarization strategy by employing triazine and polyfluoride sites to construct polar pores in COF materials,achieving the efficient separa-tion of CH_(4)from N2.As expected,the dual polarized F-CTF-1 and F-CTF-2 exhibit higher CH_(4)adsorption capacity and CH_(4)/N_(2)selectivity than CTF-1 and CTF-2,respectively.Especially,the CH4 uptake capacity and CH_(4)/N_(2)selectivity of F-CTF-2 is 1.76 and 1.42 times than that of CTF-2.This work not only developed promising COF materials for CH4/N_(2)separation,but also provided important guidance for the separation of other adsorbates with similar properties.展开更多
In this study, we provided more theoretical method for estimation of dissolution amount and applied this method to enhanced coalbed methane recovery (ECBMR) simulator. Dissolution amount was measured by method of di...In this study, we provided more theoretical method for estimation of dissolution amount and applied this method to enhanced coalbed methane recovery (ECBMR) simulator. Dissolution amount was measured by method of differential heat of adsorption. Akabira coal, a Japanese bituminous coal, was used for the experiment. The results showed that CO2 was stored in coal by both adsorption and dissolution. Using this result the methane production was calculated by ECBMR-simulator, enhanced coalbed methane recovery simulator, the University of Tokyo (ECOMERS-UT). Total stored CO2 was separated into adsorption component and dissolution component. Only the former component contributes to the competitive adsorption. Coalbed methane (CBM) production simulation considering the dissolution showed later and smaller peak production and prolonged methane production before the breakthrough than the conventional competitive adsorption.展开更多
The mathematical model of dynamic loads was developed based on an analysis of the polished rod load of beam pumps, and the variation of the dynamic loads and the computation of the minimum and maximum limits during a ...The mathematical model of dynamic loads was developed based on an analysis of the polished rod load of beam pumps, and the variation of the dynamic loads and the computation of the minimum and maximum limits during a complete pumping cycle were given out by solving the model.Field examples verify that it is necessary to take into account the inertial and vibration loads while calculating polished rod loads.During the prophase of the pumping production, the dynamic to polished rod load ratio is relatively large.Then the ratio decreases rapidly and becomes small after entering stable production.Moreover, the total deformation of rod and tubing in CBM wells is much smaller than that in oil fields, and the deformation caused by the dynamic loads is also relatively small.The result of this work is the calculation of the dynamic loads.The application of this calculation for the sucker rod pumping system in CBM wells can give the desired accuracy of polished rod load and the dynamometer cards, which provides a reasonable basis for the design and selection of beam pumps.展开更多
In the process of enriching CH4 from coal-bed methane,the separation of CH_(4)/N_(2)is very difficult to accomplish by an adsorption process due to the similar physico-chemical properties of the two molecules.A series...In the process of enriching CH4 from coal-bed methane,the separation of CH_(4)/N_(2)is very difficult to accomplish by an adsorption process due to the similar physico-chemical properties of the two molecules.A series of coconut-shell-based granular activated carbons(GACs)with different pore structures were prepared,which were characterized by different methods.The influence of the pore structure on the separation properties was investigated in detail.The results show that one of the carbons prepared(GAC-3)has high CH4 equilibrium adsorption capacity(3.28 mol·kg–1)at 298 K and equilibrium separation coefficient(3.95).The CH_(4)/N_(2)separation on the GACs is controlled by adsorption equilibrium as compared with the dynamic effect.Taking the specific surface area,for example,the common characterization index of the pore structure is not enough to judge the separation performance of the GACs.However,the microstructure of carbon materials plays a decisive role for CH_(4)/N_(2)separation.According to the pore-structure analysis,the effective pore size for the CH_(4)/N_(2)separation is from 0.4 to 0.9 nm,with the optimum effect occurring in the range of 0.6–0.7 nm,followed by the range of 0.7~0.9 nm.Also,a four-bed vacuum pressure swing adsorption process was adopted to evaluate the performance of GACs for the separation of CH4 from nitrogen.展开更多
基金Projects 2002CB211702 supported by the National Key Basic Research and Development Program of China2006AA06Z235 by the High Technology Research and Development Program of China
文摘The rich coal-bed methane resources in the Turpan-Hami Basin are mainly located in the Shisanjianfang,Hami,Shanshan,Sha'erhu,Kekeya,Kerjian,Aidinghu inclines and the Dananhu coal-bed methane reservoirs. The big-ger coal-bed reservoirs are sitting at a depth of less than 1500 m. The coalbed methane generation,storage and confin-ing conditions of the Turpan-Hami basin can be indicated by eight key parameters. They are coal-bed thickness,coal rank,missing period,permeability,Langmuir volume,rock covering ability,structural confinement and hydrodynamic sealing environment. These parameters constitute a comprehensive appraisal index system of the coal-bed methane res-ervoir characteristics of the Turpan-Hami basin. In these parameters,the missing period of coal-bed methane is indi-cated by a stratum missing intensity factor. It reflects the relative exposure period of coal series. The results of a fuzzy comprehensive judgment showed that the Shisanjianfang coal-bed methane reservoir has the best prospects for exploita-tion and the Sha'erhu,Shanshan,Hami coal-bed methane reservoirs are next in line.
文摘Coal-bed methane is accumulated in micro-fissures and cracks in coal seams. The coal seam is the source terrace and reservoir bed of the coal-bed methane (Qian et al., 1996). Anisotropy of coal seams is caused by the existence of fissures. Based on the theory of S wave splitting: an S wave will be divided into two S waves with nearly orthogonal polarization directions when passing through anisotropic media, i.e. the fast S wave with its direction of propagation parallel to that of the fissure and slow S wave with the direction of propagation perpendicular to that of the fissure.
基金Supported by the National Basic Research Program of China(2011ZX05060-0052009ZX05039-003)+2 种基金the National Natural Science Foundation of China(21106176)the President Fund of GUCAS(Y15101JY00)the National Science Foundation for Post-doctoral Scientists of China(20110490627)
文摘This study presents the first demonstration project in China for treatment of coal-bed methane(CBM) co-produced water and recycling.The work aims to provide a research and innovation base for solving the pollution problem of CBM extraction water.The reverse osmosis(RO) unit is applied to the treatment of CBM co-produced water.The results indicate that system operation is stable,the removal efficiency of the total dissolved solids(TDS) is as high as 97.98%,and Fe,Mn,and F-are almost completely removed.There is no suspended solids(SS) detected in the treated water.Furthermore,a model for the RO membrane separation process is developed to describe the quantitative relationship between key physical quantities-membrane length,flow velocity,salt concentration,driving pressure and water recovery rate,and the water recovery restriction equation based on mass balance is developed.This model provides a theoretical support for the RO system design and optimization.The TDS in the CBM co-produced water are removed to meet the "drinking water standards" and "groundwater quality standards" of China and can be used as drinking water,irrigation water,and livestock watering.In addition,the cost for treatment of CBM co-produced water is assessed,and the RO technology is an efficient and cost-effective treatment method to remove pollutants.
文摘As a new-replacement of energy resource, coal bed methane is the important gas resource with great strategic significance. There are several number of Mesozoic coal-bearing basins in Jiamusi landmass, eastern Heilongjiang Province. Theresult of the resource assessment revealed that the total resource less than 1 500 m,s depth in the area is about 2 100×108m3. It shows that Jiamusi landmass has great potential of coal-bed gas and is one of the most prospecting districts for developing coal-bed gas in CBM-province Northeast China.
基金the National Natural Sciences Fund Subsidization Project of China(50774041)National Important Item of the Natural Sciences Fund Subsidization Project of China(50490275)
文摘When the gas flow in the compact porous medium at low speed,it has slippage effect which is caused by the gas molecular collision whit the solidskeleton.Using the gas transfusion slippage effect at researching the coal bed transfusion rule,established the transfusion mathematical model of the coal bed which had considered the slippage effect. Observing the influence of the different toencircle presses,the different hole press and the different actual stress to the coal bed by using the three-axles permeameter.Thus sum- marized the transfusion rule of the coal bed.The experiment indicates that the bigger of the surrounding pressure,the more obvious of the slippage effect.At the same condition of axial pressure and the surrounding pressure,with the increase of the hole pressure,the coal permeability became bigger and then smaller.The coal body effective tress and the permeability curve nearly also has the same change tendency.Thus we can draws the conclusion that the transfusion of the gas in the coal bed generally has the slippage effect.
基金These research results are a part of the National Key Foundation Research Development an d Plan ning Program of China(No.2002CB2ll702)National Natural Science Foundation of China(No.40272069)
文摘The coalbed methane (CBM) resources in North China amounts up to 60% of total resources in China. North China is the most important CBM accumulation area in China. The coal beds of the Upper Paleozoic Taiyuan and Shanxi formations have a stable distribution. The coal reservoir of target areas such as Jincheng, Yanquan-Shouyang, Hancheng, Liulin, etc. have good CBM-bearing characteristics, high permeability and appropriate reservoir pressure, and these areas are the preferred target areas of CBM developing in China. The coal reservoirs of Wupu, Sanjiaobei, Lu'an, Xinmi, Anyang-Hebi, Jiaozuo, Xinggong and Huainan also have as good CBM-bearing characteristics, but the physical properties of coal reservoirs vary observably. So, further work should be taken to search for districts with high pressure, high permeability and good CBM-bearing characteristics. Crustal stresses have severe influence on the permeability of coal reservoirs in North China. From west to east, the crustal stress gradient increases, while the coal reservoirs permeability decreases.
基金granted by the National Science and Technology Major Project of China (grant No. 2017ZX05064003)the National Natural Science Foundation of China (grant No. 41772159/D0208)the Fundamental Research Funds for the Central Universities (grant No. 2652018233)
文摘Methanogens and sulfate reducing bacteria were detected by the 16SrRNA sequencing of coalbed methane(CBM)co-produced water in the south of the Qinshui Basin,which is indicative of the presence of secondary biological gas in the south of this basin,in contradiction to the previous understanding of thermogenic gas.This work systematically collected water samples from the CBM wells in the Shizhuangnan Block and analyzed the microbial geochemical characteristics from the aspects of water ions,hydrogen and oxygen isotopes,dissolved inorganic carbon and microbial diversity.It is shown that the Shizhuangnan Block has a nearly SN-trending monoclinic structure,and the elevation of coal seam decreases gradually from the east to west.Because of the water blocking effect of Sitou fault in the west,the precipitation flowed from the east to west,and gradually transited to stagnant flow area.The concentration variation of some ions such as Na^+,K^+,Ca2^+,Mg2^+,Cl^-,HCO3^-and total dissolved solids(TDS)suggest the variation of redox condition in the coal reservoir water.The 16SrDNA sequencing analysis of the collected water samples detected the presence of methanogens and sulfate reduction bacteria.The presence of methane production zone and sulfate methane transition zone(SMTZ)was identified.The effect of methanogens in the methane production zone leads to an increase in the methane concentration,resulting in a high gas content in the study area.In the SMTZ,most methane is consumed by anaerobic oxidation due to high sulfate concentrations.
文摘Inspired by successful development of shale gas in USA and influenced by hydrocarbon resources shortage currently, China has strengthened shale gas research and accelerated its exploration process. In order to enrich coalbed methane (CBM) and shale gas geological theory and promote their development process, this paper compared shale gas with CBM in accumulation, distribution, reservoir and production. It expatiated on the background and significance of the combined research and development, and analyzed the geological foundation and future prospects. Our investigation demonstrated that there are many sets of coal-bearing strata in Shanxi formation of Permian system in Ordos in North China, Longtan formation of Upper Permian and Xujiahe formation of Upper Triassic in Southern Yangtze region, Xishanyao formation of Middle Jurassic in Turpan-Hami Basin and Junggar Basin in Northwest China, and Shahezi formation of Cretaceous in Songliao Basin in northeast China. In these regions, shales which are interbeded with coal seams have the characters of big thickness, continuous distribution, high content of organic matter, good parent material and high maturity, accord with the basic geological conditions to format shale gas and CBM reservoir and composite gas reservoir, thus form appropriate regions and layers to carry out joint research and exploration with good prospects for development.
基金financially supported by the National Natural Science Foundation of China(grants No.41402134 and 41272181)
文摘Objective The production of coal fines is very common in the development of coalbed methane(CBM)in the eastern margin of the Ordos Basin,China.A large amount of produced coal fines seriously affect the productivity of CBM wells(Wei Yingchun et al.,2013).Therefore,the production problems of CBM wells caused by coal fines have attracted extensive attention.
基金supported by the Youth Scientific and Technological Innovation Team Foundation of Southwest Petroleum University(2019CXTD09)the Program of Introducing Talents of Discipline to Chinese Universities(111 Plan)(D18016).
文摘Coalbed methane(CBM)drilling and completion technologies(DCTs)are signifcant basis for achieving efcient CBM exploration and exploitation.Characteristics of CBM reservoirs vary in diferent regions around the world,thereby,it is crucial to develop,select and apply the optimum DCTs for each diferent CBM reservoir.This paper frstly reviews the development history of CBM DCTs throughout worldwide and clarifes its overall development tendency.Secondly,diferent well types and its characteristics of CBM exploitation are summarized,and main application scopes of these well types are also discussed.Then,the key technologies of CBM drilling(directional drilling tools,measurement while drilling,geo-steering drilling,magnetic guidance drilling,underbalanced drilling and drilling fuids),and the key technologies of CBM completion(open-hole,cavity and under-ream completion,cased-hole completion,screen pipe completion and horizontal well completion)are summarized and analyzed,it is found that safe,economic and efcient development of CBM is inseparable from the support of advanced technologies.Finally,based on the current status of CBM development,the achievements,existing challenges and future prospects are summarized and discussed from the perspective of CBM DCTs.
文摘Wellbore instability is a key problem restricting efficient production of coal-bed methane. In order to perform thorough and systematic research regarding coal-bed wellbore stability problems, a new discrete element model which fully considers the features of cleat coal-beds is established based on the Kirsch equation. With this model, the safe pipe tripping speed, drilling fluid density window and coal- bed collapse/fracture pressure are determined; in addition, the relationships between pipe tripping speed and pipe size, cleat size, etc. and wellbore stability are analyzed in the coal-bed drilling and pipe tripping processes. The case studies show the following results: the wellbore collapses (collapse pressure: 4.33 MPa) or fractures (fracture pressure: 12.7 MPa) in certain directions as a result of swab or surge pressure when the pipe tripping speed is higher than a certain value; the cleat face size has a great influence on wellbore stability, and if the drilling fluid pressure is too low, the wellbore is prone to collapse when the ratio of the face cleat size to butt cleat size is reduced; however, if the drilling fluid pressure is high enough, the butt cleat size has no influence on the wellbore fracture; the factors influencing coal-bed stability include the movement length, pipe size, borehole size.
基金Supported by the National Natural Science Foundation of China(41772155)the National Science and Technology Major Project of China(2016ZX05044-002)
文摘Based on long-term dynamic tracing of dissolved inorganic carbon(DIC)and stable carbon isotope(δ13CDIC)in produced water from 20 coalbed methane(CBM)wells in western Guizhou,the spatial-temporal dynamic variations ofδ13CDIC of the GP well group produced in multi-layer commingled manner were analyzed,and the relationship between the value ofδ13CDIC and CBM productivity was examined.The produced water samples of typical wells in the GP well group were amplified and sequenced using 16S rDNA,and a geological response model ofδ13CDIC in produced water from CBM wells with multi-coal seams was put forward.The research shows that:δ13CDIC in produced water from medium-rank coal seams commonly show positive anomalies,the produced water contains more than 15 species of methanogens,and Methanobacterium is the dominant genus.The dominant methanogens sequence numbers in the produced water are positively correlated withδ13CDIC,and the positive anomaly of v is caused by reduction of methanogens,and especially hydrogenotrophic methanogens.Vertical segmentation of sedimentary facies and lithology in stratum with multi-coal seams will result in permeability and water cut segmentation,which will lead to the segmentation ofδ13CDIC and archaea community in produced water,so in the strata with better permeability and high water cut,theδ13CDIC of the produced water is abnormally enriched,and the dominant archaea is mainly Methanobacterium.In the strata with weak permeability and low water cut,theδ13CDIC of the produced water is small,and the microbial action is weak.The shallow layer close to the coal seam outcrop is likely to be affected by meteoric precipitation,so theδ13CDIC of the produced water is smaller.The geological response model ofδ13CDIC in produced water from multi-coal seams CBM wells in the medium-rank coal reveals the geological mechanism and microbial action mechanism of theδ13CDIC difference in the produced water from the multi-coal seams CBM wells.It also provides effective geochemical evidence for the superimposed fluid system controlled by sedimentary facies,and can also be used for the contribution analysis of the produced gas and water by the multi-layer CBM wells.
文摘Coal during its carbonization process produces a gas, which, mainly formed by methane, can be used. The use of CBM (Coal bed methane) as an energetic resource is not much known in Spain. This work is the first step to enhance the development of this resource in Castilla y León Guardo-Barruelo basin. A review of the state of the art is introduced, taking into account all the factors that can influence in the development of a CBM project. Then CBM resources have been quantified for Guardo-Barruelo basin accurately for every coal bed. After that, technical feasibility has been used to evaluate total amount of gas that can be recovered.
基金supported by the National Natural Science Foundation of China (Grant No 40572124)
文摘Coalbed methane (CBM) is a kind of burgeoning and enormously potential clean energy resource, and the temperature of the thermogenic CBM generation is close to that of the partial annealing zone (PAZ) of apatite fission tracks (AFT). In this study the thermo-tectonic history of the Huainan Coalfield and the potential CBM resource were studied and discussed by using the AFT method. The AFT data indicate that the apparent ages of AFT vary from 45.5 to 199.1 Ma. They are younger than the ages of their host strata (255–1800 Ma) except one sample, and the single-grain ages of AFT can be classified as a single age group for each sample. In combination with the geological setting, modeling results of the AFT ages, average lengths, and the thermal history based on the AFT single-grain ages and length distributions, some preliminary conclusions can be drawn as follows: (1) at least three thermo-tectonic events (in the periods of ~240, 140 and 80 Ma, respectively) have occurred in the study area since the Late Paleozoic. The occurrence of both the first (during 240–220 Ma) and second (during 160–120 Ma) thermo-tectonic events is possibly responsible for the establishment of the patterns of gas generation and reservoir formation. The second thermo-tectonic event also led to slight accumulation of hydrocarbons and generation of thermogenic gas; (2) the AFT ages of most coal-bearing strata lie between 50 and 70 Ma. They should represent the cooling ages and the ages of inferred uplift and denudation, as well as the possible CBM release history. Therefore, the maximum burial depth of coal-bearing strata and the denudation thickness of the overlying strata are over 3000 and 2000 m in the Upper Cretaceous and Paleogene series, respectively; and (3) subsequently, a spot of secondary biogenic and scarcely thermogenic gas generation occurred due to negligible sedimentation during the Neogene and Quaternary periods. Thus, it can be presumed that subsequent tectonism would destroy the CBM reservoir after its formation in the Huainan Coalfield, especially in its structural development region. These AFT data may be helpful for a better understanding of the thermo-tectonic history of the Huainan Coalfield, as well as of CBM generation, storage and release in the Huainan Coalfield.
基金supported by National Key R&D Program of China(No.2022YFA1503300)National Natural Science Foundation of China(Nos.21978138,22035003)+1 种基金the Fundamental Research Funds for the Central Universities(Nankai University)the Haihe Laboratory of Sustainable Chemical Transformations(No.YYJC202101).
文摘The purification of low-grade coal-bed methane is extremely important,but challenging,due to the very similar physical properties of CH_(4)and N2.Herein,we proposed a dual polarization strategy by employing triazine and polyfluoride sites to construct polar pores in COF materials,achieving the efficient separa-tion of CH_(4)from N2.As expected,the dual polarized F-CTF-1 and F-CTF-2 exhibit higher CH_(4)adsorption capacity and CH_(4)/N_(2)selectivity than CTF-1 and CTF-2,respectively.Especially,the CH4 uptake capacity and CH_(4)/N_(2)selectivity of F-CTF-2 is 1.76 and 1.42 times than that of CTF-2.This work not only developed promising COF materials for CH4/N_(2)separation,but also provided important guidance for the separation of other adsorbates with similar properties.
文摘In this study, we provided more theoretical method for estimation of dissolution amount and applied this method to enhanced coalbed methane recovery (ECBMR) simulator. Dissolution amount was measured by method of differential heat of adsorption. Akabira coal, a Japanese bituminous coal, was used for the experiment. The results showed that CO2 was stored in coal by both adsorption and dissolution. Using this result the methane production was calculated by ECBMR-simulator, enhanced coalbed methane recovery simulator, the University of Tokyo (ECOMERS-UT). Total stored CO2 was separated into adsorption component and dissolution component. Only the former component contributes to the competitive adsorption. Coalbed methane (CBM) production simulation considering the dissolution showed later and smaller peak production and prolonged methane production before the breakthrough than the conventional competitive adsorption.
基金Supported by the National Science and Technology Special Project of China(2008ZX05038-004)Shandong Province Science and Technology Development Project(2009GG10007008)
文摘The mathematical model of dynamic loads was developed based on an analysis of the polished rod load of beam pumps, and the variation of the dynamic loads and the computation of the minimum and maximum limits during a complete pumping cycle were given out by solving the model.Field examples verify that it is necessary to take into account the inertial and vibration loads while calculating polished rod loads.During the prophase of the pumping production, the dynamic to polished rod load ratio is relatively large.Then the ratio decreases rapidly and becomes small after entering stable production.Moreover, the total deformation of rod and tubing in CBM wells is much smaller than that in oil fields, and the deformation caused by the dynamic loads is also relatively small.The result of this work is the calculation of the dynamic loads.The application of this calculation for the sucker rod pumping system in CBM wells can give the desired accuracy of polished rod load and the dynamometer cards, which provides a reasonable basis for the design and selection of beam pumps.
文摘In the process of enriching CH4 from coal-bed methane,the separation of CH_(4)/N_(2)is very difficult to accomplish by an adsorption process due to the similar physico-chemical properties of the two molecules.A series of coconut-shell-based granular activated carbons(GACs)with different pore structures were prepared,which were characterized by different methods.The influence of the pore structure on the separation properties was investigated in detail.The results show that one of the carbons prepared(GAC-3)has high CH4 equilibrium adsorption capacity(3.28 mol·kg–1)at 298 K and equilibrium separation coefficient(3.95).The CH_(4)/N_(2)separation on the GACs is controlled by adsorption equilibrium as compared with the dynamic effect.Taking the specific surface area,for example,the common characterization index of the pore structure is not enough to judge the separation performance of the GACs.However,the microstructure of carbon materials plays a decisive role for CH_(4)/N_(2)separation.According to the pore-structure analysis,the effective pore size for the CH_(4)/N_(2)separation is from 0.4 to 0.9 nm,with the optimum effect occurring in the range of 0.6–0.7 nm,followed by the range of 0.7~0.9 nm.Also,a four-bed vacuum pressure swing adsorption process was adopted to evaluate the performance of GACs for the separation of CH4 from nitrogen.