The umbrella term"neurodege ne rative disorders"(NDDs) refers to several conditions characterized by a progressive loss of structure and function of cells belonging to the nervous system.Such diseases affect...The umbrella term"neurodege ne rative disorders"(NDDs) refers to several conditions characterized by a progressive loss of structure and function of cells belonging to the nervous system.Such diseases affect more than 50million people worldwide.Neurodegenerative disorders are characterized by sundry factors and pathophysiological mechanisms that a re challenging to be fully profiled.Many of these rely on cell signaling pathways to preserve homeostasis,involving second messengers such as cyclic adenosine monophosphate (cAMP)and cyclic guanosine 3',5'-monophosphate(cGMP).Their ability to control the duration and amplitude of the signaling cascade is given by the presence of several common and uncommon effectors.Protein kinases A and G (PKA and PKG),phosphodiesterases (PDEs),and scaffold proteins are among them.展开更多
Effective monitoring of the structural health of combined coal-rock under complex geological conditions by pressure stimulated currents(PSCs)has great potential for the understanding of dynamic disasters in undergroun...Effective monitoring of the structural health of combined coal-rock under complex geological conditions by pressure stimulated currents(PSCs)has great potential for the understanding of dynamic disasters in underground engineering.To reveal the effect of this way,the uniaxial compression experiments with PSC monitoring were conducted on three types of coal-rock combination samples with different strength combinations.The mechanism explanation of PSCs are investigated by resistivity test,atomic force microscopy(AFM)and computed tomography(CT)methods,and a PSC flow model based on progressive failure process is proposed.The influence of strength combinations on PSCs in the progressive failure process are emphasized.The results show the PSC responses between rock part,coal part and the two components are different,which are affected by multi-scale fracture characteristics and electrical properties.As the rock strength decreases,the progressive failure process changes obviously with the influence range of interface constraint effect decreasing,resulting in the different responses of PSC strength and direction in different parts to fracture behaviors.The PSC flow model is initially validated by the relationship between the accumulated charges of different parts.The results are expected to provide a new reference and method for mining design and roadway quality assessment.展开更多
In recent years,great breakthroughs have been made in the exploration and development of natural gas in deep coal-rock reservoirs in Junggar,Ordos and other basins in China.In view of the inconsistency between the ind...In recent years,great breakthroughs have been made in the exploration and development of natural gas in deep coal-rock reservoirs in Junggar,Ordos and other basins in China.In view of the inconsistency between the industrial and academic circles on this new type of unconventional natural gas,this paper defines the concept of"coal-rock gas"on the basis of previous studies,and systematically analyzes its characteristics of occurrence state,transport and storage form,differential accumulation,and development law.Coal-rock gas,geologically unlike coalbed methane in the traditional sense,occurs in both free and adsorbed states,with free state in abundance.It is generated and stored in the same set of rocks through short distance migration,occasionally with the accumulation from other sources.Moreover,coal rock develops cleat fractures,and the free gas accumulates differentially.The coal-rock gas reservoirs deeper than 2000 m are high in pressure,temperature,gas content,gas saturation,and free-gas content.In terms of development,similar to shale gas and tight gas,coal-rock gas can be exploited by natural formation energy after the reservoirs connectivity is improved artificially,that is,the adsorbed gas is desorbed due to pressure drop after the high-potential free gas is recovered,so that the free gas and adsorbed gas are produced in succession for a long term without water drainage for pressure drop.According to buried depth,coal rank,pressure coefficient,reserves scale,reserves abundance and gas well production,the classification criteria and reserves/resources estimation method of coal-rock gas are presented.It is preliminarily estimated that the coal-rock gas in place deeper than 2000 m in China exceeds 30×10^(12)m^(3),indicating an important strategic resource for the country.The Ordos,Sichuan,Junggar and Bohai Bay basins are favorable areas for large-scale enrichment of coal-rock gas.The paper summarizes the technical and management challenges and points out the research directions,laying a foundation for the management,exploration,and development of coal-rock gas in China.展开更多
This ancient city has a history going back over 2,000 years.It has witnessed the fusion of multiple ethnic cultures including the Miao,Dong,and Han,and hosts a number of cultural heritage sites.THE old town of Zhenyua...This ancient city has a history going back over 2,000 years.It has witnessed the fusion of multiple ethnic cultures including the Miao,Dong,and Han,and hosts a number of cultural heritage sites.THE old town of Zhenyuan is located in Zhenyuan County,Qiandongnan Miao and Dong Autonomous Prefecture in southwest China’s Guizhou Province.Covering an area of just around three square kilometers,it sits on the banks of the Wuyang River and is surrounded by mountains.Zhenyuan has been a county for more than 2,281 years and was the prefectural capital during the Yuan(1271-1368)and Qing(1644-1911)dynasties.It is a multicultural region,with Miao,Dong,and other ethnic minorities making up nearly half of the population.展开更多
With the vigorous development of Internet of Things(IoT)technology,the demand for communication and data exchange between different types of IoT devices is increasing day by day.To solve the problems of diversity and ...With the vigorous development of Internet of Things(IoT)technology,the demand for communication and data exchange between different types of IoT devices is increasing day by day.To solve the problems of diversity and complexity of communication protocols between devices,this paper proposes a design scheme of a multi-connector IoT central gateway based on Raspberry Pi and Docker.Through the research and application of related technologies,by integrating multiple communication interfaces and utilizing containerization technology,an efficient,flexible,and scalable IoT central gateway has been realized,which can support the connection and data interaction of multiple communication protocols and provide strong support for the stable operation and development of the IoT system.展开更多
文摘The umbrella term"neurodege ne rative disorders"(NDDs) refers to several conditions characterized by a progressive loss of structure and function of cells belonging to the nervous system.Such diseases affect more than 50million people worldwide.Neurodegenerative disorders are characterized by sundry factors and pathophysiological mechanisms that a re challenging to be fully profiled.Many of these rely on cell signaling pathways to preserve homeostasis,involving second messengers such as cyclic adenosine monophosphate (cAMP)and cyclic guanosine 3',5'-monophosphate(cGMP).Their ability to control the duration and amplitude of the signaling cascade is given by the presence of several common and uncommon effectors.Protein kinases A and G (PKA and PKG),phosphodiesterases (PDEs),and scaffold proteins are among them.
基金supported by National Key R&D Program of China(No.2022YFC3004705)the National Natural Science Foundation of China(Nos.52074280,52227901 and 52204249)National Natural Science Foundation of China Youth Fund(No.52104230).
文摘Effective monitoring of the structural health of combined coal-rock under complex geological conditions by pressure stimulated currents(PSCs)has great potential for the understanding of dynamic disasters in underground engineering.To reveal the effect of this way,the uniaxial compression experiments with PSC monitoring were conducted on three types of coal-rock combination samples with different strength combinations.The mechanism explanation of PSCs are investigated by resistivity test,atomic force microscopy(AFM)and computed tomography(CT)methods,and a PSC flow model based on progressive failure process is proposed.The influence of strength combinations on PSCs in the progressive failure process are emphasized.The results show the PSC responses between rock part,coal part and the two components are different,which are affected by multi-scale fracture characteristics and electrical properties.As the rock strength decreases,the progressive failure process changes obviously with the influence range of interface constraint effect decreasing,resulting in the different responses of PSC strength and direction in different parts to fracture behaviors.The PSC flow model is initially validated by the relationship between the accumulated charges of different parts.The results are expected to provide a new reference and method for mining design and roadway quality assessment.
基金Supported by the Prospective and Basic Research Project of PetroChina(2021DJ23)。
文摘In recent years,great breakthroughs have been made in the exploration and development of natural gas in deep coal-rock reservoirs in Junggar,Ordos and other basins in China.In view of the inconsistency between the industrial and academic circles on this new type of unconventional natural gas,this paper defines the concept of"coal-rock gas"on the basis of previous studies,and systematically analyzes its characteristics of occurrence state,transport and storage form,differential accumulation,and development law.Coal-rock gas,geologically unlike coalbed methane in the traditional sense,occurs in both free and adsorbed states,with free state in abundance.It is generated and stored in the same set of rocks through short distance migration,occasionally with the accumulation from other sources.Moreover,coal rock develops cleat fractures,and the free gas accumulates differentially.The coal-rock gas reservoirs deeper than 2000 m are high in pressure,temperature,gas content,gas saturation,and free-gas content.In terms of development,similar to shale gas and tight gas,coal-rock gas can be exploited by natural formation energy after the reservoirs connectivity is improved artificially,that is,the adsorbed gas is desorbed due to pressure drop after the high-potential free gas is recovered,so that the free gas and adsorbed gas are produced in succession for a long term without water drainage for pressure drop.According to buried depth,coal rank,pressure coefficient,reserves scale,reserves abundance and gas well production,the classification criteria and reserves/resources estimation method of coal-rock gas are presented.It is preliminarily estimated that the coal-rock gas in place deeper than 2000 m in China exceeds 30×10^(12)m^(3),indicating an important strategic resource for the country.The Ordos,Sichuan,Junggar and Bohai Bay basins are favorable areas for large-scale enrichment of coal-rock gas.The paper summarizes the technical and management challenges and points out the research directions,laying a foundation for the management,exploration,and development of coal-rock gas in China.
文摘This ancient city has a history going back over 2,000 years.It has witnessed the fusion of multiple ethnic cultures including the Miao,Dong,and Han,and hosts a number of cultural heritage sites.THE old town of Zhenyuan is located in Zhenyuan County,Qiandongnan Miao and Dong Autonomous Prefecture in southwest China’s Guizhou Province.Covering an area of just around three square kilometers,it sits on the banks of the Wuyang River and is surrounded by mountains.Zhenyuan has been a county for more than 2,281 years and was the prefectural capital during the Yuan(1271-1368)and Qing(1644-1911)dynasties.It is a multicultural region,with Miao,Dong,and other ethnic minorities making up nearly half of the population.
文摘With the vigorous development of Internet of Things(IoT)technology,the demand for communication and data exchange between different types of IoT devices is increasing day by day.To solve the problems of diversity and complexity of communication protocols between devices,this paper proposes a design scheme of a multi-connector IoT central gateway based on Raspberry Pi and Docker.Through the research and application of related technologies,by integrating multiple communication interfaces and utilizing containerization technology,an efficient,flexible,and scalable IoT central gateway has been realized,which can support the connection and data interaction of multiple communication protocols and provide strong support for the stable operation and development of the IoT system.