Dry separation of iron mineral from low-grade coal-series kaolin in Hubei Province of China was investigated. The structure and chemical composition of the kaolin ore were determined by X-ray diffraction(XRD) and X-ra...Dry separation of iron mineral from low-grade coal-series kaolin in Hubei Province of China was investigated. The structure and chemical composition of the kaolin ore were determined by X-ray diffraction(XRD) and X-ray Fluorescence(XRF) analyses. The narrow particle size range classification, dry magnetic separation and calcination were carried out to evaluate the particle size distribution, and the relation between the content of iron and the whiteness. Experimental results revealed that the highest content of iron(3.70%) in kaolin ore was in the particle size range from 60 to 74 μm, and pyrite was the main occurrence of iron in the kaolin ore. Dry magnetic separation showed that the removal rate of iron in kaolin ore could be increased obviously after calcination, and the rate of iron removal was 60% in the particle size range from 60 to 74 μm. As pyrite can be transformed into hematite through calcination, thermodynamic studies and XRD analysis showed that the maximum content of hematite was obtained at 900 ℃, which would be more beneficial to magnetic separation.展开更多
In this paper, the main factors that influence on qualities of kaolin in the area are revealed by studying the properties of coal-series kaolin in Enshi, Hubei (P. R. China), technologies of ferrum and carbon eliminat...In this paper, the main factors that influence on qualities of kaolin in the area are revealed by studying the properties of coal-series kaolin in Enshi, Hubei (P. R. China), technologies of ferrum and carbon elimination for coal-series kaolin are investigated , and ways to fully uti-lize the resource are hopeful to be sought.展开更多
The influence of replacement level of calcined coal-series kaolin(CCK) on hydration of ordinary Portland cement(OPC) was studied by X-ray diffraction(XRD)/Rietveld method. X-ray diffraction/Rietveld method was used to...The influence of replacement level of calcined coal-series kaolin(CCK) on hydration of ordinary Portland cement(OPC) was studied by X-ray diffraction(XRD)/Rietveld method. X-ray diffraction/Rietveld method was used to quantify the crystalline phase composition of the hydrated samples. Additionally, the morphology of hydrated samples was observed by scanning electron microscopy(SEM). The results showed that, calcium hydroxide(CH), ettringite(AFt) and amorphous phase content in hydrated samples decreased as the replacement level of CCK increased, while AFm and str?tlingite increased, which was caused by the combination of dilute, physical and pozzolanic effects. The hydration of anhydrous cement phases was accelerated by physical effect but hindered by the retardation effect of CCK. The role of each effects was discussed in detail to analyze the mechanism of OPC hydration with CCK addition. The SEM images showed that the shortening of AFt at 1 day and the denser texture at 28 days was observed with CCK addition, which was caused by the physical and pozzolanic effects, respectively.展开更多
Cement-based materials are fundamental in the construction industry,and enhancing their properties is an ongoing challenge.The use of superabsorbent polymers(SAP)has gained significant attention as a possible way to i...Cement-based materials are fundamental in the construction industry,and enhancing their properties is an ongoing challenge.The use of superabsorbent polymers(SAP)has gained significant attention as a possible way to improve the performance of cement-based materials due to their unique water-absorption and retention properties.This study investigates the multifaceted impact of kaolin intercalation-modified superabsorbent polymers(K-SAP)on the properties of cement mortar.The results show that K-SAP significantly affects the cement mortar’s rheological behavior,with distinct phases of water absorption and release,leading to changes in workability over time.Furthermore,K-SAP alters the hydration kinetics,delaying the exothermic peak of hydration and subsequently modifying the heat release kinetics.Notably,K-SAP effectively maintains a higher internal relative humidity within the mortar,reducing the autogenous shrinkage behavior.Moreover,K-SAP can have a beneficial effect on pore structure and this can be ascribed to the internal curing effect of released water from K-SAP.展开更多
In the tropics, lowland rice cultivation is often confronted with the problem of iron toxicity. The solution proposed by research in general is the use of industrial silicon. However, the high cost of industrial silic...In the tropics, lowland rice cultivation is often confronted with the problem of iron toxicity. The solution proposed by research in general is the use of industrial silicon. However, the high cost of industrial silicon limits its adoption by farmers. A study was carried out in Zakogbeu;Center-West of Côte d’Ivoire, to assess the potential of kaolin to mitigate the effect of this soil constraint on the root of the rice plant. Five kaolin-based treatments were analyzed (T<sub>0 </sub>= 0 kg kaolin ha<sup>−</sup><sup>1</sup>, T<sub>1</sub> = 366 kg kaolin ha<sup>−</sup><sup>1</sup>, T<sub>2</sub> = 736 kg kaolin ha<sup>−</sup><sup>1</sup>, T<sub>3</sub> = 1097 kg kaolin ha<sup>−</sup><sup>1</sup> and T<sub>4</sub> = 1465 kg kaolin ha<sup>−</sup><sup>1</sup> are 0, 200, 400, 600 and 800 kg SiO<sub>2</sub> ha<sup>−</sup><sup>1</sup>) in a device in complete random blocks, with 5 repetitions. The results obtained show that kaolin supply increases the length of the root tissue as well as the number of branching of the root of the rice plant. Root tissue increased from 10 cm with T<sub>0</sub> treatment to more than 15 cm with treatment T<sub>4</sub>. The microscopic observation of the roots shows that in the treatment T<sub>0</sub>, the roots present only primary ramifications and the tertiary and quaternary ramifications are observed with the treatments T<sub>3</sub> and T<sub>4</sub>. The contribution of kaolin is an alternative to inhibit the effect of iron toxicity on the rice plant root development in iron toxicity condition.展开更多
In our modern world, where conserving energy is highly valued, thermal insulation panels play a crucial role in reducing heat transfer between two spaces, surfaces, or materials. They are used to enhance the energy ef...In our modern world, where conserving energy is highly valued, thermal insulation panels play a crucial role in reducing heat transfer between two spaces, surfaces, or materials. They are used to enhance the energy efficiency of various industrial applications by minimizing heat loss and temperature control. These panels function as silent protectors, aiding in reducing energy consumption and making things more sustainable and better for the environment. This is where composite materials come in;they are known for their lightweight nature, high strength-to-weight ratio, and excellent thermal insulation properties and have gained significant attention. Researchers are actively engaged in various studies aimed at enhancing these materials further. This research project focuses on the development of kaolin and glass fiber-reinforced composites for thermally insulating panels, to which natural strengthening materials like corn husk and bamboo fibers are added. The aim is to create cost-effective and efficient composite materials for thermal insulation applications by incorporating these components with a binder consisting of potassium silicate, hydroxide, and distilled water. This project involves conducting compression tests, bending tests, impact tests, thermal conductivity measurements, and microscopic analysis to evaluate the mechanical and thermal properties of the developed composites. The profound impact of these engineered composites on thermal insulation panels stands to revolutionize energy conservation efforts, offering a potent avenue to minimize heat loss and enhance overall energy efficiency across an array of industrial sectors.展开更多
基金Funded by the Academician Workstation of Yichang Hui Long Science and Technology Co.Ltd.Association of Science and Technology of Hubei Province(No.[2013]104-22)
文摘Dry separation of iron mineral from low-grade coal-series kaolin in Hubei Province of China was investigated. The structure and chemical composition of the kaolin ore were determined by X-ray diffraction(XRD) and X-ray Fluorescence(XRF) analyses. The narrow particle size range classification, dry magnetic separation and calcination were carried out to evaluate the particle size distribution, and the relation between the content of iron and the whiteness. Experimental results revealed that the highest content of iron(3.70%) in kaolin ore was in the particle size range from 60 to 74 μm, and pyrite was the main occurrence of iron in the kaolin ore. Dry magnetic separation showed that the removal rate of iron in kaolin ore could be increased obviously after calcination, and the rate of iron removal was 60% in the particle size range from 60 to 74 μm. As pyrite can be transformed into hematite through calcination, thermodynamic studies and XRD analysis showed that the maximum content of hematite was obtained at 900 ℃, which would be more beneficial to magnetic separation.
文摘In this paper, the main factors that influence on qualities of kaolin in the area are revealed by studying the properties of coal-series kaolin in Enshi, Hubei (P. R. China), technologies of ferrum and carbon elimination for coal-series kaolin are investigated , and ways to fully uti-lize the resource are hopeful to be sought.
基金Funded by the Academician Workstation of Yichang Huilong Science and Technology Co.,Ltd.Association of Science and Technology of Hubei Province(No.2013]104-22)
文摘The influence of replacement level of calcined coal-series kaolin(CCK) on hydration of ordinary Portland cement(OPC) was studied by X-ray diffraction(XRD)/Rietveld method. X-ray diffraction/Rietveld method was used to quantify the crystalline phase composition of the hydrated samples. Additionally, the morphology of hydrated samples was observed by scanning electron microscopy(SEM). The results showed that, calcium hydroxide(CH), ettringite(AFt) and amorphous phase content in hydrated samples decreased as the replacement level of CCK increased, while AFm and str?tlingite increased, which was caused by the combination of dilute, physical and pozzolanic effects. The hydration of anhydrous cement phases was accelerated by physical effect but hindered by the retardation effect of CCK. The role of each effects was discussed in detail to analyze the mechanism of OPC hydration with CCK addition. The SEM images showed that the shortening of AFt at 1 day and the denser texture at 28 days was observed with CCK addition, which was caused by the physical and pozzolanic effects, respectively.
基金the National Natural Science Foundation of China(52172017 and 51902095).
文摘Cement-based materials are fundamental in the construction industry,and enhancing their properties is an ongoing challenge.The use of superabsorbent polymers(SAP)has gained significant attention as a possible way to improve the performance of cement-based materials due to their unique water-absorption and retention properties.This study investigates the multifaceted impact of kaolin intercalation-modified superabsorbent polymers(K-SAP)on the properties of cement mortar.The results show that K-SAP significantly affects the cement mortar’s rheological behavior,with distinct phases of water absorption and release,leading to changes in workability over time.Furthermore,K-SAP alters the hydration kinetics,delaying the exothermic peak of hydration and subsequently modifying the heat release kinetics.Notably,K-SAP effectively maintains a higher internal relative humidity within the mortar,reducing the autogenous shrinkage behavior.Moreover,K-SAP can have a beneficial effect on pore structure and this can be ascribed to the internal curing effect of released water from K-SAP.
文摘In the tropics, lowland rice cultivation is often confronted with the problem of iron toxicity. The solution proposed by research in general is the use of industrial silicon. However, the high cost of industrial silicon limits its adoption by farmers. A study was carried out in Zakogbeu;Center-West of Côte d’Ivoire, to assess the potential of kaolin to mitigate the effect of this soil constraint on the root of the rice plant. Five kaolin-based treatments were analyzed (T<sub>0 </sub>= 0 kg kaolin ha<sup>−</sup><sup>1</sup>, T<sub>1</sub> = 366 kg kaolin ha<sup>−</sup><sup>1</sup>, T<sub>2</sub> = 736 kg kaolin ha<sup>−</sup><sup>1</sup>, T<sub>3</sub> = 1097 kg kaolin ha<sup>−</sup><sup>1</sup> and T<sub>4</sub> = 1465 kg kaolin ha<sup>−</sup><sup>1</sup> are 0, 200, 400, 600 and 800 kg SiO<sub>2</sub> ha<sup>−</sup><sup>1</sup>) in a device in complete random blocks, with 5 repetitions. The results obtained show that kaolin supply increases the length of the root tissue as well as the number of branching of the root of the rice plant. Root tissue increased from 10 cm with T<sub>0</sub> treatment to more than 15 cm with treatment T<sub>4</sub>. The microscopic observation of the roots shows that in the treatment T<sub>0</sub>, the roots present only primary ramifications and the tertiary and quaternary ramifications are observed with the treatments T<sub>3</sub> and T<sub>4</sub>. The contribution of kaolin is an alternative to inhibit the effect of iron toxicity on the rice plant root development in iron toxicity condition.
文摘In our modern world, where conserving energy is highly valued, thermal insulation panels play a crucial role in reducing heat transfer between two spaces, surfaces, or materials. They are used to enhance the energy efficiency of various industrial applications by minimizing heat loss and temperature control. These panels function as silent protectors, aiding in reducing energy consumption and making things more sustainable and better for the environment. This is where composite materials come in;they are known for their lightweight nature, high strength-to-weight ratio, and excellent thermal insulation properties and have gained significant attention. Researchers are actively engaged in various studies aimed at enhancing these materials further. This research project focuses on the development of kaolin and glass fiber-reinforced composites for thermally insulating panels, to which natural strengthening materials like corn husk and bamboo fibers are added. The aim is to create cost-effective and efficient composite materials for thermal insulation applications by incorporating these components with a binder consisting of potassium silicate, hydroxide, and distilled water. This project involves conducting compression tests, bending tests, impact tests, thermal conductivity measurements, and microscopic analysis to evaluate the mechanical and thermal properties of the developed composites. The profound impact of these engineered composites on thermal insulation panels stands to revolutionize energy conservation efforts, offering a potent avenue to minimize heat loss and enhance overall energy efficiency across an array of industrial sectors.