Effective recognition of a coalfield fire area improves fire-fighting efficiency and helps avoid potential geological hazards. Coalfield fire areas are hard to detect accurately using general geophysical methods. This...Effective recognition of a coalfield fire area improves fire-fighting efficiency and helps avoid potential geological hazards. Coalfield fire areas are hard to detect accurately using general geophysical methods. This paper describes simulations of shallow, buried coalfield fires based on real geological conditions. Recognizing the coalfield fire by Rayleigh wave is proposed. Four representative geological models are constructed, namely; the non-burning model, the pseudo-burning model, the real-burning model, and the hidden-burning model. Numerical simulation using these models shows many markedly different characteristics between them in terms of Rayleigh wave dispersion and Eigen displacement. These characteristics, as well as the shear wave velocity obtained by inverting the fundamental dispersion, make it possible to distinguish the type of the coalfield fire area and indentify the real and serious coalfield fire area. The results are very helpful for future application of Rayleigh waves for the detection of coalfield fire area.展开更多
There were differences between real boundary and blast hole controlling boundary of irregular mined-out area in underground metal mines. There were errors in numerical analysis of stability for goaf, if it was analyze...There were differences between real boundary and blast hole controlling boundary of irregular mined-out area in underground metal mines. There were errors in numerical analysis of stability for goaf, if it was analyzed as regular 3D mined-out area and the influence of coupling stress-seepage-disturbance was not considered adequately. Taking a lead zinc mine as the background, the model was built by the coupling of Surpac and Midas-Gts based on the goaf model precisely measured by CMS.According to seepage stress fundamental equations based on the equivalent continuum mechanical and the theory about equivalent load of dynamic disturbance in deep-hole blasting, the stability of mined-out area under multi-field coupling of stress-seepage-dynamic disturbance was numerically analyzed. The results show that it is more consistent between the numerical analysis model based on the real model of irregular 3D shape goaf and the real situation, which could faithfully reappear the change rule of stress–strain about the surrounding rock under synthetic action of blasting dynamic loading and the seepage pressure. The mined-out area multi-field coupling formed by blasting excavation is stable. Based on combination of the advantages of the CMS,Surpac and Midas-Gts, and fully consideration of the effects of multi-field coupling, the accurate and effective way could be provided for numerical analysis of stability for mined-out area.展开更多
Dynamic analysis steps and general flow of fast lagrangian analysis of continua in 3 dimensions(FLAC3D) were discussed. Numerical simulation for influence of excavation and blasting vibration on stability of mined-out...Dynamic analysis steps and general flow of fast lagrangian analysis of continua in 3 dimensions(FLAC3D) were discussed. Numerical simulation for influence of excavation and blasting vibration on stability of mined-out area was carried out with FLAC3D. The whole analytical process was divided into two steps, including the static analysis and the dynamic analysis which were used to simulate the influence of excavation process and blasting vibration respectively. The results show that the shape of right upper boundary is extremely irregular after excavation, and stress concentration occurs at many places and higher tensile stress appears. The maximum tensile stress is higher than the tensile strength of rock mass, and surrounding rock of right roof will be damaged with tension fracture. The maximum displacement of surrounding rock is 4.75 mm after excavation. However, the maximum displacement increases to 5.47 mm after the blasting dynamic load is applied. And the covering area of plastic zones expands obviously, especially at the foot of right upper slope. The analytical results are in basic accordance with the observed results on the whole. Damage and disturbance on surrounding rock to some degree are caused by excavation, while blasting dynamic load increases the possibility of occurrence of dynamic instability and destruction further. So the effective supporting and vibration reducing measures should be taken during mining.展开更多
To identify the instability on large scale underground mined-out area in the metal mine effectively,the parameters of radial basis function were determined through clustering method and the improved fuzzy radial basis...To identify the instability on large scale underground mined-out area in the metal mine effectively,the parameters of radial basis function were determined through clustering method and the improved fuzzy radial basis function neural network(FRBFNN)model of instability identification model about large scale underground mined-out area in the metal mine was built.The improved FRBFNN model was trained and tested.The results show that the improved FRBFNN model has high training accuracy and generalization ability.Parameters such as pillar area ratio,filling level and the value of rock quality designation have strong influence on instability of large scale underground mined-out area.Correctness of analysis about the improved FRBFNN model was proved by the practical application results about instability discrimination of surrounding rock in large-scale underground mined-out area of a metal mine in south China.展开更多
The regular pattern of temperature change in a coalfield fire area while the fire is being extinguished was studied. To determine the extinguishing effect, a series of linear, logarithmic, polynomial or exponential ma...The regular pattern of temperature change in a coalfield fire area while the fire is being extinguished was studied. To determine the extinguishing effect, a series of linear, logarithmic, polynomial or exponential mathematical regression models were constructed using the observed temperature data from the Xinjiang coalfield fire extinguishing project. The quadratic polynomial mathematical model had the best fit. A large coal fire oven was also used to simulate the coal fire extinguishing process. The same mathematical regression experiments were carried out on that observed data. The results verified that the quadratic polynomial mathematical model had the best fit. Therefore, a quadratic polynomial mathematical model is proposed to accurately model the temperature-time relationship in a coalfield fire area. An application to coalfield fire suppression shows that the deduced mathe-matical model can be used to predict the temperature conditions and to determine the effect of fire extinguishing, thereby helping to speed up the fire suppression process in the coalfield fire area.展开更多
The engineering and geological characteristics of a steep slope consisting of coal gangue, rock and soil medium in Huating coal mine have been comprehensively investigated. Owing to humid weather, heavy rainfall, vege...The engineering and geological characteristics of a steep slope consisting of coal gangue, rock and soil medium in Huating coal mine have been comprehensively investigated. Owing to humid weather, heavy rainfall, vegetation and porous characteristics of the soil and rock mass, the steep slope will be destabilized and induce mud-rock flow or derive hazard easily. Firstly, based on the classical slope reinforcement theory, some regularity between the shear and displacement in the destabilized zone of the slope with or without root strength contribution is presented. Then, based on the experimental and statistical analysis of root strength, hydrological characteristics and stability status, etc., some possible biotechnical techniques for reinforcement of the steep slope have been suggested. These methods are important for quantitative analysis of destabilization of the slope and design of the biotechnical reinforcement.展开更多
The surface subsidence is a common environmental hazard in mined-out area. Based on careful analysis of the regularity of surface subsidence in mined-out area, we proposed a new time function based on Harris curve mod...The surface subsidence is a common environmental hazard in mined-out area. Based on careful analysis of the regularity of surface subsidence in mined-out area, we proposed a new time function based on Harris curve model in consideration of the shortage of current surface subsidence time functions. By analyzing the characteristics of the new time function, we found that it could meet the dynamic process, the velocity change process and the acceleration change process during surface subsidence. Then its rationality had been verified through project cases. The results show that the proposed time function model can give a good reflection of the regularity of surface subsidence in mined-out area and can accurately predict surface subsidence. And the prediction data of the model are a little greater than measured data on condition of proper measured data quantity, which is safety in the engineering. This model provides a new method for the analysis of surface subsidence in mined-out area and reference for future prediction, and it is valuable to engineering application.展开更多
3D geological modeling is an inevitable choice for coal exploration to adapt to the transformation of coal mining for green, fine, transparent and Intelligent mining. In the traditional Coalfield exploration geologica...3D geological modeling is an inevitable choice for coal exploration to adapt to the transformation of coal mining for green, fine, transparent and Intelligent mining. In the traditional Coalfield exploration geological reports, the spatial expression form for the coal seams and their surrounding rocks are 2D maps. These 2D maps are excellent data sources for constructing 3D geological models of coal field exploration areas. How to construct 3D models from these 2D maps has been studying in coal exploration industry for a long time, and still no breakthrough has been achieved so far. This paper discusses the principle, method and software design idea of constructing 3D geological model of an exploration area with 2D maps made by AutoCAD/MapGIS. At first, the paper analyzes 3D geological surface expression mode in 3D geological modeling software. It is pointed out that although contour method has unique advantages in coal field exploration, TIN (Triangular Irregular Network) is still the standard configuration of 3D modeling software for coal field. Then, the paper discusses the method of 2D line features obtaining elevation and upgrading 2D curve to 3D curve. Next, the method of semi-automatic partition is introduced to build the boundary ring of the surface patch, that is, the user clicks and selects the line feature to build the outer boundary ring of the surface patch. Then, Auto-process method for fault line inside of the outer boundary ring is discussed, it including construction of fault ring, determining fault ring being normal fault ring or reverse fault ring and an algorithm of dealing with normal fault ring. An algorithm of dealing with reverse fault ring is discussed detailly, the method of expanding reverse fault ring and dividing the duplicate area in reverse fault into two portions is introduced. The paper also discusses the method of extraction ridge line/valley line, the construction of fault plane, the construction of stratum and coal body. The above ideas and methods have been initially implemented in the “3D modeling platform for coal field exploration” software, and applied to the 3D modeling practice of data from several coal field exploration areas in Ningxia, Shanxi, Qinghai, etc.展开更多
为揭示半干旱草原露天矿区生态环境质量状况,分离矿区人类活动生态累积效应并识别其演变态势,在厘清矿区生态累积效应概念的基础上,构建适用于半干旱草原的露天矿区生态环境质量评估指数(Surface Mining Areas Eco-environmental Evalua...为揭示半干旱草原露天矿区生态环境质量状况,分离矿区人类活动生态累积效应并识别其演变态势,在厘清矿区生态累积效应概念的基础上,构建适用于半干旱草原的露天矿区生态环境质量评估指数(Surface Mining Areas Eco-environmental Evaluation Index,SMAEEI)以及矿区生态累积效应定量评估模型。选取内蒙古胜利矿区为研究区,量化分析1986—2020年区域生态环境质量和生态累积效应的时空分布规律,以及主要人类活动的生态累积效应差异。结果表明:①SMAEEI适用于半干旱草原露天矿区,能客观呈现各地类生态环境质量高低顺序。35 a间研究区生态环境质量呈极显著下降趋势,且其空间差异显著减弱。露天矿场、城镇扩张区、锡林河湿地及北侧草地生态环境质量出现极显著、显著的退化趋势。②半干旱草原露天矿区生态累积效应定量评估模型能剔除气候因素对生态系统的耦合影响,分离并量化人类活动对矿区生态系统的累积效应,揭示累积的方向、程度和空间范围。35 a间研究区生态服务价值累积量(Change of Ecosystem Service Value Cumulant,COESVC)共减少1186157.03万元,出现负向生态累积效应,生态系统服务功能下降。高度、中度负向累积区集中在湿地和草地退化区、城镇区、露天矿场。③露天开采、城镇建设造成的单位面积负向生态累积效应最明显,前者在单位时间内带来的负向累积变化最剧烈,后者负向累积效应的局部影响程度和偏离度最大;放牧活动引起的负向生态累积效应影响范围最广、总量最大,但局部影响程度最小,生态系统服务功能较其余人类活动更稳定。研究成果可将矿区人类活动引起的生态环境实物量变动转化为价值量描述,为采用货币形式测算矿区生产生活行为的环境损害成本提供可行方法。展开更多
基金funded by the National Key Project (No.2011ZX05035)the State Key Basic Research Program of China(No. 2009CB219603)the Project of Scientific Innovation Research of College Graduate in Jiangsu Province (No. CXLX11-0334).
文摘Effective recognition of a coalfield fire area improves fire-fighting efficiency and helps avoid potential geological hazards. Coalfield fire areas are hard to detect accurately using general geophysical methods. This paper describes simulations of shallow, buried coalfield fires based on real geological conditions. Recognizing the coalfield fire by Rayleigh wave is proposed. Four representative geological models are constructed, namely; the non-burning model, the pseudo-burning model, the real-burning model, and the hidden-burning model. Numerical simulation using these models shows many markedly different characteristics between them in terms of Rayleigh wave dispersion and Eigen displacement. These characteristics, as well as the shear wave velocity obtained by inverting the fundamental dispersion, make it possible to distinguish the type of the coalfield fire area and indentify the real and serious coalfield fire area. The results are very helpful for future application of Rayleigh waves for the detection of coalfield fire area.
基金Project(2012BAK09B02-05)supported by the National"Twelfth Five"Science and Technology Support Program,ChinaProject(51274250)supported by the National Natural Science Foundation of China+2 种基金Project(2013zzts057)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(11KF02)supported by the Research Fund of the State Key Laboratory of Coal Resources and Mine safety,CUMT,ChinaProject(2012M511417)supported by China Postdoctoral Science Foundation
文摘There were differences between real boundary and blast hole controlling boundary of irregular mined-out area in underground metal mines. There were errors in numerical analysis of stability for goaf, if it was analyzed as regular 3D mined-out area and the influence of coupling stress-seepage-disturbance was not considered adequately. Taking a lead zinc mine as the background, the model was built by the coupling of Surpac and Midas-Gts based on the goaf model precisely measured by CMS.According to seepage stress fundamental equations based on the equivalent continuum mechanical and the theory about equivalent load of dynamic disturbance in deep-hole blasting, the stability of mined-out area under multi-field coupling of stress-seepage-dynamic disturbance was numerically analyzed. The results show that it is more consistent between the numerical analysis model based on the real model of irregular 3D shape goaf and the real situation, which could faithfully reappear the change rule of stress–strain about the surrounding rock under synthetic action of blasting dynamic loading and the seepage pressure. The mined-out area multi-field coupling formed by blasting excavation is stable. Based on combination of the advantages of the CMS,Surpac and Midas-Gts, and fully consideration of the effects of multi-field coupling, the accurate and effective way could be provided for numerical analysis of stability for mined-out area.
基金Project (50490272) supported by the National Natural Science Foundation of China project(NCET-05-0687) supportedby Programfor New Century Excellent Talents project (040109) supported bythe Doctor Degree Paper Innovation Engineering of CentralSouth University
文摘Dynamic analysis steps and general flow of fast lagrangian analysis of continua in 3 dimensions(FLAC3D) were discussed. Numerical simulation for influence of excavation and blasting vibration on stability of mined-out area was carried out with FLAC3D. The whole analytical process was divided into two steps, including the static analysis and the dynamic analysis which were used to simulate the influence of excavation process and blasting vibration respectively. The results show that the shape of right upper boundary is extremely irregular after excavation, and stress concentration occurs at many places and higher tensile stress appears. The maximum tensile stress is higher than the tensile strength of rock mass, and surrounding rock of right roof will be damaged with tension fracture. The maximum displacement of surrounding rock is 4.75 mm after excavation. However, the maximum displacement increases to 5.47 mm after the blasting dynamic load is applied. And the covering area of plastic zones expands obviously, especially at the foot of right upper slope. The analytical results are in basic accordance with the observed results on the whole. Damage and disturbance on surrounding rock to some degree are caused by excavation, while blasting dynamic load increases the possibility of occurrence of dynamic instability and destruction further. So the effective supporting and vibration reducing measures should be taken during mining.
基金financially supported by the National"Twelfth-Five-Year"Science&Technology Support Plan(No.2012BAK09B02-05)the National Natural Science Foundation of China(No.51274250)
文摘To identify the instability on large scale underground mined-out area in the metal mine effectively,the parameters of radial basis function were determined through clustering method and the improved fuzzy radial basis function neural network(FRBFNN)model of instability identification model about large scale underground mined-out area in the metal mine was built.The improved FRBFNN model was trained and tested.The results show that the improved FRBFNN model has high training accuracy and generalization ability.Parameters such as pillar area ratio,filling level and the value of rock quality designation have strong influence on instability of large scale underground mined-out area.Correctness of analysis about the improved FRBFNN model was proved by the practical application results about instability discrimination of surrounding rock in large-scale underground mined-out area of a metal mine in south China.
基金Project 50474031 supported by the National Natural Science Foundation of China
文摘The regular pattern of temperature change in a coalfield fire area while the fire is being extinguished was studied. To determine the extinguishing effect, a series of linear, logarithmic, polynomial or exponential mathematical regression models were constructed using the observed temperature data from the Xinjiang coalfield fire extinguishing project. The quadratic polynomial mathematical model had the best fit. A large coal fire oven was also used to simulate the coal fire extinguishing process. The same mathematical regression experiments were carried out on that observed data. The results verified that the quadratic polynomial mathematical model had the best fit. Therefore, a quadratic polynomial mathematical model is proposed to accurately model the temperature-time relationship in a coalfield fire area. An application to coalfield fire suppression shows that the deduced mathe-matical model can be used to predict the temperature conditions and to determine the effect of fire extinguishing, thereby helping to speed up the fire suppression process in the coalfield fire area.
基金This work was financially supported by the National Natural Science Foundation of China (No. 10402033) and the Key Lab. Foun-dation of the Ministry of Education of China (No.04JS19).
文摘The engineering and geological characteristics of a steep slope consisting of coal gangue, rock and soil medium in Huating coal mine have been comprehensively investigated. Owing to humid weather, heavy rainfall, vegetation and porous characteristics of the soil and rock mass, the steep slope will be destabilized and induce mud-rock flow or derive hazard easily. Firstly, based on the classical slope reinforcement theory, some regularity between the shear and displacement in the destabilized zone of the slope with or without root strength contribution is presented. Then, based on the experimental and statistical analysis of root strength, hydrological characteristics and stability status, etc., some possible biotechnical techniques for reinforcement of the steep slope have been suggested. These methods are important for quantitative analysis of destabilization of the slope and design of the biotechnical reinforcement.
基金supported by the Key Program of the National Natural Science Foundation of China (No. 50334060)
文摘The surface subsidence is a common environmental hazard in mined-out area. Based on careful analysis of the regularity of surface subsidence in mined-out area, we proposed a new time function based on Harris curve model in consideration of the shortage of current surface subsidence time functions. By analyzing the characteristics of the new time function, we found that it could meet the dynamic process, the velocity change process and the acceleration change process during surface subsidence. Then its rationality had been verified through project cases. The results show that the proposed time function model can give a good reflection of the regularity of surface subsidence in mined-out area and can accurately predict surface subsidence. And the prediction data of the model are a little greater than measured data on condition of proper measured data quantity, which is safety in the engineering. This model provides a new method for the analysis of surface subsidence in mined-out area and reference for future prediction, and it is valuable to engineering application.
文摘3D geological modeling is an inevitable choice for coal exploration to adapt to the transformation of coal mining for green, fine, transparent and Intelligent mining. In the traditional Coalfield exploration geological reports, the spatial expression form for the coal seams and their surrounding rocks are 2D maps. These 2D maps are excellent data sources for constructing 3D geological models of coal field exploration areas. How to construct 3D models from these 2D maps has been studying in coal exploration industry for a long time, and still no breakthrough has been achieved so far. This paper discusses the principle, method and software design idea of constructing 3D geological model of an exploration area with 2D maps made by AutoCAD/MapGIS. At first, the paper analyzes 3D geological surface expression mode in 3D geological modeling software. It is pointed out that although contour method has unique advantages in coal field exploration, TIN (Triangular Irregular Network) is still the standard configuration of 3D modeling software for coal field. Then, the paper discusses the method of 2D line features obtaining elevation and upgrading 2D curve to 3D curve. Next, the method of semi-automatic partition is introduced to build the boundary ring of the surface patch, that is, the user clicks and selects the line feature to build the outer boundary ring of the surface patch. Then, Auto-process method for fault line inside of the outer boundary ring is discussed, it including construction of fault ring, determining fault ring being normal fault ring or reverse fault ring and an algorithm of dealing with normal fault ring. An algorithm of dealing with reverse fault ring is discussed detailly, the method of expanding reverse fault ring and dividing the duplicate area in reverse fault into two portions is introduced. The paper also discusses the method of extraction ridge line/valley line, the construction of fault plane, the construction of stratum and coal body. The above ideas and methods have been initially implemented in the “3D modeling platform for coal field exploration” software, and applied to the 3D modeling practice of data from several coal field exploration areas in Ningxia, Shanxi, Qinghai, etc.
文摘为揭示半干旱草原露天矿区生态环境质量状况,分离矿区人类活动生态累积效应并识别其演变态势,在厘清矿区生态累积效应概念的基础上,构建适用于半干旱草原的露天矿区生态环境质量评估指数(Surface Mining Areas Eco-environmental Evaluation Index,SMAEEI)以及矿区生态累积效应定量评估模型。选取内蒙古胜利矿区为研究区,量化分析1986—2020年区域生态环境质量和生态累积效应的时空分布规律,以及主要人类活动的生态累积效应差异。结果表明:①SMAEEI适用于半干旱草原露天矿区,能客观呈现各地类生态环境质量高低顺序。35 a间研究区生态环境质量呈极显著下降趋势,且其空间差异显著减弱。露天矿场、城镇扩张区、锡林河湿地及北侧草地生态环境质量出现极显著、显著的退化趋势。②半干旱草原露天矿区生态累积效应定量评估模型能剔除气候因素对生态系统的耦合影响,分离并量化人类活动对矿区生态系统的累积效应,揭示累积的方向、程度和空间范围。35 a间研究区生态服务价值累积量(Change of Ecosystem Service Value Cumulant,COESVC)共减少1186157.03万元,出现负向生态累积效应,生态系统服务功能下降。高度、中度负向累积区集中在湿地和草地退化区、城镇区、露天矿场。③露天开采、城镇建设造成的单位面积负向生态累积效应最明显,前者在单位时间内带来的负向累积变化最剧烈,后者负向累积效应的局部影响程度和偏离度最大;放牧活动引起的负向生态累积效应影响范围最广、总量最大,但局部影响程度最小,生态系统服务功能较其余人类活动更稳定。研究成果可将矿区人类活动引起的生态环境实物量变动转化为价值量描述,为采用货币形式测算矿区生产生活行为的环境损害成本提供可行方法。