We studied the mechanical behavior of rock under different boundary conditions, based on the fractal characteristics of fractures in terms of microscopic and macroscopic investigations. Three rectangular granite speci...We studied the mechanical behavior of rock under different boundary conditions, based on the fractal characteristics of fractures in terms of microscopic and macroscopic investigations. Three rectangular granite specimens of similar dimensions were tested by a triaxial rock testing machine under uniaxial compression (UC), confined compression (CC) and true-triaxial unloading conditions (RB) under rock burst boundary conditions. The failure processes of these specimens were investigated via examinations of their fracture behavior on a macro-scale by laser profilometers and on a micro-scale by a scanning electron microscopic (SEM) imaging technique. The SEM images, showing the spailing features of RB frag- ments, are compared with the grain dislocations under UC and CC conditions. Based on a variogram method, two fractal parameters, i.e., fractal dimensions (Dr^d) and the scale dependent fractal parameter Kv, were induced to present the surface roughness of scanning profiles in all directions. The fitted ellipses of Dr^d distribution show that RB surface has the smallest eccentricity, followed by the CC surface, while the UC surface had the largest eccentricity. As a result of this assessment, we conclude that rocks are affected by shear traction in an intermediate stress direction, which will cause fractures generated during rock bursts to twist rather than to tilt as shown in the uniaxial compression and the confined compres- sion tests.展开更多
The growth and structural properties of Ag films prepared by radio-frequency(2, 13.56 and27.12 MHz) and very-high-frequency(40.68 and 60 MHz) magnetron sputtering were investigated. Using 2 MHz sputtering, the Ag ...The growth and structural properties of Ag films prepared by radio-frequency(2, 13.56 and27.12 MHz) and very-high-frequency(40.68 and 60 MHz) magnetron sputtering were investigated. Using 2 MHz sputtering, the Ag film has a high deposition rate, a uniform and smooth surface and a good fcc structure. Using 13.56 and 27.12 MHz sputtering, the Ag films still have a high deposition rate and a good fcc structure, but a non-uniform and coarse surface.Using 40.68 MHz sputtering, the Ag film has a moderate deposition rate and a good fcc structure, but a less smooth surface. Using 60 MHz sputtering, the Ag film has a uniform and smooth surface, but a low deposition rate and a poor fcc structure. The growth and structural properties of Ag films are related to the ions' energy and flux density. Therefore, changing the driving frequency is a good way to control the growth and structure of the Ag films.展开更多
基金the Major State Basic Research and Development Program of China (No.2006CB202200)the GDUE Open Funding (No.SKLGDUEK0914)the Creative Team Development Project of the Ministry of Education of China (No.IRT0656)
文摘We studied the mechanical behavior of rock under different boundary conditions, based on the fractal characteristics of fractures in terms of microscopic and macroscopic investigations. Three rectangular granite specimens of similar dimensions were tested by a triaxial rock testing machine under uniaxial compression (UC), confined compression (CC) and true-triaxial unloading conditions (RB) under rock burst boundary conditions. The failure processes of these specimens were investigated via examinations of their fracture behavior on a macro-scale by laser profilometers and on a micro-scale by a scanning electron microscopic (SEM) imaging technique. The SEM images, showing the spailing features of RB frag- ments, are compared with the grain dislocations under UC and CC conditions. Based on a variogram method, two fractal parameters, i.e., fractal dimensions (Dr^d) and the scale dependent fractal parameter Kv, were induced to present the surface roughness of scanning profiles in all directions. The fitted ellipses of Dr^d distribution show that RB surface has the smallest eccentricity, followed by the CC surface, while the UC surface had the largest eccentricity. As a result of this assessment, we conclude that rocks are affected by shear traction in an intermediate stress direction, which will cause fractures generated during rock bursts to twist rather than to tilt as shown in the uniaxial compression and the confined compres- sion tests.
基金supported by National Natural Science Foundation of China(Nos.11675118 and 11275136)
文摘The growth and structural properties of Ag films prepared by radio-frequency(2, 13.56 and27.12 MHz) and very-high-frequency(40.68 and 60 MHz) magnetron sputtering were investigated. Using 2 MHz sputtering, the Ag film has a high deposition rate, a uniform and smooth surface and a good fcc structure. Using 13.56 and 27.12 MHz sputtering, the Ag films still have a high deposition rate and a good fcc structure, but a non-uniform and coarse surface.Using 40.68 MHz sputtering, the Ag film has a moderate deposition rate and a good fcc structure, but a less smooth surface. Using 60 MHz sputtering, the Ag film has a uniform and smooth surface, but a low deposition rate and a poor fcc structure. The growth and structural properties of Ag films are related to the ions' energy and flux density. Therefore, changing the driving frequency is a good way to control the growth and structure of the Ag films.