期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Study on local embrittlement of welding heat-affected zone in XSO pipeline steels
1
作者 郝世英 高惠临 +1 位作者 张骁勇 周勇 《China Welding》 EI CAS 2011年第2期36-40,共5页
The relationship between the microstructure and toughness of welding heat-affected zone in XSO grade pipeline steels is studied. It is found that the intercritical reheated coarse-grained heat-affected zone (ICCGHAZ... The relationship between the microstructure and toughness of welding heat-affected zone in XSO grade pipeline steels is studied. It is found that the intercritical reheated coarse-grained heat-affected zone (ICCGHAZ) of experimental steels has the lowest toughness values when the secondary peak temperature is at intercritical ( α + γ ) region during multi-pass welding. The local embrittlement is mainly attributed to the morphology, amount and size of M-A constituent. It is also found that the microstructural inhabitanee at ICCGHAZ has a deleterious effect on the toughness. On the basis of above experimental results, it is suggested that the local embrittlement should be prevented by using pre-heating thermal cycle which could eliminate the microstructural inhabitance and using post-heating thermal cycle which could improve the morphology, amount and size of MA constituent. 展开更多
关键词 X80 pipeline steel MICROSTRUCTURE coarse-grain heat-affected zone local embrittlement
下载PDF
EFFECT OF Zr ADDITION TO Ti-KILLED STEEL ON INCLUSION FORMATION AND MICROSTRUCTURAL EVOLUTION IN WELDING INDUCED COARSE-GRAINED HEAT AFFECTED ZONE 被引量:18
2
作者 F. Chai C.F. Yang +3 位作者 H. Su Y.Q. Zhang Z. Xu Y.H. Yang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2008年第3期220-226,共7页
Effects of Zirconium on the chemical component and size distribution of Ti-bearing inclusions, favored the grain refinement of the welding reduced, coarse-grained heat affected zone (CGHAZ) with enhanced impact toug... Effects of Zirconium on the chemical component and size distribution of Ti-bearing inclusions, favored the grain refinement of the welding reduced, coarse-grained heat affected zone (CGHAZ) with enhanced impact toughness in Ti-killed steels, which were examined based on experimental observations and thermodynamic calculations. It indicated that the chemical constituents of inclusions gradually varied from the TiO oxide to the Ti-O+Zr-O compound oxide and a single phase of the ZrO2 oxide, as the Zr content increased from zero to 0.0100%. A trace of Zr (0.0030%-0.0080%, depending on the oxygen content in liquid steel) provided a large amount of nucleating core for Ti oxide because of the larger specific density of ZrO2 oxide, and produced a small size distribution of the inclusions favorable for acicular ferrite transformation with a high nucleation rate in the CGHAZ, and a high volume fraction of acicular ferrite was obtained in the CGHAZ, with enhanced impact toughness. Otherwise, a high content of Zr (-0.0100%) produced a single phase Zr02, which was impotent to nucleate acicular ferrite, and a microstructure composed of ferrite side plate and grain boundary ferrite developed in the CGHAZ. The experimental results were confirmed by thermodynamic calculations. 展开更多
关键词 Nonmetallic inclusions ZIRCONIUM Acicular ferrite coarse-grain heat affected zone (cghaz
下载PDF
Structure Character of M-A Constituent in CGHAZ of New Ultra-Low Carbon Bainitic Steel under Laser Welding Conditions 被引量:5
3
作者 Lin ZHAO Wuzhu CHEN +1 位作者 Wudong ZHANG Jiguo SHAN 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2006年第3期382-386,共5页
800 MPa grade new ultra-low carbon bainitic (NULCB) steel is the recently developed new generation steel. The microstructure in the coarse-grained heat affected zone (CGHAZ) of NULCB steel under laser welding cond... 800 MPa grade new ultra-low carbon bainitic (NULCB) steel is the recently developed new generation steel. The microstructure in the coarse-grained heat affected zone (CGHAZ) of NULCB steel under laser welding conditions was investigated by thermal simulation. The influence of the cooling time from 800℃ to 500℃.t8/5 (0.3-30 s), on the microstructure of the CGHAZ was discussed. The experimental results indicate that the microstructnre of the CGHAZ is only the granular bainite which consists of bainitic ferrite (BF) lath and M-A constituent while t8/5 is 0.3-30 s. The M-A constituent consists of twinned martensite and residual austenite, and the change of the volume fraction of the residual austenite in the M-A constituent is very small when t8/5 is between 0.3 and 30 s. The morphology of the M-A constituent obviously changes with the variation of t8/5.As t8/5 increases, tile average width, gross and shape parameter of the M-A constituent increase, while the line density of the M-A constituent decreases. 展开更多
关键词 Laser welding New ultra-low carbon bainitic steel coarse-grained heat-affected zone MICROSTRUCTURE M-A constituent
下载PDF
Microstructure evolution and corrosion resistance in simulated CGHAZ of X80 high-deformability pipeline steel
4
作者 赵伟 邹勇 +1 位作者 邹增大 夏佃秀 《China Welding》 EI CAS 2015年第4期39-45,共7页
In this study, the microstructure evolution and corrosion resistance in O. 5 M Na2CO3 - 1 M NaHCO3 solution of X80 high-deformability ( X8OHD ) pipeline steel coarse-grained heat-affected zone (CGHAZ) with several... In this study, the microstructure evolution and corrosion resistance in O. 5 M Na2CO3 - 1 M NaHCO3 solution of X80 high-deformability ( X8OHD ) pipeline steel coarse-grained heat-affected zone (CGHAZ) with several heat input levels were investigated. It is shown that the microstructure of CGHAZ changes from bainite ferrite to granular bainite as the heat input increasing. In addition, the corrosion resistance and the stability of passive film of base material are better than those of CGHAZ with several heat input levels. Too small or too big heat input is inadvisable and better corrosion resistance of CGHAZ is attained when heat input is 30 kJ/cm. 展开更多
关键词 X80HD pipeline steel coarse-grained heat-affected zone (cghaz corrosion resistance high-pH solution
下载PDF
Effect of Heat Input on Cleavage Crack Initiation of Simulated Coarse Grain Heat-affected Zone in Microalloyed Offshore Platform Steel
5
作者 Feng LU Guang-ping CHENG +4 位作者 Feng CHAI Tao PAN Zhong-ran SHI Hang SU Cai-fu YANG 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2016年第10期1086-1095,共10页
The combined effects of martensite-austenite(MA)constituent and pearlite colony on cleavage crack initiation in the simulated coarse-grained heat-affected zone(CGHAZ)of V-N-Ti microalloyed offshore platform steel ... The combined effects of martensite-austenite(MA)constituent and pearlite colony on cleavage crack initiation in the simulated coarse-grained heat-affected zone(CGHAZ)of V-N-Ti microalloyed offshore platform steel under different heat inputs were investigated.The results of welding simulation,instrumented impact test,and quantitative analysis indicated that the size of the MA constituent decreased with the increase in cooling time,and by contrast,the size of the pearlite colony increased.According to Griffith theory,the critical sizes of cleavage microcracks were calculated.With the increase of cooling time,the calculated microcrack size could be characterized by the size of the MA constituent first,and then fitted with the size of the pearlite colony.Moreover,the calculated microcrack size variation was opposite to the microcrack initiation energy.This phenomenon is probably due to the combined effects of the MA constituent and pearlite colony with increasing the cooling time of the specimen′s temperature from800 to 500 ℃. 展开更多
关键词 simulated coarse-grained heat-affected zone martensite-austenite constituent pearlite colony cleavage fracture V-N-Ti microaltoying
原文传递
Effect of Magnesium on Inclusion Formation in Ti-Killed Steels and Microstructural Evolution in Welding Induced Coarse-Grained Heat Affected Zone 被引量:23
6
作者 CHAI Feng YANG Cai-fu +2 位作者 SU Hang ZHANG Yong-quan XU Zhou 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2009年第1期69-74,共6页
Effects of Mg on the chemical component and size distribution of Ti-bearing inclusions favored grain refinement of the welding induced coarse-grained heat affected zone (CGHAZ), with enhanced impact toughness in Ti-... Effects of Mg on the chemical component and size distribution of Ti-bearing inclusions favored grain refinement of the welding induced coarse-grained heat affected zone (CGHAZ), with enhanced impact toughness in Ti-killed steels, which were examined based on experimental observations and thermodynamic calculations. The results indicated that the chemical constituents of the inclusions gradually varied from the Ti-O+Ti-Mg-O compound oxide to the Ti-Mg-O+MgO compound oxide and the single-phase MgO, as the Mg content increased from 0.002 3M to 0.006%. A trace addition of Mg (approximately 0. 002%) led to the refinement of Ti-bearing inclusions by creating the Ti-Mg-O compound oxide and provided favorable size distribution of the inclusions for acicular ferrite transformation with a high nucleation rate in the CGHAZ, and a high volume fraction of acicular ferrite was obtained in the CGHAZ with enhanced impact toughness. Otherwise, a high content of Mg (approximately 0. 006%) produced a single-phase MgO, which was impotent to nucleate an acicular ferrite, and a microstructure comprised of a ferrite side plate and a grain boundary ferrite developed in the CGHAZ. The experimental results were confirmed by thermodynamic calculations. 展开更多
关键词 non-metallic inclusion MAGNESIUM acicular ferrite coarse-grained heat affected zone (cghaz
原文传递
Evolution of microstructure in reheated coarse-grained zone of G115 novel martensitic heat-resistant steel
7
作者 Zhong-yi Chen Zheng-zong Chen +3 位作者 Dong-xu Kou Yong-qing Li Yong-lin Ma Yi-ming Li 《Journal of Iron and Steel Research International》 SCIE EI CSCD 2022年第2期327-338,共12页
Based on the thermal simulation method,a systematical analysis was conducted on the effect of welding peak temperature and the cooling time that takes place from 800 to 500℃ on microstructure,precipitates,substructur... Based on the thermal simulation method,a systematical analysis was conducted on the effect of welding peak temperature and the cooling time that takes place from 800 to 500℃ on microstructure,precipitates,substructure and microhardness of the reheated coarse-grained heat-affected zone(CGHAZ)of G115 novel martensitic heat-resistant steel.As revealed from the results,the microstructure of un-altered CGHAZ(UACGHAZ)and supercritically CGHAZ(SCCGHAZ)was lath martensite,and structural heredity occurred.Intercritically reheated CGHAZ(IRCGHAZ)exhibited martensite and over-tempered martensite,and subcritical CGHAZ(SCGHAZ)displayed martensite and under-tempered martensite.The austenite in UACGHAZ and SCCGHAZ was transformed with the diffusion mechanism during the first thermal cycle,but with the non-diffusion mechanism during the second thermal cycle.For this reason,A_(c1) and A_(c3) during the second thermal cycle were significantly lower than those during the first thermal cycle,and A_(c1) and A_(c3) were reduced by nearly 14 and 44℃,respectively.Since the content and stability of the austenite alloy during the second thermal cycle of IRCGHAZ were lower than those during the first thermal cycle,M_(s) increased by nearly 30℃.There were considerable precipitates in the over-tempered region of IRCGHAZ,and the Laves phase was contained,which was not conducive to high-temperature creep property.Moreover,the dislocation density and the number of sub-grains in the region were lower,resulting in a sharp decrease in the microhardness,and it was the weak area in the reheated CGHAZ. 展开更多
关键词 Heat-resistant steel G115 steel Reheated coarse-grained heat-affected zone Microstructure evolution PRECIPITATE
原文传递
Analysis on SH-CCT curves of HD15Ni1MnMoNbCu steel for nuclear power station
8
作者 Zhang Jianlin Zhu Ping +3 位作者 Chen Zhongbing Zhang Fayun Huang Maotao Wang Gangang 《China Welding》 EI CAS 2016年第3期57-62,共6页
The microstructural evolution and Vickers hardness measurement in the welding heat-affected zone (HAZ) of HD15 Nil MnMoNbCu steel for nuclear power station were investigated by Gleeble-3180 thermal mechanical simula... The microstructural evolution and Vickers hardness measurement in the welding heat-affected zone (HAZ) of HD15 Nil MnMoNbCu steel for nuclear power station were investigated by Gleeble-3180 thermal mechanical simulator, and the simulated HAZ continuous cooling transformation curves (SH-CCT) were measured simultaneously. With ts/5 inereasing from 3.75 s to 15 000 s, the product was obtained martensite, bainite, ferrite and pearlite, successively. The result of microstructure and Vickers hardness in the heat-affected zone was in good agreement with those measured by SH-CCT diagram with the heat input 16. 2 kJ/cm as an example to weld the HD15Ni1MnMoNbCu steel pipe using TIG/SMAW/SAW welding methods. 展开更多
关键词 HD15Ni1 MnMoNbCu steel SH-CCT diagram coarse-grained heat-affected zone Gleeble physical simulation
下载PDF
Effect of welding heat input on microstructure and impact toughness in CGHAZ of X100Q steel 被引量:5
9
作者 Hui-bin Wang Fei-long Wang +4 位作者 Gen-hao Shi Yu Sun Jiang-cheng Liu Qing-feng Wang Fu-cheng Zhang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2019年第6期637-646,共10页
The coarse-grained heat-affected zones (CGHAZs) of X100Q steel were reproduced via simulating their welding thermal cycles with the varying heat input (Ef) from 10 to 55 kJ/cm in Gleeble3500 system. The microstructure... The coarse-grained heat-affected zones (CGHAZs) of X100Q steel were reproduced via simulating their welding thermal cycles with the varying heat input (Ef) from 10 to 55 kJ/cm in Gleeble3500 system. The microstructures were characterized, and the impact toughness was estimated from each simulated sample. The results indicate that the microstructure in each simulated CGHAZ was primarily constituted of lath-like bainite. With the decreased heat input and accordingly the lowered Ar3 (the onset temperature for this transition), the prior austenite grain and the bainitic packet/block/lath substructure were refined remarkably, and the impact toughness was enhanced due to the microstructure refinement. The bainitic packet was the microstructural unit most effectively controlling the impact properties in CGHAZ of X100Q steel, due to their close correlation with the 50% fracture appearance transition temperatures, their size equivalent to the cleavage facet and their boundaries impeding the crack propagation. 展开更多
关键词 X100Q bainitic STEEL coarse-grainED heat-affected zone Impact property Bainitic SUBSTRUCTURE FRACTOGRAPHY
原文传递
Embrittlement and toughening in CGHAZ of ASTM4130 steel 被引量:4
10
作者 LI LiYing WANG Yong +1 位作者 HAN Tao LI ChaoWen 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2011年第8期1447-1454,共8页
In the present investigation, a thermal welding simulation technique was used to investigate the mechanical properties and microstructure features of the coarse-grained heat-affected zone (CGHAZ) of ASTM4130 steel. Th... In the present investigation, a thermal welding simulation technique was used to investigate the mechanical properties and microstructure features of the coarse-grained heat-affected zone (CGHAZ) of ASTM4130 steel. The effect of post welding heat treatment (PWHT) and welding heat inputs on the toughness of CGHAZ was also analyzed. The results show that CGHAZ has the lowest toughness, which is only 5.5%-7.1% of the base metal. CGHAZ is mainly composed of dislocation martensite, up-per and lower bainite, and M-A constituents. But after PWHT, carbides precipitate from non-equilibrium microstructures of CGHAZ accompanying some retained austenite which transforms into low bainite, thereby enhancing toughness over the base metal. Therefore, the key microstructure factors affecting fracture toughness are lathlike non-equilibrium microstructure and lowered supersaturation before and after PWHT respectively. When welding heat input is between 12 kJ/cm and 28 kJ/cm, the mechanical properties in CGHAZ of ASTM4130 with single-pass welding can satisfy the requirements when PWHT is applied. 展开更多
关键词 ASTM4130 steel coarse-grained heat-affected zone EMBRITTLEMENT TOUGHENING
原文传递
Effect of Boron on CGHAZ Microstructure and Toughness of High Strength Low Alloy Steels 被引量:2
11
作者 Han YANG Xi-xia WANG Jin-bo QU 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2014年第8期787-792,共6页
Effect of boron on the microstructure and impact toughness in the coarse-grained heat-affected zone(CGHAZ)of two high strength low alloy steels,boron-free and boron-containing,was investigated by means of weld therm... Effect of boron on the microstructure and impact toughness in the coarse-grained heat-affected zone(CGHAZ)of two high strength low alloy steels,boron-free and boron-containing,was investigated by means of weld thermal simulation test.The result shows that,for the boron-free steel,a microstructure consisting of grain boundary ferrite degenerates pearlite and granular bainite for longer t8/5(the cooling time from 800 to 500 ℃),while lath bainite for shorter t8/5.For the boron-containing steel,granular bainite is dominant for a wide range of t8/5.Continuous cooling transformation(CCT)study on the CGHAZ indicates that the transformation start temperature decreases by about 50-100℃under different t8/5,for the boron-containing steel compared with the boron-free steel.The presence of boron suppresses the nucleation of ferrite at prior austenite grain boundaries and hence enlarges the range of t8/5for granular bainite transformation.However,the addition of boron deteriorates the impact toughness of CGHAZ,which may be due to a markedly increased fraction of martensite-austenite(M-A)constituents and decreased fraction of high angle grain boundaries. 展开更多
关键词 BORON high strength low alloy steel coarse-grained heat-affected zone continuous cooling transforma-tion impact toughness
原文传递
Investigation on Precipitation Transition in CGHAZ for TRIP Steels Containing Vanadium and Titanium
12
作者 Cooman De B C 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2011年第S1期154-158,共5页
Two kinds of low-carbon low-silicon TRIP (Transformation Induced Plasticity) steels containing vanadium are designed using ThermoCalc software in the light of both thermodynamics and kinetics.TRIP heat treatment proce... Two kinds of low-carbon low-silicon TRIP (Transformation Induced Plasticity) steels containing vanadium are designed using ThermoCalc software in the light of both thermodynamics and kinetics.TRIP heat treatment process of different steels is determined according to the calculation results respectively.Weld HAZ (Heat-Affected Zone) simulation tests indicate the weldability of TRIP steels is crucially sensitive to CE (carban equivelent) of the steel.However the impact toughness of CGHAZ (Coarse Grain Heat-Affected Zone) does not decrease drastically for TRIP steels microalloyed with Ti+V.The steel containing both of vanadium and titanium shows smaller grain size compared with that containing vanadium solely.This is because the precipitation of Ti/V carbonitride slows down the grain boundary motion speed and then retards the grain size coalescence in CGHAZ. 展开更多
关键词 TRIP steel precipitation transition heat-affected zone cghaz simulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部