Hourly rainfall measurements of 1919 national-level meteorological stations from 1981 through 2012 are used to document,for the first time,the climatology of extreme rainfall in hourly through 24-h accumulation period...Hourly rainfall measurements of 1919 national-level meteorological stations from 1981 through 2012 are used to document,for the first time,the climatology of extreme rainfall in hourly through 24-h accumulation periods in China. Rainfall amounts for 3-,6-,12- and 24-h periods at each station are constructed through running accumulation from hourly rainfall data that have been screened by proper quality control procedures. For each station and for each accumulation period,the historical maximum is found,and the corresponding 50-year return values are estimated using generalized extreme value theory. Based on the percentiles of the two types of extreme rainfall values among all the stations,standard thresholds separating Grade I,Grade II and Grade III extreme rainfall are established,which roughly correspond to the 70th and 90th percentiles for each of the accumulation periods. The spatial characteristics of the two types of extreme rainfall are then examined for different accumulation periods. The spatial distributions of extreme rainfall in hourly through 6-h periods are more similar than those of 12- and 24-h periods. Grade III rainfall is mostly found over South China,the western Sichuan Basin,along the southern and eastern coastlines,and in the large river basins and plains. There are similar numbers of stations with Grade III extreme hourly rainfall north and south of 30°N,but the percentage increases to about 70% south of 30°N as the accumulation period increases to 24 hours,reflecting richer moisture and more prolonged rain events in southern China. Potential applications of the extreme rainfall climatology and classification standards are suggested at the end.展开更多
Four automatic meteorological stations were set up in a line from beach to inland perpendicular to the west coast of Bohai Bay. Wind direction and velocity at altitudes of 2 m, 4 m and 12 m were surveyed with 10 minut...Four automatic meteorological stations were set up in a line from beach to inland perpendicular to the west coast of Bohai Bay. Wind direction and velocity at altitudes of 2 m, 4 m and 12 m were surveyed with 10 minute intervals. On "Sea-Land Breeze" (SLB) days, the transition from sea breeze to land breeze was very evident in the study area. Direction of sea breeze was basically perpendicular to the coast and mainly from the ENE and E. Duration of sea breeze varied by the stations' distance to the coastline, and the near-coast wind velocity was larger than that of the inland and decreases as it reaches inland. There was increased development of SLB on sunny days than on overcast days. The term "Climatic Coastal Zone" can be defined for the area influenced by SLB, which reaches more than 74 km inland on a typical SLB day but less than 10 km on a non-typical SLB day.展开更多
The evolution of an explosive cyclone off the East Asia coast in March 1979 is described.A shortwave trough in the southern branch of upper-level westerlies initiated the incipient cyclone.Later,a polar trough in the ...The evolution of an explosive cyclone off the East Asia coast in March 1979 is described.A shortwave trough in the southern branch of upper-level westerlies initiated the incipient cyclone.Later,a polar trough in the north amplified and became in phase with the southern shortwave to form a major trough.This major trough was responsible for the rapid intensification of the surface cyclone.In the early development stage,warm and moist air was transported northward to the developing area by a strong low-level jet.The ageostrophic wind associated with the low-level jet contributed to the frontogenesis,creating a favorable low-level environment for the rapid deepening.A low-level positive potential vorticity anomaly was created prior to the onset of rapid deepening.It was a result of frontal cloud condensation.The cyclone intensified rapidly when stratospheric air with high potential vorticity penetrated to the mid-troposphere.The rapid deepening took place at a location under the left-exit region of an amplifying jet streak behind the major trough and the right-entrance region of another anticyclonically-curved subtropical jet streak in a quasi-stationary ridge over Japan. Due to the blocking effect of the Tibetan Plateau,two shortwave disturbances were observed in the upper-level westerlies on the north and south sides of the Plateau.The southern disturbance initiated the incipient surface cyclone, while the amplifying northern disturbance was responsible for the rapid deepening.Thus,the evolution of the explosive cyclone in this case can be regarded as consecutive Petterssen's 'type-B' cyclogenesis in two separate stages.展开更多
基金supported by the National Major Basic Research “973” Program of China under Grant No.2013CB430100,including its sub-grants 2013CB430106 and 2013CB430103the Social Commonwealth Research Program under Grant No.GYHY201406002+1 种基金the National Natural Science Foundation of China under Grant No.41375051Key Project of National Social Science Foundation of China (11&zd167)
文摘Hourly rainfall measurements of 1919 national-level meteorological stations from 1981 through 2012 are used to document,for the first time,the climatology of extreme rainfall in hourly through 24-h accumulation periods in China. Rainfall amounts for 3-,6-,12- and 24-h periods at each station are constructed through running accumulation from hourly rainfall data that have been screened by proper quality control procedures. For each station and for each accumulation period,the historical maximum is found,and the corresponding 50-year return values are estimated using generalized extreme value theory. Based on the percentiles of the two types of extreme rainfall values among all the stations,standard thresholds separating Grade I,Grade II and Grade III extreme rainfall are established,which roughly correspond to the 70th and 90th percentiles for each of the accumulation periods. The spatial characteristics of the two types of extreme rainfall are then examined for different accumulation periods. The spatial distributions of extreme rainfall in hourly through 6-h periods are more similar than those of 12- and 24-h periods. Grade III rainfall is mostly found over South China,the western Sichuan Basin,along the southern and eastern coastlines,and in the large river basins and plains. There are similar numbers of stations with Grade III extreme hourly rainfall north and south of 30°N,but the percentage increases to about 70% south of 30°N as the accumulation period increases to 24 hours,reflecting richer moisture and more prolonged rain events in southern China. Potential applications of the extreme rainfall climatology and classification standards are suggested at the end.
基金supported by National Science & Technology Support Key Project of China (No.2006BAB03A03)National 863 Key Project of China (No.2006AA100206)National Natural Science Foundation Projects of China(No.40801230 and No.40335048)
文摘Four automatic meteorological stations were set up in a line from beach to inland perpendicular to the west coast of Bohai Bay. Wind direction and velocity at altitudes of 2 m, 4 m and 12 m were surveyed with 10 minute intervals. On "Sea-Land Breeze" (SLB) days, the transition from sea breeze to land breeze was very evident in the study area. Direction of sea breeze was basically perpendicular to the coast and mainly from the ENE and E. Duration of sea breeze varied by the stations' distance to the coastline, and the near-coast wind velocity was larger than that of the inland and decreases as it reaches inland. There was increased development of SLB on sunny days than on overcast days. The term "Climatic Coastal Zone" can be defined for the area influenced by SLB, which reaches more than 74 km inland on a typical SLB day but less than 10 km on a non-typical SLB day.
基金CNSF,4880218State Commission of Education under grant 9200125
文摘The evolution of an explosive cyclone off the East Asia coast in March 1979 is described.A shortwave trough in the southern branch of upper-level westerlies initiated the incipient cyclone.Later,a polar trough in the north amplified and became in phase with the southern shortwave to form a major trough.This major trough was responsible for the rapid intensification of the surface cyclone.In the early development stage,warm and moist air was transported northward to the developing area by a strong low-level jet.The ageostrophic wind associated with the low-level jet contributed to the frontogenesis,creating a favorable low-level environment for the rapid deepening.A low-level positive potential vorticity anomaly was created prior to the onset of rapid deepening.It was a result of frontal cloud condensation.The cyclone intensified rapidly when stratospheric air with high potential vorticity penetrated to the mid-troposphere.The rapid deepening took place at a location under the left-exit region of an amplifying jet streak behind the major trough and the right-entrance region of another anticyclonically-curved subtropical jet streak in a quasi-stationary ridge over Japan. Due to the blocking effect of the Tibetan Plateau,two shortwave disturbances were observed in the upper-level westerlies on the north and south sides of the Plateau.The southern disturbance initiated the incipient surface cyclone, while the amplifying northern disturbance was responsible for the rapid deepening.Thus,the evolution of the explosive cyclone in this case can be regarded as consecutive Petterssen's 'type-B' cyclogenesis in two separate stages.