In order to develop a coupled basin scale model of ocean circulation and biogeochemical cycling,we present a biogeochemical model including 12 components to study the ecosystem in the China coastal seas(CCS).The for...In order to develop a coupled basin scale model of ocean circulation and biogeochemical cycling,we present a biogeochemical model including 12 components to study the ecosystem in the China coastal seas(CCS).The formulation of phytoplankton mortality and zooplankton growth are modified according to biological characteristics of CCS.The four sensitivity biological parameters,zooplankton assimilation efficiency rate(ZooAE_N),zooplankton basal metabolism rate(ZooBM),maximum specific growth rate of zooplankton(μ_(20)) and maximum chlorophyll to carbon ratio(Chl2C_m) are obtained in sensitivity experiments for the phytoplankton,and experiments about the parameter μ_(20'),half-saturation for phytoplankton NO_3 uptake(K_(NO_3)) and remineralization rate of small detritusN(SDeRRN) are conducted.The results demonstrate that the biogeochemical model is quite sensitive to the zooplankton grazing parameter when it ranges from 0.1 to 1.2 d^(-1).The K_(NO_3) and SDeRRN also play an important role in determining the nitrogen cycle within certain ranges.The sensitive interval of KNO_3 is from 0.1 to 1.5(mmol/m^3)^(-1),and interval of SEdRRN is from 0.01 and 0.1 d^(-1).The observational data from September 1998 to July 2000 obtained at SEATS station are used to validate the performance of biological model after parameters optimization.The results show that the modified model has a good capacity to reveal the biological process features,and the sensitivity analysis can save computational resources greatly during the model simulation.展开更多
基金The National Natural Science Foundation of China under contract Nos 41206023,41222038 and 41076011the National Basic Research Project(973 Program)of China under contract No.2011CB403606+2 种基金the China-Korea Joint Ocean Research Center"Cooperation on the Development of Basic Technologies for the Yellow Sea and East China Sea Operational Oceanographic System(YOOS)"the Public Science and Technology Research Funds Projects of Ocean under contrcat No.201205018the"Strategic Priority Research Program"of the Chinese Academy of Sciences,under contract No.XDA01020304
文摘In order to develop a coupled basin scale model of ocean circulation and biogeochemical cycling,we present a biogeochemical model including 12 components to study the ecosystem in the China coastal seas(CCS).The formulation of phytoplankton mortality and zooplankton growth are modified according to biological characteristics of CCS.The four sensitivity biological parameters,zooplankton assimilation efficiency rate(ZooAE_N),zooplankton basal metabolism rate(ZooBM),maximum specific growth rate of zooplankton(μ_(20)) and maximum chlorophyll to carbon ratio(Chl2C_m) are obtained in sensitivity experiments for the phytoplankton,and experiments about the parameter μ_(20'),half-saturation for phytoplankton NO_3 uptake(K_(NO_3)) and remineralization rate of small detritusN(SDeRRN) are conducted.The results demonstrate that the biogeochemical model is quite sensitive to the zooplankton grazing parameter when it ranges from 0.1 to 1.2 d^(-1).The K_(NO_3) and SDeRRN also play an important role in determining the nitrogen cycle within certain ranges.The sensitive interval of KNO_3 is from 0.1 to 1.5(mmol/m^3)^(-1),and interval of SEdRRN is from 0.01 and 0.1 d^(-1).The observational data from September 1998 to July 2000 obtained at SEATS station are used to validate the performance of biological model after parameters optimization.The results show that the modified model has a good capacity to reveal the biological process features,and the sensitivity analysis can save computational resources greatly during the model simulation.