A numerical model of the couphng between astronomical tide and storm surge based on Mike 21 is applied to the coastal regions of Zhejiang Province. The model is used to simulate high tide levels combined with storm su...A numerical model of the couphng between astronomical tide and storm surge based on Mike 21 is applied to the coastal regions of Zhejiang Province. The model is used to simulate high tide levels combined with storm surge during 5 typhoons, including two super typhoons, that landed in the Province. In the model, the atmospheric forcing fields are calculated with parametric wind and pressure models. The computational results, with average computed errors of 13 cm for the high astronomical tide levels and 20 cm for the high storm-tide levels, show that the model yields good simulations. Typhoon No. 5612, the most intense to land in China since 1949, is taken as the typical super typhoon for the de- sign of 5 typhoon routes, each landing at a different location along the coast. The possible extreme storm-tide levels along the coast are calculated by the model under the conditions of the 5 designed typhoon routes when they coincide with the spring tide. Results are compared with the high storm-tide levels due to the increase of the central atmospheric pressure at the base of a typical super typhoon, the change of tidal type, and the behavior of a Saomai-type typhoon. The results have practical significance for forecasting and minimization of damage during super typhoons.展开更多
In this paper, we apply an unstructured grid coastal ocean model to simulate variations in the sea level and currents forced by two typhoons in the northwestern South China Sea(SCS). The model simulations show distinc...In this paper, we apply an unstructured grid coastal ocean model to simulate variations in the sea level and currents forced by two typhoons in the northwestern South China Sea(SCS). The model simulations show distinct differences for the two cases in which the typhoon paths were north and south of the Qiongzhou(QZ) Strait. In both cases, coastal trapped waves(CTWs) are stimulated but their propagation behaviors differ. Model sensitivity simulations suggest the dominant role played by alongshore wind in the eastern SCS(near Shanwei) and southeast of Hainan Island. We also examine the influence of the Leizhou Peninsula by changing the coastline in simulation experiments. Based on our results, we can draw the following conclusions: 1) The CTWs stimulated by the northern typhoon are stronger than the southern CTW. 2) In the two cases, the directions of the current structures of the QZ cross-transect are reversed. The strongest flow cores are both located in the middle-upper area of the strait and the results of our empirical orthogonal function analysis show that the vertical structure is highly barotropic. 3) The simulated CTWs divide into two branches in the QZ Strait for the northern typhoon, and an island trapped wave(ITW) around Hainan Island for the southern typhoon. 4) The Leizhou Peninsula plays a significant role in the distribution of the kinetic energy flux between the two CTW branches. In the presence of the Leizhou Peninsula, the QZ branch has only 39.7 percent of the total energy, whereas that ratio increases to 72.2 percent in its absence.展开更多
With the global warming and sea level rising, it is widely recognized that there is an increasing tendency of typhoon occurrence frequency and intensity. The defenses code against typhoon attacks for nuclear power pla...With the global warming and sea level rising, it is widely recognized that there is an increasing tendency of typhoon occurrence frequency and intensity. The defenses code against typhoon attacks for nuclear power plant should be calibrated because of the increasing threat of typhoon disaster and severe consequences. This paper discusses the probabilistic approach of definitions about "probable maximum typhoon" and "probable maximum storm surge" in nuclear safety regulations of China and has made some design code calibrations by use of a newly proposed Double Layer Nested Mtdti-objective Probability Model (DLNMPM).展开更多
The movement of Typhoon Maggie (9903) in June 1999 is one of the rare cases ever seen in the history. At 00U on June 6 Maggie was located at about 70 km to the southwest of Taiwan. When it arrived at the coastal regio...The movement of Typhoon Maggie (9903) in June 1999 is one of the rare cases ever seen in the history. At 00U on June 6 Maggie was located at about 70 km to the southwest of Taiwan. When it arrived at the coastal region of Shanwei City (22.8N, 116.5E), it turned suddenly to move southwestward along the southern China coastal line. De June 7 Maggie finally turned to move northward, making landfall to the north of Shangchuan Island. The experimental numerical prediction system on typhoon movement that was designed based on MM5 is proved quite successful for the 48h prediction of Maggie's movement and rainfall. The mean prediction error of typhoon track is 81 km for 0-24 h and 74 km for 24-48 h. The location of typhoon center in the initial field of the model is approximately 100 km away from the actual observations. In order to modify the location of typhoon center, a bogus typhoon was intro- duced into the model and the prediction of typhoon track was improved in 0-24 h time interval. But the prediction error was enlarged in 24-36 h. We also performed a sensitivity experiment of changing the land of southern China into the ocean. It is found that the orientation of South China coastal line and the topography have no obvious effect on the movement of Typhoon Maggie.展开更多
台风引起的风暴增水严重影响沿海地区的生产生活,是造成经济损失最严重的海洋灾害之一。深圳市位于中国南海北部沿岸,是易受风暴潮灾害影响的区域,对深圳近海海域风暴潮开展研究不仅能够提升对风暴潮物理机制的认识,同时对沿海城市有效...台风引起的风暴增水严重影响沿海地区的生产生活,是造成经济损失最严重的海洋灾害之一。深圳市位于中国南海北部沿岸,是易受风暴潮灾害影响的区域,对深圳近海海域风暴潮开展研究不仅能够提升对风暴潮物理机制的认识,同时对沿海城市有效防灾减灾预警有重要意义。在风暴潮模拟研究过程中,台风气象场是风暴潮模拟准确与否的关键因素。本文针对深圳近海区域海洋环境,以海流模型FVCOM(finite volume community ocean model)和海浪模型SWAN(simulation wave nearshore)为基础,建立了区域风暴潮–波浪耦合模型,分别用再分析气象数据(European center for medium weather forecasting,ECMWF)、理想台风模型(Holland)及大气模型台风模拟结果(weather research and forecast,WRF)作为驱动场条件,对台风“山竹”期间的风暴潮过程进行模拟。结果表明:分辨率较低的ECMWF再分析气象数据难以准确体现台风水平结构,从而导致模拟误差;Holland气象场在整体上能够对台风“山竹”进行准确模拟,但无法再现台风在近岸区域的结构形变,从而导致在蛇口及附近(深圳湾,珠江口内侧)区域的风暴潮模拟水位偏高;WRF对风速、气压、水位、波浪都有较好的模拟效果,且WRF很好的改善了Holland在靠近台风登陆点的区域风暴潮水位偏高的问题,对珠江口、深圳湾区域定量改进约20%~30%。在未来的风暴潮预报中,如果采用类似于Holland这样的理想台风场,需注意上述区域的模拟结果。此外,Holland理想台风场和WRF模型结果驱动下的波浪场模拟效果都较好。展开更多
基金This Paper is supported by Zhejiang Provincial Science and Technology Plan Project (Grant No2006F12013)
文摘A numerical model of the couphng between astronomical tide and storm surge based on Mike 21 is applied to the coastal regions of Zhejiang Province. The model is used to simulate high tide levels combined with storm surge during 5 typhoons, including two super typhoons, that landed in the Province. In the model, the atmospheric forcing fields are calculated with parametric wind and pressure models. The computational results, with average computed errors of 13 cm for the high astronomical tide levels and 20 cm for the high storm-tide levels, show that the model yields good simulations. Typhoon No. 5612, the most intense to land in China since 1949, is taken as the typical super typhoon for the de- sign of 5 typhoon routes, each landing at a different location along the coast. The possible extreme storm-tide levels along the coast are calculated by the model under the conditions of the 5 designed typhoon routes when they coincide with the spring tide. Results are compared with the high storm-tide levels due to the increase of the central atmospheric pressure at the base of a typical super typhoon, the change of tidal type, and the behavior of a Saomai-type typhoon. The results have practical significance for forecasting and minimization of damage during super typhoons.
基金the National Natural Science Foundation of China(Nos.41266002,41406031,41406044)the Special Fund for Basic Scientific Research Business of Central Public Research Institutes(No.2015P02)the Fund of Key Laboratory of Global Change and Marine-Atmospheric Chemistry,SOA(No.GCMAC1308)for their support
文摘In this paper, we apply an unstructured grid coastal ocean model to simulate variations in the sea level and currents forced by two typhoons in the northwestern South China Sea(SCS). The model simulations show distinct differences for the two cases in which the typhoon paths were north and south of the Qiongzhou(QZ) Strait. In both cases, coastal trapped waves(CTWs) are stimulated but their propagation behaviors differ. Model sensitivity simulations suggest the dominant role played by alongshore wind in the eastern SCS(near Shanwei) and southeast of Hainan Island. We also examine the influence of the Leizhou Peninsula by changing the coastline in simulation experiments. Based on our results, we can draw the following conclusions: 1) The CTWs stimulated by the northern typhoon are stronger than the southern CTW. 2) In the two cases, the directions of the current structures of the QZ cross-transect are reversed. The strongest flow cores are both located in the middle-upper area of the strait and the results of our empirical orthogonal function analysis show that the vertical structure is highly barotropic. 3) The simulated CTWs divide into two branches in the QZ Strait for the northern typhoon, and an island trapped wave(ITW) around Hainan Island for the southern typhoon. 4) The Leizhou Peninsula plays a significant role in the distribution of the kinetic energy flux between the two CTW branches. In the presence of the Leizhou Peninsula, the QZ branch has only 39.7 percent of the total energy, whereas that ratio increases to 72.2 percent in its absence.
基金supported by the Nationam Natural Science Foundation of China(Grant No.50679076)Office of State Flood Control and Drought Relief Headquarters of China(Grant No.20060120)
文摘With the global warming and sea level rising, it is widely recognized that there is an increasing tendency of typhoon occurrence frequency and intensity. The defenses code against typhoon attacks for nuclear power plant should be calibrated because of the increasing threat of typhoon disaster and severe consequences. This paper discusses the probabilistic approach of definitions about "probable maximum typhoon" and "probable maximum storm surge" in nuclear safety regulations of China and has made some design code calibrations by use of a newly proposed Double Layer Nested Mtdti-objective Probability Model (DLNMPM).
文摘The movement of Typhoon Maggie (9903) in June 1999 is one of the rare cases ever seen in the history. At 00U on June 6 Maggie was located at about 70 km to the southwest of Taiwan. When it arrived at the coastal region of Shanwei City (22.8N, 116.5E), it turned suddenly to move southwestward along the southern China coastal line. De June 7 Maggie finally turned to move northward, making landfall to the north of Shangchuan Island. The experimental numerical prediction system on typhoon movement that was designed based on MM5 is proved quite successful for the 48h prediction of Maggie's movement and rainfall. The mean prediction error of typhoon track is 81 km for 0-24 h and 74 km for 24-48 h. The location of typhoon center in the initial field of the model is approximately 100 km away from the actual observations. In order to modify the location of typhoon center, a bogus typhoon was intro- duced into the model and the prediction of typhoon track was improved in 0-24 h time interval. But the prediction error was enlarged in 24-36 h. We also performed a sensitivity experiment of changing the land of southern China into the ocean. It is found that the orientation of South China coastal line and the topography have no obvious effect on the movement of Typhoon Maggie.
文摘台风引起的风暴增水严重影响沿海地区的生产生活,是造成经济损失最严重的海洋灾害之一。深圳市位于中国南海北部沿岸,是易受风暴潮灾害影响的区域,对深圳近海海域风暴潮开展研究不仅能够提升对风暴潮物理机制的认识,同时对沿海城市有效防灾减灾预警有重要意义。在风暴潮模拟研究过程中,台风气象场是风暴潮模拟准确与否的关键因素。本文针对深圳近海区域海洋环境,以海流模型FVCOM(finite volume community ocean model)和海浪模型SWAN(simulation wave nearshore)为基础,建立了区域风暴潮–波浪耦合模型,分别用再分析气象数据(European center for medium weather forecasting,ECMWF)、理想台风模型(Holland)及大气模型台风模拟结果(weather research and forecast,WRF)作为驱动场条件,对台风“山竹”期间的风暴潮过程进行模拟。结果表明:分辨率较低的ECMWF再分析气象数据难以准确体现台风水平结构,从而导致模拟误差;Holland气象场在整体上能够对台风“山竹”进行准确模拟,但无法再现台风在近岸区域的结构形变,从而导致在蛇口及附近(深圳湾,珠江口内侧)区域的风暴潮模拟水位偏高;WRF对风速、气压、水位、波浪都有较好的模拟效果,且WRF很好的改善了Holland在靠近台风登陆点的区域风暴潮水位偏高的问题,对珠江口、深圳湾区域定量改进约20%~30%。在未来的风暴潮预报中,如果采用类似于Holland这样的理想台风场,需注意上述区域的模拟结果。此外,Holland理想台风场和WRF模型结果驱动下的波浪场模拟效果都较好。