The current distributions over carbon steel under iron red alkyd primer exposed to 3.5% sodium chloride solution were mapped using the wire beam electrode (WBE). The electrochemical impedance spectroscopy (EIS) of...The current distributions over carbon steel under iron red alkyd primer exposed to 3.5% sodium chloride solution were mapped using the wire beam electrode (WBE). The electrochemical impedance spectroscopy (EIS) of the WBE was carded out to analyze the performance of coating delamination and corrosion behavior of carbon steel beneath defective coating. The EIS data revealed that protective capability of coating decreased with immersion time and the degree of cathodic delamination showed a rapid rise. The current density distribution of WBE indicated that cathodic sites was located at the defect at the beginning of immersion and gradually spread into the intact coating. The cathodic regions were distinguished from the anodic area and distributed over the WBE. The changes of cathodic sites could reflect the deterioration process of defective coating. The cathodic area ratio was a more useful parameter than the cathodic delamination degree to evaluate the coating cathodic delamination. The polarity reversals of electrodes at the defect and beneath coating were observed. A simple discussion of relationship between the blister and the polarity reversal was made from a standpoint of electrochemical distribution. WBE method was able to map and record the changes of local cathodic sites beneath defective coating in real time, which could provide more detailed information about the local degradation of coating.展开更多
Surface thermal lensing technique was developed into a high-sensitive apparatus for weak absorption test and defect analysis of optical coatings. A continuous-wave 1 064 nm Nd:YAG laser and a He-Ne laser were employed...Surface thermal lensing technique was developed into a high-sensitive apparatus for weak absorption test and defect analysis of optical coatings. A continuous-wave 1 064 nm Nd:YAG laser and a He-Ne laser were employed as pump source and probe source, respectively. Low noise photoelectrical components and a lock-in amplifier were used for photo-thermal deformation signal detection. In order to improve sensitivity, the apparatus configuration was optimized by choosing appropriate parameters, including pump beam spot size, chopper frequency, detection distance, waist radius and position of probe beam. Coating samples were mounted on a x-y stage. Different procedures, such as single spot, linear scan and 2-dimension area scan, could be performed manually or automatically. Various optical coatings were prepared by both electron beam evaporation and ion beam sputtering deposition. High sensitivity was obtained and low to 1×10 -7 weak absorption was tested in low-loss coating samples. For the sensitivity extreme of the system, 1×10 -8 absorption was reason out to be measured by surface thermal lensing technique. Very small standard deviation was achieved for the reproducibility evaluation. Moreover, a spatial resolution of 25 micron was proved according to the area scan which traced out the profile of photo-thermal defects inside optical coatings. The system was employed in the analyses of optical absorption, absorption uniformity and defect characterization, and revealed the relationship between laser-induced damage and absorption of optical coatings.展开更多
The influence of defects on the oxidation, hot corrosion and thermal shock properties of sputtered Co-30Cr-6Al-0.5Y coatings was investigated.The results indicated that the nodular defects reduced the properties of th...The influence of defects on the oxidation, hot corrosion and thermal shock properties of sputtered Co-30Cr-6Al-0.5Y coatings was investigated.The results indicated that the nodular defects reduced the properties of the coatings.For the oxidation,the nodular defects resulted in the severe internal oxidation of aluminium,as a result,the pure alu mina scale could not form at very high temperature such as at 1 100℃.For the hot corrosion,the nodular defects served as the short-path for the diffusion of sulfur into the coating and the substrate,and caused the sulfidation,of the specimen.Moreover,the nodular defects became the crack source during the thermal shock test and decreased the thermal shock resistance.展开更多
Coatings obtained with magnetron sputtering exhibit a columnay structure. There are nodular defects distributed in the coatings, which are fomed by radial growth of columnay grains in groups. The fomation of them does...Coatings obtained with magnetron sputtering exhibit a columnay structure. There are nodular defects distributed in the coatings, which are fomed by radial growth of columnay grains in groups. The fomation of them does not necessarily depend on surface asperities of substrate. The columnar grain boundaries are enriched in oxygen, which causes microporosity in the intercolumnar regions.展开更多
Using high aluminum refractory material as substrate at 1400℃, we studied the connections between several oxides such as Fe203, MnOv CuO, and the formation of defects such as coating crack, exfoliation, blistering, e...Using high aluminum refractory material as substrate at 1400℃, we studied the connections between several oxides such as Fe203, MnOv CuO, and the formation of defects such as coating crack, exfoliation, blistering, erosion, and fading away appeared in the application of high temperature infrared radiation coating. Analyses showed that thermal stress formed during the heating process due to the thermal expansion coefficient differential between the coating and the substrate, and volume effect caused by the crystal transferred when the temperature changed, which resulted in the coating crack and exfoliation. The gas produced by the reactions between components and binder or the components themselves during the heating process caused the coating blistering. The EMPA and XRD analyses show that oxides with low melting point in the penetrating area of the substrate may form eutectic with low melting point and produced thermal defects, which leads to the erosion by penetrating to the substrate. The valent changes of Fe2O3 and MnO2 during the heating process cause the volatilization of the oxides or the pulverization of the coatings, resulting in the coating fades away easily at high temperature for a long time.展开更多
Sintered NdFeB magnets have complex microstructure that makes them susceptible to corrosion in active environments.The current paper evaluated the anticorrosion characteristics of multilayer titanium nitride ceramic c...Sintered NdFeB magnets have complex microstructure that makes them susceptible to corrosion in active environments.The current paper evaluated the anticorrosion characteristics of multilayer titanium nitride ceramic coating applied through cathodic arc physical vapour deposition(CAPVD) for protection of sintered NdFeB permanent magnets.The performance of ceramic coating was compared to the electrodeposited nickel coating having a copper interlayer.Electrochemical impedance spectroscopy(EIS) and cyclic polar...展开更多
High laser-induced damage threshold and large aperture were focuses on the studies of high power laser coatings. This paper reports the research activities at our center. Several measures were developed for evaluating...High laser-induced damage threshold and large aperture were focuses on the studies of high power laser coatings. This paper reports the research activities at our center. Several measures were developed for evaluating characters of laser damage, including determination of laser induced damage threshold and detection of absorption based on surface thermal lensing technique. Defect was deemed to be the initial source of laser damage, and was the main factor restricting the laser damage resistance of optical coatings. The contribution of several kinds of typical defects to laser damage was analyzed, and some deposition measures were adopted to control and eliminate the origin of defect. Furthermore, some post-treatment methods were also employed to alleviate the influence of the defect and to improve the laser damage resistance. Correction mask was introduced to improve the thickness uniformity, and the thickness uniformity can be amended to less than 1% in the range of Φ650 mm. Preliminary investigation related to surface deformation was also conducted.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 51131005)
文摘The current distributions over carbon steel under iron red alkyd primer exposed to 3.5% sodium chloride solution were mapped using the wire beam electrode (WBE). The electrochemical impedance spectroscopy (EIS) of the WBE was carded out to analyze the performance of coating delamination and corrosion behavior of carbon steel beneath defective coating. The EIS data revealed that protective capability of coating decreased with immersion time and the degree of cathodic delamination showed a rapid rise. The current density distribution of WBE indicated that cathodic sites was located at the defect at the beginning of immersion and gradually spread into the intact coating. The cathodic regions were distinguished from the anodic area and distributed over the WBE. The changes of cathodic sites could reflect the deterioration process of defective coating. The cathodic area ratio was a more useful parameter than the cathodic delamination degree to evaluate the coating cathodic delamination. The polarity reversals of electrodes at the defect and beneath coating were observed. A simple discussion of relationship between the blister and the polarity reversal was made from a standpoint of electrochemical distribution. WBE method was able to map and record the changes of local cathodic sites beneath defective coating in real time, which could provide more detailed information about the local degradation of coating.
文摘Surface thermal lensing technique was developed into a high-sensitive apparatus for weak absorption test and defect analysis of optical coatings. A continuous-wave 1 064 nm Nd:YAG laser and a He-Ne laser were employed as pump source and probe source, respectively. Low noise photoelectrical components and a lock-in amplifier were used for photo-thermal deformation signal detection. In order to improve sensitivity, the apparatus configuration was optimized by choosing appropriate parameters, including pump beam spot size, chopper frequency, detection distance, waist radius and position of probe beam. Coating samples were mounted on a x-y stage. Different procedures, such as single spot, linear scan and 2-dimension area scan, could be performed manually or automatically. Various optical coatings were prepared by both electron beam evaporation and ion beam sputtering deposition. High sensitivity was obtained and low to 1×10 -7 weak absorption was tested in low-loss coating samples. For the sensitivity extreme of the system, 1×10 -8 absorption was reason out to be measured by surface thermal lensing technique. Very small standard deviation was achieved for the reproducibility evaluation. Moreover, a spatial resolution of 25 micron was proved according to the area scan which traced out the profile of photo-thermal defects inside optical coatings. The system was employed in the analyses of optical absorption, absorption uniformity and defect characterization, and revealed the relationship between laser-induced damage and absorption of optical coatings.
文摘The influence of defects on the oxidation, hot corrosion and thermal shock properties of sputtered Co-30Cr-6Al-0.5Y coatings was investigated.The results indicated that the nodular defects reduced the properties of the coatings.For the oxidation,the nodular defects resulted in the severe internal oxidation of aluminium,as a result,the pure alu mina scale could not form at very high temperature such as at 1 100℃.For the hot corrosion,the nodular defects served as the short-path for the diffusion of sulfur into the coating and the substrate,and caused the sulfidation,of the specimen.Moreover,the nodular defects became the crack source during the thermal shock test and decreased the thermal shock resistance.
文摘Coatings obtained with magnetron sputtering exhibit a columnay structure. There are nodular defects distributed in the coatings, which are fomed by radial growth of columnay grains in groups. The fomation of them does not necessarily depend on surface asperities of substrate. The columnar grain boundaries are enriched in oxygen, which causes microporosity in the intercolumnar regions.
基金Funded by the National Natural Science Foundation of China(Nos.51272195 and 51202175)the Research Funds for the Central Universities(2012-Ia-012,2012-IV-105,2013-ZD-4)
文摘Using high aluminum refractory material as substrate at 1400℃, we studied the connections between several oxides such as Fe203, MnOv CuO, and the formation of defects such as coating crack, exfoliation, blistering, erosion, and fading away appeared in the application of high temperature infrared radiation coating. Analyses showed that thermal stress formed during the heating process due to the thermal expansion coefficient differential between the coating and the substrate, and volume effect caused by the crystal transferred when the temperature changed, which resulted in the coating crack and exfoliation. The gas produced by the reactions between components and binder or the components themselves during the heating process caused the coating blistering. The EMPA and XRD analyses show that oxides with low melting point in the penetrating area of the substrate may form eutectic with low melting point and produced thermal defects, which leads to the erosion by penetrating to the substrate. The valent changes of Fe2O3 and MnO2 during the heating process cause the volatilization of the oxides or the pulverization of the coatings, resulting in the coating fades away easily at high temperature for a long time.
文摘Sintered NdFeB magnets have complex microstructure that makes them susceptible to corrosion in active environments.The current paper evaluated the anticorrosion characteristics of multilayer titanium nitride ceramic coating applied through cathodic arc physical vapour deposition(CAPVD) for protection of sintered NdFeB permanent magnets.The performance of ceramic coating was compared to the electrodeposited nickel coating having a copper interlayer.Electrochemical impedance spectroscopy(EIS) and cyclic polar...
文摘High laser-induced damage threshold and large aperture were focuses on the studies of high power laser coatings. This paper reports the research activities at our center. Several measures were developed for evaluating characters of laser damage, including determination of laser induced damage threshold and detection of absorption based on surface thermal lensing technique. Defect was deemed to be the initial source of laser damage, and was the main factor restricting the laser damage resistance of optical coatings. The contribution of several kinds of typical defects to laser damage was analyzed, and some deposition measures were adopted to control and eliminate the origin of defect. Furthermore, some post-treatment methods were also employed to alleviate the influence of the defect and to improve the laser damage resistance. Correction mask was introduced to improve the thickness uniformity, and the thickness uniformity can be amended to less than 1% in the range of Φ650 mm. Preliminary investigation related to surface deformation was also conducted.