A microwave absorbing sheet with a high complex permeability and a relatively low complex permittivity is obtained by molding of the densely coated flaky carbonyl iron particles(FCIPs)by styrenebutadiene-styrene block...A microwave absorbing sheet with a high complex permeability and a relatively low complex permittivity is obtained by molding of the densely coated flaky carbonyl iron particles(FCIPs)by styrenebutadiene-styrene block copolymer(SBS)in the assistance of coupling agent modification.Direct molding of the core-shell FCIPs without adding extra binder results in a large permeability due to the high filling ratio(55vol%)of absorbents.Importantly,the permittivity is well suppressed by the dense insulate polymer shell on the FCIPs,avoiding the severe impedance mismatch problem of the high filler content microwave absorbing materials.Investigations show that modifying the surface of FCIPs by proper amount of silane coupling agent is critical for the coating quality of the SBS shell,which is verified by resistivity and corrosion current density measurements,and can be interpreted by improved interfacial compatibility between the modified FCIPs and SBS.The obtained microwave absorbing sheet shows a minimum reflection loss of-38.74 dB at 1.57 GHz and has an effective absorption bandwidth from 1.1 to 2.3 GHz at a relatively small thickness of 2 mm.展开更多
SiC-YAG(Y3Al5O12) ceramic composite powders were prepared by co-precipitation coating method. Mechanism of co-precipitation coating of SiC powders with Y3+ and Al3+ precursors was investigated. If the concentration of...SiC-YAG(Y3Al5O12) ceramic composite powders were prepared by co-precipitation coating method. Mechanism of co-precipitation coating of SiC powders with Y3+ and Al3+ precursors was investigated. If the concentration of [OH-] ion in the solution is controlled within the range between critical values for heterogeneous nucleation and homogeneous nucleation, Y3+ and Al3+ precipitation precursors can be coated on the surface of SiC particles. Y3+ and Al3+ precipitation precursors transform into YAG phase after calcining at 1000 ℃ without the formation of YAM and YAP phases. The formation temperature of YAG phase is about 600 ℃ lower than that of conventional powder mixing method. The effect of pH value of the solution and precipitant titration rate on coating quality of SiC-YAG composite powders was also studied. The results show that co-precipitation coating can be realized at a final pH of 9 and a precipitant titration rate of 5 ml·min-1.展开更多
基金Funded by the Young Top-notch Talent Cultivation Program of Hubei Provincethe National Natural Science Foundation of China(Nos.52071239,51521001)Fundamental Research Funds for the Central Universities(Nos.WUT:2021IVA116 and WUT:2021CG015)。
文摘A microwave absorbing sheet with a high complex permeability and a relatively low complex permittivity is obtained by molding of the densely coated flaky carbonyl iron particles(FCIPs)by styrenebutadiene-styrene block copolymer(SBS)in the assistance of coupling agent modification.Direct molding of the core-shell FCIPs without adding extra binder results in a large permeability due to the high filling ratio(55vol%)of absorbents.Importantly,the permittivity is well suppressed by the dense insulate polymer shell on the FCIPs,avoiding the severe impedance mismatch problem of the high filler content microwave absorbing materials.Investigations show that modifying the surface of FCIPs by proper amount of silane coupling agent is critical for the coating quality of the SBS shell,which is verified by resistivity and corrosion current density measurements,and can be interpreted by improved interfacial compatibility between the modified FCIPs and SBS.The obtained microwave absorbing sheet shows a minimum reflection loss of-38.74 dB at 1.57 GHz and has an effective absorption bandwidth from 1.1 to 2.3 GHz at a relatively small thickness of 2 mm.
文摘SiC-YAG(Y3Al5O12) ceramic composite powders were prepared by co-precipitation coating method. Mechanism of co-precipitation coating of SiC powders with Y3+ and Al3+ precursors was investigated. If the concentration of [OH-] ion in the solution is controlled within the range between critical values for heterogeneous nucleation and homogeneous nucleation, Y3+ and Al3+ precipitation precursors can be coated on the surface of SiC particles. Y3+ and Al3+ precipitation precursors transform into YAG phase after calcining at 1000 ℃ without the formation of YAM and YAP phases. The formation temperature of YAG phase is about 600 ℃ lower than that of conventional powder mixing method. The effect of pH value of the solution and precipitant titration rate on coating quality of SiC-YAG composite powders was also studied. The results show that co-precipitation coating can be realized at a final pH of 9 and a precipitant titration rate of 5 ml·min-1.