期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Microstructure of Ni–Al powder and Ni–Al composite coatings prepared by twin-wire arc spraying 被引量:3
1
作者 Ji-xiao Wang Gui-xian Wang +5 位作者 Jing-shun Liu Lun-yong Zhang Wei Wang Ze Li Qi-xiang Wang Jian-fei Sun 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第7期810-818,共9页
Ni–Al powder and Ni–Al composite coatings were fabricated by twin-wire arc spraying(TWAS). The microstructures of Ni-5wt%Al powder and Ni-20wt%Al powder were characterized by scanning electronic microscopy(SEM) ... Ni–Al powder and Ni–Al composite coatings were fabricated by twin-wire arc spraying(TWAS). The microstructures of Ni-5wt%Al powder and Ni-20wt%Al powder were characterized by scanning electronic microscopy(SEM) and energy dispersive spectroscopy(EDS). The results showed that the obtained particle size ranged from 5 to 50 μm. The morphology of the Ni–Al powder showed that molten particles were composed of Ni solid solution, NiAl, Ni_3Al, Al_2O_3, and NiO. The Ni–Al phase and a small amount of Al_2O_3 particles changed the composition of the coating. The microstructures of the twin-wire-arc-sprayed Ni–Al composite coatings were characterized by SEM, EDS, X-ray diffraction(XRD), and transmission electron microscopy(TEM). The results showed that the main phase of the Ni-5wt%Al coating consisted of Ni solid solution and Ni Al in addition to a small amount of Al_2O_3. The main phase of the Ni-20wt%Al coating mainly consisted of Ni solid solution, Ni Al, and Ni_3Al in addition to a small amount of Al and Al_2O_3, and Ni Al and Ni_3Al intermetallic compounds effectively further improved the final wear property of the coatings. TEM analysis indicated that fine spherical NiAl_3 precipitates and a Ni–Al–O amorphous phase formed in the matrix of the Ni solid solution in the original state. 展开更多
关键词 spraying powder composite coatings aluminum alloys intermetallics microstructure
下载PDF
Effect of activators on the properties of nickel coated diamond composite powders 被引量:4
2
作者 Zongshi Zuo Bonian Hu +2 位作者 Hong Chen Qizhi Dong Gang Yu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第11期1409-1415,共7页
Nickel coated diamond composite powders were fabricated via a newly developed direct electrodeposition technique. The effects of activators on the coating of diamond were firstly investigated and diamond grinding whee... Nickel coated diamond composite powders were fabricated via a newly developed direct electrodeposition technique. The effects of activators on the coating of diamond were firstly investigated and diamond grinding wheels were then prepared from Ni-coated diamond composite powders with different activators. The microstructural characterizations of this composite powders were finally conducted by scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction, and the mechanical and tribological properties of as-prepared diamond grinding wheels were also measured. There are changes in microstructures and properties of the composite powders with activators. The activator concentration also has an influence on the morphologies and phase structures of the Ni coating on diamond particles.The composite powders with more compact coating of nickel can be prepared by adding 1 g dm^(-3) or more AgNO_3 as an activator to electrodeposit nickel on diamond. The mechanical and tribological properties of diamond grinding wheels were significantly improved when the coating phase structure of Ni crystal grew with(111) plane orientation on the surface of diamond particles. The wheels made from nickel coated diamond composite powders possessed the advantages of easy preparation and outstanding tribological properties. Therefore, Ni coated diamond composite powders exhibit a great potential to be extensively applied in diamond cutting and grinding tools. 展开更多
关键词 composite powders Nickel coated diamond Activator Direct electrodeposition Phase structure Tribological property
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部