Considering the continuous exploitation of marine resources, it is very important to study the anticorrosion performance and durability of zinc coated streel (ZCS) because its increasing use as reinforcements in sea...Considering the continuous exploitation of marine resources, it is very important to study the anticorrosion performance and durability of zinc coated streel (ZCS) because its increasing use as reinforcements in seawater. Tafel polarization curves and linear polarization curves combined with electrochemical impedance spectroscopy (EIS) were employed to evaluate the corrosion performance of ZCS at Qingdao test station during long-term immersion in seawater. The results indicated that the corrosion rate of the ZCS increased obviously with immersion time in seawater. The corrosion products that formed on the zinc coated steel were loose and porous, and were mainly composed of Zn5(OH)8C12, Zn5(OH)6(CO3)2, and ZnO. Pitting corrosion occurred on the steel surface in neutral seawater, and the rate of ZCS corrosion decreased with increasing pH.展开更多
The inhibition effect of an excellent environmental-friendly corrosion inhibitor--berberine on hot-dip coated steels in the diluted HCI has been investigated by using quantum chemistry analysis, mass-loss tests, elec-...The inhibition effect of an excellent environmental-friendly corrosion inhibitor--berberine on hot-dip coated steels in the diluted HCI has been investigated by using quantum chemistry analysis, mass-loss tests, elec- trochemical measurements and scanning electron microscopy (SEM) observation. Calculation results show that berberine has a nearly planar structure with a number of active centers. The value of Mulliken charge, and the distribution of the highest occupied molecular orbital (HOMO) and the lower unoccupied molecular orbital (LUMO) imply that berberine has a good ability of electron exchange with metal surface. The test results indicate that inhibition efficiency (IE%) increases with the inhibitor concentration and the highest IE can reach 99%. Adsorption of berberine on the coating surface follows Langmuir adsorption isotherm with a single molecular layer by chemisorption.展开更多
An experimental investigation is outlined for the CO 2 laser cutting process of metallic coated sheet steels, GALVABOND. It shows that by proper control of the cutting parameters, good quality cuts are possible a...An experimental investigation is outlined for the CO 2 laser cutting process of metallic coated sheet steels, GALVABOND. It shows that by proper control of the cutting parameters, good quality cuts are possible at high cutting rate. Visual examination indicates that when increasing the cutting rate to as high as 5000 mm/min (about 100 times that suggested previously), kerfs of better quality can be achieved. Some kerf characteristics such as the width, heat affected zone and dross in terms of the process parameters are also discussed. A statistical analysis has arrived at a recommendatio on the optimum cutting parameters forprocessing GALVABOND.展开更多
In this paper, the droplet transfer behavior of the stainless steel coated electrode with double layer coating is researched by means of those experimental methods, such as high speed camera, collecting droplet in wa...In this paper, the droplet transfer behavior of the stainless steel coated electrode with double layer coating is researched by means of those experimental methods, such as high speed camera, collecting droplet in water, surfacing on the steel plate et al. The results show that the droplet transfer indexes of coated electrode are mainly controlled by the size of droplet, which affects the transfer behavior of droplet. The distribution characteristic of the droplet size of the electrode affects the numerical relationship among droplet transfer indexes. The metallurgical process of the coated electrode with double layer coating is carried out continuously in different zones. The main reason for the coated electrode with double layer coating gaining excellent usability quality is that the droplets realize the 'quasi flux wall guided transfer pattern'.展开更多
The present work is investigated the in-situ monitoring of local corrosion process of scratched epoxy coated carbon steel in saturated Ca(OH)<sub>2</sub> with and without 3% NaCl using SECM and correlated ...The present work is investigated the in-situ monitoring of local corrosion process of scratched epoxy coated carbon steel in saturated Ca(OH)<sub>2</sub> with and without 3% NaCl using SECM and correlated with EIS. The results obtained from EIS analysis showed that the corrosion resistance of scratched epoxy coated carbon steel decreases in Cl<sup>-</sup> containing solution as the increase in wet/ dry corrosion cycles. This was indicated by decrease in film resistance (R<sub>f</sub>) and charge transfer resistance (R<sub>ct</sub>), while the coated steel maintain the resistance values in saturated Ca(OH)<sub>2</sub>, most of which recovered after drying. The corrosion process was monitored using SECM by setting the tip potential at -0.70 V vs Ag/AgCl, where the consumption of dissolved oxygen occurred at the surface of test sample. The consumption of dissolved oxygen current (I’<sub>oxy-c</sub>) values was increased during the immersion in a solution with 3% NaCl. However, in wet/dry corrosion cycles, I’<sub>oxy-c</sub> was decreased due to the coverage of hydroxides/oxides at scratch area which suppressed the consumption of dissolved O<sub>2</sub>. It was found that the continuous decrease in corrosion was mainly attributed to continuous formation of corrosion products at anodic spots.展开更多
This paper presents an analytical approach for estimating frictional resistance to pipe movement at soil and external pipe surface of buried coated pressurized steel pipes relative to the internal thrust force.The pro...This paper presents an analytical approach for estimating frictional resistance to pipe movement at soil and external pipe surface of buried coated pressurized steel pipes relative to the internal thrust force.The proposed analytical method was developed based on 36 experiments,which involved three coating types(cement mortar(CM),polyurethane type-I(PT-I),prefabricated plastic tape(PPT))on pipes’surfaces,three different soils(pea-gravel(PG),sand(S),silty-clay(SC)),and four simulated over burden depths above the pipe’s crown.Investigation showed frictional resistance decreased with increasing over burden depth above the pipe’s crown.The degree of frictional resistance at the pipe-soil interface was found to be in the order of PG>SC>S for all coating variations and overburden depths.CM coated pipe buried in all three types of soil produced significantly higher frictional resistance as compared to other coating types.Based on experimental data,the developed analytical introduced a dimensionless factor“Z”,which included effects of types of coatings,soil,and overburden depths for simplified rapid calculation.Analysis showed that the method provided a better prediction of frictional resistance forces,in comparison to previous analytical methods,which were barely close in predicting friction resistance for different coating variations,soil types,and overburden depths.Friction resistance force values reported herein could be considered conservative.展开更多
The process of laser bull welding of zinc-coated steel(SGCD3 and WLZn)blanks was presented.whose edges were prepared by laser cutting.The properties of the butt joints.such as tensile strength.bending,stamping.weld ...The process of laser bull welding of zinc-coated steel(SGCD3 and WLZn)blanks was presented.whose edges were prepared by laser cutting.The properties of the butt joints.such as tensile strength.bending,stamping.weld shape,and corrosion-resisant were tested.The experiments of laser cutting and welding were carried ont on a custom-made system designed.which is a set of equipment for wide sheet butt welding based on a laser cutting-welding combination process.The experiments proved the technological feasibility of laser butt welding for thin zinc coated steel sheets whose edges were prepared by laser cutting on the same equipment.展开更多
Pre-painted steel is one of the most important structural material of the 20th century well known for its excellent corrosion resistance and wide ranging applications.A typical pre-painted steel usually consists of a ...Pre-painted steel is one of the most important structural material of the 20th century well known for its excellent corrosion resistance and wide ranging applications.A typical pre-painted steel usually consists of a layer of metal coating system,preferably zinc or zinc alloy coating and a combination of layers of inorganic - organic coatings usually referred to as paint system.The corrosion resistance of the metal coating as well as the paint system may vary considerably based on their composition and the environment.For optimal corrosion performance of pre-painted steel,a judicious selection of both metal and inorganic-organic coating systems are essential.This paper reviews different types of possible corrosion issues in pre-painted steels and methods to optimise their performance.展开更多
Recent studies show an increase in the population of beavers, nutria and other rodents in vast regions of central Europe over the last 15 years. Unfortunately, this caused in many instances considerable damage on larg...Recent studies show an increase in the population of beavers, nutria and other rodents in vast regions of central Europe over the last 15 years. Unfortunately, this caused in many instances considerable damage on large rivers along dykes and earthworks in the floodplain areas, leading to an increased risk of bank failures. However, most of these mammals belong to protected species. This work is aimed at showing positive experience in cooperation with universities, research institutes and environmental agencies regarding measures to permanently safeguard the banks using composite erosion control systems with polymer coated steel wire net (as flexible reinforcement component) and a geosynthetic (to promote vegetation growth). The steel mesh component works as an effective long-term barrier against the intrusion of mammals, discouraging them from digging inside the core of the dyke. An analysis of the sensitive areas to be protected led also to definition of the characteristics of these interventions (length, shape, escape ways, population areas, etc.). The study will present several additional benefits when using polymer steel nets along dykes, such as: high and durable erosion protection in overflow areas, promotion of fast and effective vegetation growth (increasing stability), surface protection against ice impacts (in northern regions), ease of installation, maintenance, ability to conform to irregular shapes of the slope. This work will also present the positive outcome of research studies along dykes in Germany, Austria and in Italy.展开更多
The Cr-plated coating inside a gun barrel can effectively improve the barrel’s erosion resistance and thus increase the service life.However,due to the cyclic thermal load caused by high-temperature gunpowder,micro-e...The Cr-plated coating inside a gun barrel can effectively improve the barrel’s erosion resistance and thus increase the service life.However,due to the cyclic thermal load caused by high-temperature gunpowder,micro-element damage tends to occur within the Cr coating/steel substrate interface,leading to a gradual deterioration in macro-mechanical properties for the material in the related region.In order to mimic this cyclic thermal load and,thereby,study the thermal erosion behavior of the Cr coating on the barrel’s inner wall,a laser emitter is utilized in the current study.With the help of in-situ tensile test and finite element simulation results,a shear stress distribution law of the Cr coating/steel substrate and a change law of the interface ultimate shear strength are identified.Studies have shown that the Cr coating/steel substrate interface’s ultimate shear strength has a significant weakening effect due to increasing temperature.In this study,the interfacial ultimate shear strength decreases from 2.57 GPa(no erosion)to 1.02 GPa(laser power is 160 W).The data from this experiment is employed to establish a Cr coating/steel substrate interface shear damage model.And this model is used to predict the flaking process of Cr coating by finite element method.The simulation results show that the increase of coating crack spacing and coating thickness will increase the service life of gun barrel.展开更多
Two low alloy steels 0.5Cr-0.5Mo-0.25V and H85 were pack-aluminized at 900°for 4 h by using Fe-Al powder mixture containing 48% Fe, 20.6% Al- 29.4% Al2O3 and 2% NH4Cl by weight. The microhardness and oxidation re...Two low alloy steels 0.5Cr-0.5Mo-0.25V and H85 were pack-aluminized at 900°for 4 h by using Fe-Al powder mixture containing 48% Fe, 20.6% Al- 29.4% Al2O3 and 2% NH4Cl by weight. The microhardness and oxidation resistance at 900℃ of the aluminide coatings were studied. It was found that pack-aluminizing improves the microhardness of the 0.5Cro.5Mo-0.25V steel while it reduces the microhardness of the H85 steel. Pack aluminizing highly improves the oxidation resistance after 20h exposure at 900℃ in air for the investigated steels.展开更多
The corrosion behavior of partly coated carbon steel was investigated by salt spray test and scanning Kelvin probe (SKP) in order to understand the long-term corrosion behavior of coated carbon steel in marine atmos...The corrosion behavior of partly coated carbon steel was investigated by salt spray test and scanning Kelvin probe (SKP) in order to understand the long-term corrosion behavior of coated carbon steel in marine atmosphere environment. The localized corrosion was accurately characterized by SKP in both coated and uncoated regions. The SKP results showed that Volta potential varied with the test time, and the more the corrosion products, the more positive the potential. The borderline between coated and uncoated regions of partly coated steel shifted towards the coated side with the increasing of test time. The coating disbonding rate could be determined according to the shift of potential borderline measured by SKP. The corrosion mechanism of partly coated steel in NaCl salt spray was discussed according to the potential maps and corrosion morphologies.展开更多
The effect of the presence of Ni in solution as Ni-EDTA complex in lithiated water at roon temperature and pH 10.5 on the formation of ferrite coating on carbon steel surface was studie in an autoclave at 523 K for 12...The effect of the presence of Ni in solution as Ni-EDTA complex in lithiated water at roon temperature and pH 10.5 on the formation of ferrite coating on carbon steel surface was studie in an autoclave at 523 K for 12 days at different Ni concentrations with varying amounts of free EDTA. The Ni-ferrite coating was characterized by XRD, SIMS and XPS and also bulk chemical analysis by AAS and UV-visible spectrophotometer. The chemical composition of Ni-ferrite coating showed variation with depth acro5s solution-oxide interface to oxide-metal interface.The content of Ni in the oxide coating on the surface near solution-oxide intedece was found to be higher than the average Ni content estimated by analysis after descaling the coating展开更多
Low and medium carbon steels were aluminized by the pack aluminizing technique using halideactivated pure-Al and Fe-Al packs. The effect of mixture composition, aluminizing temperatureand time and C content of the ste...Low and medium carbon steels were aluminized by the pack aluminizing technique using halideactivated pure-Al and Fe-Al packs. The effect of mixture composition, aluminizing temperatureand time and C content of the steel substrate on the structure and thickness of the aluminidelayer, and on the oxidation resistance was investigated. The optimum oxidation resistance canbe achieved with a low carbon steel substrate when the intermetallic phases Fe3Al and FeAlform the surface of the aluminide layer. In this case, the Al concentration at the surface of thealuminide coating is at least ≥15 wt pct. Formation of high Al concentration phases (FeAl3 andFe2Al5) during aluminizing should be avoided as they tend to embrittle the aluminide layer andreduce its oxidation resistance.展开更多
A kind of ceramic slurry was prepared and sprayed onto the surface of 9Ni steel at room temperature. The coating layer will not only reduce the depth of the formed Ni-enriched entanglement at high temperature but also...A kind of ceramic slurry was prepared and sprayed onto the surface of 9Ni steel at room temperature. The coating layer will not only reduce the depth of the formed Ni-enriched entanglement at high temperature but also have an excellent ability to resist oxidation of the 9Ni steel. Compared to bare specimen, the depths of the entanglement of the coated 9Ni specimen could be successfully reduced by 74.1% and the oxidation loss be decreased by 62.3% by heating at 1 250 ℃ for 60 min. In addition, the coated specimen indicates no trace of oxide pegs. It proves that the coating has outstanding improvement to internal oxidation resistance. Some characterization methods such as metalloscopy, XRD, XPS, SEM and EDX have been used to reveal a possible protective mechanism. The result shows that the coating layer reacts with the iron oxide to form Mg Fe2O4 on the surface of the coated specimen, which could provide a smaller diffusion coefficient rate of Fe ion. The coating with a low cost and easy implementation is promisingly applicable in the slab-reheating process of the 9Ni steel.展开更多
It is known that fiber wastes (lint, down and seeds) produced at ginneries contain fibers that are suitable for spinning and can be used in industry, and their separation significantly increases the level of fiber pro...It is known that fiber wastes (lint, down and seeds) produced at ginneries contain fibers that are suitable for spinning and can be used in industry, and their separation significantly increases the level of fiber production (1.9% - 2.5%). Based on these analyzes, the study aimed to create a new device that separates long fibers from lint and down. As a result, the amount of fiber output in the enterprise will increase and the enterprise will have significant economic benefits. In addition, the introduction of the device will prevent the addition of long fibers (longer than 16 mm) that can be used in the textile industry to the waste. This article focuses on the creation of a fiber separation device suitable for the treatment and spinning of fibrous waste produced in ginneries. The study theoretically examined the main working bodies of the fiber separation device from waste. Theoretical research is devoted to the study of the strength of the main working body of the fiber separation device<span style="white-space:nowrap;">−</span>the separating saw drum and its shaft. In the study, the sawdust drum is a more stressed steel coating, and it was found that the strength reserve of this drum is [<span style="white-space:nowrap;"><em>δ</em></span><sub>Т</sub>] = 2.03 (where <em>δ</em><sub>Т</sub> = 0.8 - 2.5) was found to be. As a result of calculating the resistance of the saw drum shaft to stiffness and vibration, it was determined that the shafts are resistant to vibration under periodic loading and that the oscillation frequency along its axis through the critical rotation frequency is <em>v<sub>cr</sub></em>=10.3 Gts.展开更多
A novel Ag-SiO_(2) braze for Solid Oxide Cells was successfully developed and applied to join Co coated AISI 441 ferritic stainless steel to YSZ-NiO half cells.The braze showed an improved wettability on the coated st...A novel Ag-SiO_(2) braze for Solid Oxide Cells was successfully developed and applied to join Co coated AISI 441 ferritic stainless steel to YSZ-NiO half cells.The braze showed an improved wettability on the coated steel and the YSZ compared to pure Ag.A defect-free steel/YSZ joint was obtained using an Ag-1SiO_(2) braze jointed at 1000℃for 30 min in air.The microstructure of the joints was characterized by scanning electron microscopy and transmission electron microscopy with energy-dispersive X-ray spectroscopy.Furthermore,a Co-Si-O_(2)phase diagram was calculated and used to explain the experimental results and formulate a reaction mechanism.It was found,that during the air brazing process,Co_(3)O_(4)and(Co,Fe)_(3)O_(4)are formed by the oxidation of the prefabricated Co coating.The growth of Cr_(2)O_(3)was effectively impeded by the formed Co-based spinels.In a second step,Co_(2)O_(3)reacts with the SiOpresent in braze.The CoSiOformed by the reaction ensures a firm bonding between the steel and Ag-SiObraze.展开更多
Rotational fretting which exist in many engineering applications has incurred enormous economic loss. Thus, accessible methods are urgently needed to alleviate or eliminate damage by rotational fretting. Surface engin...Rotational fretting which exist in many engineering applications has incurred enormous economic loss. Thus, accessible methods are urgently needed to alleviate or eliminate damage by rotational fretting. Surface engineering is an effective approach that is successfully adopted to enhance the ability of components to resist the fretting damage. In this paper, using a high-velocity oxygen fuel sprayed(HVOF) technique WC-17 Co coating is deposited on an LZ50 steel surface to study its properties through Vickers hardness testing, scanning electric microscope(SEM), energy dispersive X-ray spectroscopy(EDX), and X-ray diffractrometry(XRD). Rotational fretting wear tests are conducted under normal load varied from 10 N to 50 N, and angular displacement amplitudes vary from 0.125° to 1°. Wear scars are examined using SEM, EDX, optical microscopy(OM), and surface topography. The experimental results reveal that the WC-17 Co coating adjusted the boundary between the partial slip regime(PSR) and the slip regime(SR) to the direction of smaller amplitude displacement. As a result, the coefficients of friction are consistently lower than the substrate's coefficients of friction both in the PSR and SR. The damage to the coating in the PSR is very slight. In the SR, the coating exhibits higher debris removal efficiency and load-carrying capacity. The bulge is not found for the coating due to the coating's higher hardness to restrain plastic flow. This research could provide experimental bases for promoting industrial application of WC-17 Co coating in prevention of rotational fretting wear.展开更多
This article examines the technological parameters of the device for the separation of fibers suitable for spinning by processing fibrous waste from the technological processes of ginneries. Technological processes in...This article examines the technological parameters of the device for the separation of fibers suitable for spinning by processing fibrous waste from the technological processes of ginneries. Technological processes in the cotton ginning industry include a complex of physical and mechanical advantages, the successful study of which is possible only with the use of modern achievements in science and technology. Therefore, it is advisable to conduct scientific research based on mathematical modeling. To justify the effective operation of the selected design of the cotton fiber separation device, it is necessary to select its optimal technological parameters. Improving the efficiency of the process of separation of spinning fibers from the composition of fibrous waste depends directly on technological parameters. The application of mathematical methods in the planning and conduct of research allows for determining the individual effects of the interaction of several factors that characterize the combined parameters of the optimization parameters, in contrast to traditional computational methods of research. As a result, it will be possible to obtain a mathematical model of the object understudy in a relatively small number of tests, which will simultaneously serve to obtain optimal solutions.展开更多
Hard coatings are used to improve the wear resistance of metals which largely depends on adhesion between substrate and coating.The wear and friction behavior of uncoated and TiCN-coated D2,M2 and M4 steels were evalu...Hard coatings are used to improve the wear resistance of metals which largely depends on adhesion between substrate and coating.The wear and friction behavior of uncoated and TiCN-coated D2,M2 and M4 steels were evaluated by apin-on-disk test under lubricated conditions.In order to evaluate the influence of lubricant on wear performance,dry friction tests were also performed.The results showed that friction coefficients were very similar for both uncoated and TiCN-coated steels.Under lubricated conditions,the uncoated D2 tool steel exhibited the lowest friction coefficient,but the TiCN-coated D2 steel presented the smallest wear rate.Abrasion was the main wear mechanism in all the tribocouples.Additionally,microhardness measurements were carried out,finding an influence of the steel substrate on the hardness of the coatings.Besides,adhesion test was conducted,suggesting agood adhesion of class 1 between substrates and TiCN coatings.展开更多
基金Supported by the National Natural Science Foundation of China(No.41506098)the Post-Doctoral Fund of Zhejiang Province(No.BSH 1502160)+1 种基金the Open Fund Project of Key Laboratory of Marine Materials and Related Technologies of China Academy of Sciences(No.LMMT-KFKT-2014-008)the Ningbo Natural Science Foundation(No.2015A610016)
文摘Considering the continuous exploitation of marine resources, it is very important to study the anticorrosion performance and durability of zinc coated streel (ZCS) because its increasing use as reinforcements in seawater. Tafel polarization curves and linear polarization curves combined with electrochemical impedance spectroscopy (EIS) were employed to evaluate the corrosion performance of ZCS at Qingdao test station during long-term immersion in seawater. The results indicated that the corrosion rate of the ZCS increased obviously with immersion time in seawater. The corrosion products that formed on the zinc coated steel were loose and porous, and were mainly composed of Zn5(OH)8C12, Zn5(OH)6(CO3)2, and ZnO. Pitting corrosion occurred on the steel surface in neutral seawater, and the rate of ZCS corrosion decreased with increasing pH.
基金supported by the Shandong Provincial Natural Science Foundation, China (No. ZR2009BQ016)the Fundamental Research Funds for the Central Universities, China (No. 12CX04055A)
文摘The inhibition effect of an excellent environmental-friendly corrosion inhibitor--berberine on hot-dip coated steels in the diluted HCI has been investigated by using quantum chemistry analysis, mass-loss tests, elec- trochemical measurements and scanning electron microscopy (SEM) observation. Calculation results show that berberine has a nearly planar structure with a number of active centers. The value of Mulliken charge, and the distribution of the highest occupied molecular orbital (HOMO) and the lower unoccupied molecular orbital (LUMO) imply that berberine has a good ability of electron exchange with metal surface. The test results indicate that inhibition efficiency (IE%) increases with the inhibitor concentration and the highest IE can reach 99%. Adsorption of berberine on the coating surface follows Langmuir adsorption isotherm with a single molecular layer by chemisorption.
文摘An experimental investigation is outlined for the CO 2 laser cutting process of metallic coated sheet steels, GALVABOND. It shows that by proper control of the cutting parameters, good quality cuts are possible at high cutting rate. Visual examination indicates that when increasing the cutting rate to as high as 5000 mm/min (about 100 times that suggested previously), kerfs of better quality can be achieved. Some kerf characteristics such as the width, heat affected zone and dross in terms of the process parameters are also discussed. A statistical analysis has arrived at a recommendatio on the optimum cutting parameters forprocessing GALVABOND.
文摘In this paper, the droplet transfer behavior of the stainless steel coated electrode with double layer coating is researched by means of those experimental methods, such as high speed camera, collecting droplet in water, surfacing on the steel plate et al. The results show that the droplet transfer indexes of coated electrode are mainly controlled by the size of droplet, which affects the transfer behavior of droplet. The distribution characteristic of the droplet size of the electrode affects the numerical relationship among droplet transfer indexes. The metallurgical process of the coated electrode with double layer coating is carried out continuously in different zones. The main reason for the coated electrode with double layer coating gaining excellent usability quality is that the droplets realize the 'quasi flux wall guided transfer pattern'.
文摘The present work is investigated the in-situ monitoring of local corrosion process of scratched epoxy coated carbon steel in saturated Ca(OH)<sub>2</sub> with and without 3% NaCl using SECM and correlated with EIS. The results obtained from EIS analysis showed that the corrosion resistance of scratched epoxy coated carbon steel decreases in Cl<sup>-</sup> containing solution as the increase in wet/ dry corrosion cycles. This was indicated by decrease in film resistance (R<sub>f</sub>) and charge transfer resistance (R<sub>ct</sub>), while the coated steel maintain the resistance values in saturated Ca(OH)<sub>2</sub>, most of which recovered after drying. The corrosion process was monitored using SECM by setting the tip potential at -0.70 V vs Ag/AgCl, where the consumption of dissolved oxygen occurred at the surface of test sample. The consumption of dissolved oxygen current (I’<sub>oxy-c</sub>) values was increased during the immersion in a solution with 3% NaCl. However, in wet/dry corrosion cycles, I’<sub>oxy-c</sub> was decreased due to the coverage of hydroxides/oxides at scratch area which suppressed the consumption of dissolved O<sub>2</sub>. It was found that the continuous decrease in corrosion was mainly attributed to continuous formation of corrosion products at anodic spots.
文摘This paper presents an analytical approach for estimating frictional resistance to pipe movement at soil and external pipe surface of buried coated pressurized steel pipes relative to the internal thrust force.The proposed analytical method was developed based on 36 experiments,which involved three coating types(cement mortar(CM),polyurethane type-I(PT-I),prefabricated plastic tape(PPT))on pipes’surfaces,three different soils(pea-gravel(PG),sand(S),silty-clay(SC)),and four simulated over burden depths above the pipe’s crown.Investigation showed frictional resistance decreased with increasing over burden depth above the pipe’s crown.The degree of frictional resistance at the pipe-soil interface was found to be in the order of PG>SC>S for all coating variations and overburden depths.CM coated pipe buried in all three types of soil produced significantly higher frictional resistance as compared to other coating types.Based on experimental data,the developed analytical introduced a dimensionless factor“Z”,which included effects of types of coatings,soil,and overburden depths for simplified rapid calculation.Analysis showed that the method provided a better prediction of frictional resistance forces,in comparison to previous analytical methods,which were barely close in predicting friction resistance for different coating variations,soil types,and overburden depths.Friction resistance force values reported herein could be considered conservative.
文摘The process of laser bull welding of zinc-coated steel(SGCD3 and WLZn)blanks was presented.whose edges were prepared by laser cutting.The properties of the butt joints.such as tensile strength.bending,stamping.weld shape,and corrosion-resisant were tested.The experiments of laser cutting and welding were carried ont on a custom-made system designed.which is a set of equipment for wide sheet butt welding based on a laser cutting-welding combination process.The experiments proved the technological feasibility of laser butt welding for thin zinc coated steel sheets whose edges were prepared by laser cutting on the same equipment.
文摘Pre-painted steel is one of the most important structural material of the 20th century well known for its excellent corrosion resistance and wide ranging applications.A typical pre-painted steel usually consists of a layer of metal coating system,preferably zinc or zinc alloy coating and a combination of layers of inorganic - organic coatings usually referred to as paint system.The corrosion resistance of the metal coating as well as the paint system may vary considerably based on their composition and the environment.For optimal corrosion performance of pre-painted steel,a judicious selection of both metal and inorganic-organic coating systems are essential.This paper reviews different types of possible corrosion issues in pre-painted steels and methods to optimise their performance.
文摘Recent studies show an increase in the population of beavers, nutria and other rodents in vast regions of central Europe over the last 15 years. Unfortunately, this caused in many instances considerable damage on large rivers along dykes and earthworks in the floodplain areas, leading to an increased risk of bank failures. However, most of these mammals belong to protected species. This work is aimed at showing positive experience in cooperation with universities, research institutes and environmental agencies regarding measures to permanently safeguard the banks using composite erosion control systems with polymer coated steel wire net (as flexible reinforcement component) and a geosynthetic (to promote vegetation growth). The steel mesh component works as an effective long-term barrier against the intrusion of mammals, discouraging them from digging inside the core of the dyke. An analysis of the sensitive areas to be protected led also to definition of the characteristics of these interventions (length, shape, escape ways, population areas, etc.). The study will present several additional benefits when using polymer steel nets along dykes, such as: high and durable erosion protection in overflow areas, promotion of fast and effective vegetation growth (increasing stability), surface protection against ice impacts (in northern regions), ease of installation, maintenance, ability to conform to irregular shapes of the slope. This work will also present the positive outcome of research studies along dykes in Germany, Austria and in Italy.
文摘The Cr-plated coating inside a gun barrel can effectively improve the barrel’s erosion resistance and thus increase the service life.However,due to the cyclic thermal load caused by high-temperature gunpowder,micro-element damage tends to occur within the Cr coating/steel substrate interface,leading to a gradual deterioration in macro-mechanical properties for the material in the related region.In order to mimic this cyclic thermal load and,thereby,study the thermal erosion behavior of the Cr coating on the barrel’s inner wall,a laser emitter is utilized in the current study.With the help of in-situ tensile test and finite element simulation results,a shear stress distribution law of the Cr coating/steel substrate and a change law of the interface ultimate shear strength are identified.Studies have shown that the Cr coating/steel substrate interface’s ultimate shear strength has a significant weakening effect due to increasing temperature.In this study,the interfacial ultimate shear strength decreases from 2.57 GPa(no erosion)to 1.02 GPa(laser power is 160 W).The data from this experiment is employed to establish a Cr coating/steel substrate interface shear damage model.And this model is used to predict the flaking process of Cr coating by finite element method.The simulation results show that the increase of coating crack spacing and coating thickness will increase the service life of gun barrel.
文摘Two low alloy steels 0.5Cr-0.5Mo-0.25V and H85 were pack-aluminized at 900°for 4 h by using Fe-Al powder mixture containing 48% Fe, 20.6% Al- 29.4% Al2O3 and 2% NH4Cl by weight. The microhardness and oxidation resistance at 900℃ of the aluminide coatings were studied. It was found that pack-aluminizing improves the microhardness of the 0.5Cro.5Mo-0.25V steel while it reduces the microhardness of the H85 steel. Pack aluminizing highly improves the oxidation resistance after 20h exposure at 900℃ in air for the investigated steels.
基金the National Natural Science Foundation of China (Nos.50871021and50701006)
文摘The corrosion behavior of partly coated carbon steel was investigated by salt spray test and scanning Kelvin probe (SKP) in order to understand the long-term corrosion behavior of coated carbon steel in marine atmosphere environment. The localized corrosion was accurately characterized by SKP in both coated and uncoated regions. The SKP results showed that Volta potential varied with the test time, and the more the corrosion products, the more positive the potential. The borderline between coated and uncoated regions of partly coated steel shifted towards the coated side with the increasing of test time. The coating disbonding rate could be determined according to the shift of potential borderline measured by SKP. The corrosion mechanism of partly coated steel in NaCl salt spray was discussed according to the potential maps and corrosion morphologies.
文摘The effect of the presence of Ni in solution as Ni-EDTA complex in lithiated water at roon temperature and pH 10.5 on the formation of ferrite coating on carbon steel surface was studie in an autoclave at 523 K for 12 days at different Ni concentrations with varying amounts of free EDTA. The Ni-ferrite coating was characterized by XRD, SIMS and XPS and also bulk chemical analysis by AAS and UV-visible spectrophotometer. The chemical composition of Ni-ferrite coating showed variation with depth acro5s solution-oxide interface to oxide-metal interface.The content of Ni in the oxide coating on the surface near solution-oxide intedece was found to be higher than the average Ni content estimated by analysis after descaling the coating
文摘Low and medium carbon steels were aluminized by the pack aluminizing technique using halideactivated pure-Al and Fe-Al packs. The effect of mixture composition, aluminizing temperatureand time and C content of the steel substrate on the structure and thickness of the aluminidelayer, and on the oxidation resistance was investigated. The optimum oxidation resistance canbe achieved with a low carbon steel substrate when the intermetallic phases Fe3Al and FeAlform the surface of the aluminide layer. In this case, the Al concentration at the surface of thealuminide coating is at least ≥15 wt pct. Formation of high Al concentration phases (FeAl3 andFe2Al5) during aluminizing should be avoided as they tend to embrittle the aluminide layer andreduce its oxidation resistance.
基金Funded by the Key Projects in the National Science &Technology Pillar Program in the Twelfth Five-year Plan Period(No.2012BAB08B04)the National Natural Science Foundation of China(No.51202249)
文摘A kind of ceramic slurry was prepared and sprayed onto the surface of 9Ni steel at room temperature. The coating layer will not only reduce the depth of the formed Ni-enriched entanglement at high temperature but also have an excellent ability to resist oxidation of the 9Ni steel. Compared to bare specimen, the depths of the entanglement of the coated 9Ni specimen could be successfully reduced by 74.1% and the oxidation loss be decreased by 62.3% by heating at 1 250 ℃ for 60 min. In addition, the coated specimen indicates no trace of oxide pegs. It proves that the coating has outstanding improvement to internal oxidation resistance. Some characterization methods such as metalloscopy, XRD, XPS, SEM and EDX have been used to reveal a possible protective mechanism. The result shows that the coating layer reacts with the iron oxide to form Mg Fe2O4 on the surface of the coated specimen, which could provide a smaller diffusion coefficient rate of Fe ion. The coating with a low cost and easy implementation is promisingly applicable in the slab-reheating process of the 9Ni steel.
文摘It is known that fiber wastes (lint, down and seeds) produced at ginneries contain fibers that are suitable for spinning and can be used in industry, and their separation significantly increases the level of fiber production (1.9% - 2.5%). Based on these analyzes, the study aimed to create a new device that separates long fibers from lint and down. As a result, the amount of fiber output in the enterprise will increase and the enterprise will have significant economic benefits. In addition, the introduction of the device will prevent the addition of long fibers (longer than 16 mm) that can be used in the textile industry to the waste. This article focuses on the creation of a fiber separation device suitable for the treatment and spinning of fibrous waste produced in ginneries. The study theoretically examined the main working bodies of the fiber separation device from waste. Theoretical research is devoted to the study of the strength of the main working body of the fiber separation device<span style="white-space:nowrap;">−</span>the separating saw drum and its shaft. In the study, the sawdust drum is a more stressed steel coating, and it was found that the strength reserve of this drum is [<span style="white-space:nowrap;"><em>δ</em></span><sub>Т</sub>] = 2.03 (where <em>δ</em><sub>Т</sub> = 0.8 - 2.5) was found to be. As a result of calculating the resistance of the saw drum shaft to stiffness and vibration, it was determined that the shafts are resistant to vibration under periodic loading and that the oscillation frequency along its axis through the critical rotation frequency is <em>v<sub>cr</sub></em>=10.3 Gts.
基金the National Natural Science Foundation of China(nos.51805114,52005131,and U1737205)。
文摘A novel Ag-SiO_(2) braze for Solid Oxide Cells was successfully developed and applied to join Co coated AISI 441 ferritic stainless steel to YSZ-NiO half cells.The braze showed an improved wettability on the coated steel and the YSZ compared to pure Ag.A defect-free steel/YSZ joint was obtained using an Ag-1SiO_(2) braze jointed at 1000℃for 30 min in air.The microstructure of the joints was characterized by scanning electron microscopy and transmission electron microscopy with energy-dispersive X-ray spectroscopy.Furthermore,a Co-Si-O_(2)phase diagram was calculated and used to explain the experimental results and formulate a reaction mechanism.It was found,that during the air brazing process,Co_(3)O_(4)and(Co,Fe)_(3)O_(4)are formed by the oxidation of the prefabricated Co coating.The growth of Cr_(2)O_(3)was effectively impeded by the formed Co-based spinels.In a second step,Co_(2)O_(3)reacts with the SiOpresent in braze.The CoSiOformed by the reaction ensures a firm bonding between the steel and Ag-SiObraze.
基金Supported by Yangtze River Scholars and Innovation Team Development Plan of China(Grant No.IRT1178)Guizhou Provincial Joint Foundation of China(Grant No.LKG[2013]09)Guizhou Provincial Universities Engineering Research Center Project of China(Grant No.[2012]023)
文摘Rotational fretting which exist in many engineering applications has incurred enormous economic loss. Thus, accessible methods are urgently needed to alleviate or eliminate damage by rotational fretting. Surface engineering is an effective approach that is successfully adopted to enhance the ability of components to resist the fretting damage. In this paper, using a high-velocity oxygen fuel sprayed(HVOF) technique WC-17 Co coating is deposited on an LZ50 steel surface to study its properties through Vickers hardness testing, scanning electric microscope(SEM), energy dispersive X-ray spectroscopy(EDX), and X-ray diffractrometry(XRD). Rotational fretting wear tests are conducted under normal load varied from 10 N to 50 N, and angular displacement amplitudes vary from 0.125° to 1°. Wear scars are examined using SEM, EDX, optical microscopy(OM), and surface topography. The experimental results reveal that the WC-17 Co coating adjusted the boundary between the partial slip regime(PSR) and the slip regime(SR) to the direction of smaller amplitude displacement. As a result, the coefficients of friction are consistently lower than the substrate's coefficients of friction both in the PSR and SR. The damage to the coating in the PSR is very slight. In the SR, the coating exhibits higher debris removal efficiency and load-carrying capacity. The bulge is not found for the coating due to the coating's higher hardness to restrain plastic flow. This research could provide experimental bases for promoting industrial application of WC-17 Co coating in prevention of rotational fretting wear.
文摘This article examines the technological parameters of the device for the separation of fibers suitable for spinning by processing fibrous waste from the technological processes of ginneries. Technological processes in the cotton ginning industry include a complex of physical and mechanical advantages, the successful study of which is possible only with the use of modern achievements in science and technology. Therefore, it is advisable to conduct scientific research based on mathematical modeling. To justify the effective operation of the selected design of the cotton fiber separation device, it is necessary to select its optimal technological parameters. Improving the efficiency of the process of separation of spinning fibers from the composition of fibrous waste depends directly on technological parameters. The application of mathematical methods in the planning and conduct of research allows for determining the individual effects of the interaction of several factors that characterize the combined parameters of the optimization parameters, in contrast to traditional computational methods of research. As a result, it will be possible to obtain a mathematical model of the object understudy in a relatively small number of tests, which will simultaneously serve to obtain optimal solutions.
基金support of Tecnológico Nacional de México(TNM)(Grant No.5724.16P)
文摘Hard coatings are used to improve the wear resistance of metals which largely depends on adhesion between substrate and coating.The wear and friction behavior of uncoated and TiCN-coated D2,M2 and M4 steels were evaluated by apin-on-disk test under lubricated conditions.In order to evaluate the influence of lubricant on wear performance,dry friction tests were also performed.The results showed that friction coefficients were very similar for both uncoated and TiCN-coated steels.Under lubricated conditions,the uncoated D2 tool steel exhibited the lowest friction coefficient,but the TiCN-coated D2 steel presented the smallest wear rate.Abrasion was the main wear mechanism in all the tribocouples.Additionally,microhardness measurements were carried out,finding an influence of the steel substrate on the hardness of the coatings.Besides,adhesion test was conducted,suggesting agood adhesion of class 1 between substrates and TiCN coatings.