On-line temperature monitoring of plasma sprayed coating is presented, which is based on IR pyrometery combined to robot trajectories. Temperature fields of the substrate before spraying and the deposited coating when...On-line temperature monitoring of plasma sprayed coating is presented, which is based on IR pyrometery combined to robot trajectories. Temperature fields of the substrate before spraying and the deposited coating when the damage happens are taken to investigate the temperature fluctuation information. Experimental results demonstrate that coating damage always occurs in the temperature transition area of the substrate from the higher to the lower, as well as the higher temperature area. The temperature difference between the peak and the mean of the relevant regions is beyond 30 - 50℃ or even higher. This case provides the omen of coating damage and the focusing scopes for the process control of coating temperature in plasma spraying展开更多
Ultra-high temperature ceramic coatings have ultra-high melting points,excellent mechanical properties and high temperature ablation resistance.These unique performance combinations turn it into a promising material f...Ultra-high temperature ceramic coatings have ultra-high melting points,excellent mechanical properties and high temperature ablation resistance.These unique performance combinations turn it into a promising material for use in extreme environment structures in rockets and hypersonic vehicles,particularly nozzles,leading edges and engine components.In this paper,various preparation methods of ultra-high temperature ceramic coatings were reviewed,including plasma spraying,chemical vapor deposition,pack cementation,slurry sintering,hot pressing and their research progress.Meanwhile,some new preparation methods of high temperature coatings,such as ion beam deposition,ultrasonic spraying,metal organic frame work coating,and magnetron sputtering,were introduced.The development trend of ultra-high temperature coatings was prospected as well.展开更多
A simple structure optical fiber sensor for relative humidity(RH) and temperature measurement is proposed and verified in this paper, which is based on graphene oxide quantum dots and polyvinyl alcohol(GOQDs-PVA) comp...A simple structure optical fiber sensor for relative humidity(RH) and temperature measurement is proposed and verified in this paper, which is based on graphene oxide quantum dots and polyvinyl alcohol(GOQDs-PVA) composite coated tapered no-core fiber(NCF) combined with a fiber Bragg grating(FBG). FBG is insensitive to humidity and sensitive to temperature, which is used to compensate temperature of the sensor. Experimental results show this sensor has humidity sensitivity of 143.27 pm/%RH ranging from 30%RH to 80%RH and the temperature sensitivity of 9.21 pm/℃. The proposed sensor has advantages of simple structure, good repeatability, and good stability, which is expected to be used in both RH and temperature measurement in biological and chemical fields.展开更多
Coherent gradient sensing (CGS) method can be used to measure the slope of a reflective surface, and has the merits of full-field, non-contact, and real-time measurement. In this study, the thermal stress field of t...Coherent gradient sensing (CGS) method can be used to measure the slope of a reflective surface, and has the merits of full-field, non-contact, and real-time measurement. In this study, the thermal stress field of thermal barrier coating (TBC) structures is measured by CGS method. Two kinds of powders were sprayed onto Ni-based alloy using a plasma spraying method to obtain two groups of film-substrate specimens. The specimens were then heated with an oxy-acetylene flame. The resulting thermal mismatch between the film and substrate led to out-of-plane deformation of the specimen. The deformation was measured by the reflective CGS method and the thermal stress field of the structure was obtained through calibration with the help of finite element analysis. Both the experiment and numerical results showed that the thermal stress field of TBC structures can be successfully measured by CGS method.展开更多
Interdiffusion can be a major cause of failure in coated parts that see service at elevated temperatures. Ways to measure the extent of interdiffusion and mathematical equations for predicting these measures are given...Interdiffusion can be a major cause of failure in coated parts that see service at elevated temperatures. Ways to measure the extent of interdiffusion and mathematical equations for predicting these measures are given. The equations are based on the error function solution to the diffusion equation and do not take into account variations of the diffusivity with composition. Also, when the substrate of the coating is multiphase, the equations do not take into account the precipitate morphology, but do take into account that precipitates can act as sinks or sources of solute as the average composition of the substrate varies. The equations are meant to be alloy design tools that indicate how changing substrate or coating chemistry will reduce the extent of interdiffusion.展开更多
基金The work is supported by the National Natural Science Foundation of China (No. 51005085).
文摘On-line temperature monitoring of plasma sprayed coating is presented, which is based on IR pyrometery combined to robot trajectories. Temperature fields of the substrate before spraying and the deposited coating when the damage happens are taken to investigate the temperature fluctuation information. Experimental results demonstrate that coating damage always occurs in the temperature transition area of the substrate from the higher to the lower, as well as the higher temperature area. The temperature difference between the peak and the mean of the relevant regions is beyond 30 - 50℃ or even higher. This case provides the omen of coating damage and the focusing scopes for the process control of coating temperature in plasma spraying
基金supported by the Henan College Students Innovation and Entrepreneurship Training Program(202211070009 and 202211070016).
文摘Ultra-high temperature ceramic coatings have ultra-high melting points,excellent mechanical properties and high temperature ablation resistance.These unique performance combinations turn it into a promising material for use in extreme environment structures in rockets and hypersonic vehicles,particularly nozzles,leading edges and engine components.In this paper,various preparation methods of ultra-high temperature ceramic coatings were reviewed,including plasma spraying,chemical vapor deposition,pack cementation,slurry sintering,hot pressing and their research progress.Meanwhile,some new preparation methods of high temperature coatings,such as ion beam deposition,ultrasonic spraying,metal organic frame work coating,and magnetron sputtering,were introduced.The development trend of ultra-high temperature coatings was prospected as well.
基金supported by the National Natural Science Foundation of China (No.61377075)the Training Program for Leading Talents of Universities in Tianjin。
文摘A simple structure optical fiber sensor for relative humidity(RH) and temperature measurement is proposed and verified in this paper, which is based on graphene oxide quantum dots and polyvinyl alcohol(GOQDs-PVA) composite coated tapered no-core fiber(NCF) combined with a fiber Bragg grating(FBG). FBG is insensitive to humidity and sensitive to temperature, which is used to compensate temperature of the sensor. Experimental results show this sensor has humidity sensitivity of 143.27 pm/%RH ranging from 30%RH to 80%RH and the temperature sensitivity of 9.21 pm/℃. The proposed sensor has advantages of simple structure, good repeatability, and good stability, which is expected to be used in both RH and temperature measurement in biological and chemical fields.
基金financial support from the National Natural Science Foundation of China(11672153,11232008,and11227801)
文摘Coherent gradient sensing (CGS) method can be used to measure the slope of a reflective surface, and has the merits of full-field, non-contact, and real-time measurement. In this study, the thermal stress field of thermal barrier coating (TBC) structures is measured by CGS method. Two kinds of powders were sprayed onto Ni-based alloy using a plasma spraying method to obtain two groups of film-substrate specimens. The specimens were then heated with an oxy-acetylene flame. The resulting thermal mismatch between the film and substrate led to out-of-plane deformation of the specimen. The deformation was measured by the reflective CGS method and the thermal stress field of the structure was obtained through calibration with the help of finite element analysis. Both the experiment and numerical results showed that the thermal stress field of TBC structures can be successfully measured by CGS method.
文摘Interdiffusion can be a major cause of failure in coated parts that see service at elevated temperatures. Ways to measure the extent of interdiffusion and mathematical equations for predicting these measures are given. The equations are based on the error function solution to the diffusion equation and do not take into account variations of the diffusivity with composition. Also, when the substrate of the coating is multiphase, the equations do not take into account the precipitate morphology, but do take into account that precipitates can act as sinks or sources of solute as the average composition of the substrate varies. The equations are meant to be alloy design tools that indicate how changing substrate or coating chemistry will reduce the extent of interdiffusion.