The purpose of this research was to fmd out effectiveness of chloride solid membrane electrode of coated wire system compared to solid membrane electrode of composite system, the Nernstian response and character's po...The purpose of this research was to fmd out effectiveness of chloride solid membrane electrode of coated wire system compared to solid membrane electrode of composite system, the Nernstian response and character's potential response (detection limit, selectivity and response time). The chloride ISEs (ion selective electrodes) in this research were the solid membrane chloride ISEs based AgC1. There were two types of chloride ISEs that were developed, namely the chloride ISEs of coated wire and composite systems. Both types of electrodes were characterized. The selectivity was done by comparing Esel of the chloride standard solutions and Esel of the interference ions (Br- and I-). The measurement of chloride ions in water samples was done by using the coated wire chloride ISE, the composite chloride ISE and the Mohr method. We compared the result of the two chloride ISE methods to that of standard method for chloride determination (Mohr) by using F-test and Post Hoc Test LSD (least significant difference) and Duncan. Analysis by using F-test and Post Hoc Test (LSD and Duncan) and characterization results of both the methods showed that coated wire chloride ISE was more effective compared to composite chloride ISE. Nemstian response was 59.83 mV/decade, linier range measurement was 10-1-10-5 M, limit detection was 1.23 × 10-5 M, response time along was 25 s and interfering ion was 10-4 M Br-.展开更多
Coated wire sensor for potentiometric determination ofDAP (dapoxetine HCI) in pure form and in biological fluidsbased on DAP-TPB (dapoxetine-tetraphenyl borate) as the sensing element in the presence of DOP (dioc...Coated wire sensor for potentiometric determination ofDAP (dapoxetine HCI) in pure form and in biological fluidsbased on DAP-TPB (dapoxetine-tetraphenyl borate) as the sensing element in the presence of DOP (dioctylphthalate) as the plasticizing solvent mediator was prepared. The best performance was obtained with a membrane composition of 10.0% (w/w) ion-pair, 45.0% DOP (w/w) and 45.0% PVC (w/w). The electrode showed a Nemstian response (with a slope of 58.70 mV decade-1) for the concentration range of 4.2 × 10-5-1.0 ×10-2 mol/L. It illustrates a relatively fast response time in the whole concentration range (-15 s) in a pH range of 3.0-7.5. The selectivity coefficients were determined in relation to several inorganic and organic species. DAP is determined successfully in pure solutions and in biological fuids using the standard additions and petentiometric titrations methods.展开更多
In this study for the first time, a novel copper Solid Phase Microextraction (SPME) fiber has been introduced for removal of naphthalene, phenanthrene and anthracene from aqueous solution. Copper was used as a solid s...In this study for the first time, a novel copper Solid Phase Microextraction (SPME) fiber has been introduced for removal of naphthalene, phenanthrene and anthracene from aqueous solution. Copper was used as a solid support, which was at first coated by 3-mercaptopropyltrimethoxysi- lane. A stationary phase of oxidized multi walled carbon nanotube (MWCNTs)) was bonded to the surface of the copper wire. The developed SPME was characterized by IR and Scanning Electron Microscopy (SEM) and coupled to gas chromatography for separation of the analytes. Stability of the fiber, the effect of coating thickness and recovery time were optimized. The MWCNTs film thickness was about 5 μm which was perfect for a rapid mass transfer. The detection limits were at the range of 0.005 to 0.1 μg·L<sup>-1</sup>. The calibration curves were linear R<sup>2</sup> > 0.9813 in the range of 0.01 to 5 μg·L<sup>-1</sup>. The method has been successfully applied for real samples with standard addition of 5 μL<sup>-1</sup> of each sample. Stability study of the fiber to acid and alkali shows that it can be used for more than 50 times.展开更多
Cored wires for electric arc spraying of Al/Al 2 O 3 MMC coatings were developed, with Al 2 O 3 powder as the core material and commercial aluminium strip as the retaining sheath. The bond strength, ...Cored wires for electric arc spraying of Al/Al 2 O 3 MMC coatings were developed, with Al 2 O 3 powder as the core material and commercial aluminium strip as the retaining sheath. The bond strength, Al 2 O 3 content, microstructure, micro-hardness and wear resistance of coatings produced by arc spraying of the cored wires were experimentally investigated and were compared with those of pure aluminum coating.展开更多
Potentiometric electrodes were developed for the rapid determination of proguanil hydrochloride in pure samples, pharmaceutical preparations and spiked serum and urine samples using PVC membrane,screen printed(SPE),...Potentiometric electrodes were developed for the rapid determination of proguanil hydrochloride in pure samples, pharmaceutical preparations and spiked serum and urine samples using PVC membrane,screen printed(SPE), coated wired(CWE), carbon paste(CPE) and modified carbon paste(MCPE)electrodes based on the ion-exchanger of proguanil with phosphotungestic acid(Pr-PT) as a chemical modifier. The prepared electrodes showed Nernestian slopes of 59.7, 58.1, 58.5, 58.5 and 57.0 for the PVC,SPE, CWE, CPE and MCPE for the proguanil ions in a wide concentration range of 1.0 * 10^-5–1.0 * 10^-2mol L^-1 at 25°C with detection limits of 7.94 * 10^-6, 1.0 * 10^-5, 1.0 * 10^-6, 7.07 * 10^-6 and 2.5 * 10^-6 mol L^-1, respectively. The prepared electrodes exhibited high proguanil selectivity in relation to several inorganic ions and sugars and they could be successfully utilized for its determination in pure solutions, pharmaceutical preparations and serum and urine samples using the direct potentiometry and standard addition methods with very good recovery values.展开更多
文摘The purpose of this research was to fmd out effectiveness of chloride solid membrane electrode of coated wire system compared to solid membrane electrode of composite system, the Nernstian response and character's potential response (detection limit, selectivity and response time). The chloride ISEs (ion selective electrodes) in this research were the solid membrane chloride ISEs based AgC1. There were two types of chloride ISEs that were developed, namely the chloride ISEs of coated wire and composite systems. Both types of electrodes were characterized. The selectivity was done by comparing Esel of the chloride standard solutions and Esel of the interference ions (Br- and I-). The measurement of chloride ions in water samples was done by using the coated wire chloride ISE, the composite chloride ISE and the Mohr method. We compared the result of the two chloride ISE methods to that of standard method for chloride determination (Mohr) by using F-test and Post Hoc Test LSD (least significant difference) and Duncan. Analysis by using F-test and Post Hoc Test (LSD and Duncan) and characterization results of both the methods showed that coated wire chloride ISE was more effective compared to composite chloride ISE. Nemstian response was 59.83 mV/decade, linier range measurement was 10-1-10-5 M, limit detection was 1.23 × 10-5 M, response time along was 25 s and interfering ion was 10-4 M Br-.
文摘Coated wire sensor for potentiometric determination ofDAP (dapoxetine HCI) in pure form and in biological fluidsbased on DAP-TPB (dapoxetine-tetraphenyl borate) as the sensing element in the presence of DOP (dioctylphthalate) as the plasticizing solvent mediator was prepared. The best performance was obtained with a membrane composition of 10.0% (w/w) ion-pair, 45.0% DOP (w/w) and 45.0% PVC (w/w). The electrode showed a Nemstian response (with a slope of 58.70 mV decade-1) for the concentration range of 4.2 × 10-5-1.0 ×10-2 mol/L. It illustrates a relatively fast response time in the whole concentration range (-15 s) in a pH range of 3.0-7.5. The selectivity coefficients were determined in relation to several inorganic and organic species. DAP is determined successfully in pure solutions and in biological fuids using the standard additions and petentiometric titrations methods.
文摘In this study for the first time, a novel copper Solid Phase Microextraction (SPME) fiber has been introduced for removal of naphthalene, phenanthrene and anthracene from aqueous solution. Copper was used as a solid support, which was at first coated by 3-mercaptopropyltrimethoxysi- lane. A stationary phase of oxidized multi walled carbon nanotube (MWCNTs)) was bonded to the surface of the copper wire. The developed SPME was characterized by IR and Scanning Electron Microscopy (SEM) and coupled to gas chromatography for separation of the analytes. Stability of the fiber, the effect of coating thickness and recovery time were optimized. The MWCNTs film thickness was about 5 μm which was perfect for a rapid mass transfer. The detection limits were at the range of 0.005 to 0.1 μg·L<sup>-1</sup>. The calibration curves were linear R<sup>2</sup> > 0.9813 in the range of 0.01 to 5 μg·L<sup>-1</sup>. The method has been successfully applied for real samples with standard addition of 5 μL<sup>-1</sup> of each sample. Stability study of the fiber to acid and alkali shows that it can be used for more than 50 times.
文摘Cored wires for electric arc spraying of Al/Al 2 O 3 MMC coatings were developed, with Al 2 O 3 powder as the core material and commercial aluminium strip as the retaining sheath. The bond strength, Al 2 O 3 content, microstructure, micro-hardness and wear resistance of coatings produced by arc spraying of the cored wires were experimentally investigated and were compared with those of pure aluminum coating.
基金Cairo University for the financial support of this work
文摘Potentiometric electrodes were developed for the rapid determination of proguanil hydrochloride in pure samples, pharmaceutical preparations and spiked serum and urine samples using PVC membrane,screen printed(SPE), coated wired(CWE), carbon paste(CPE) and modified carbon paste(MCPE)electrodes based on the ion-exchanger of proguanil with phosphotungestic acid(Pr-PT) as a chemical modifier. The prepared electrodes showed Nernestian slopes of 59.7, 58.1, 58.5, 58.5 and 57.0 for the PVC,SPE, CWE, CPE and MCPE for the proguanil ions in a wide concentration range of 1.0 * 10^-5–1.0 * 10^-2mol L^-1 at 25°C with detection limits of 7.94 * 10^-6, 1.0 * 10^-5, 1.0 * 10^-6, 7.07 * 10^-6 and 2.5 * 10^-6 mol L^-1, respectively. The prepared electrodes exhibited high proguanil selectivity in relation to several inorganic ions and sugars and they could be successfully utilized for its determination in pure solutions, pharmaceutical preparations and serum and urine samples using the direct potentiometry and standard addition methods with very good recovery values.