The TiN, TiAlN, and TiAlSiN coatings were prepared on YT14 cutting tool surface with CAIP(cathode arc ion plating), the surface morphologies and phases were analyzed with FESEM(field emission scanning electron micr...The TiN, TiAlN, and TiAlSiN coatings were prepared on YT14 cutting tool surface with CAIP(cathode arc ion plating), the surface morphologies and phases were analyzed with FESEM(field emission scanning electron microscopy), and XRD(X-ray diffraction), respectively, and the coating parameters such as 3D surface micro-topography, grain size, surface height, hierarchy, profile height, and power spectral density, etc, were measured with AFM(atomic force microscope). The results show that the phases of TiN, TiAlN, and TiAlSiN coatings are TiN, TiN+TiAlN, TiN+Si_3N_4+TiAlN, respectively, while the surface roughness Sa of TiN, TiAlN, and TiAlSiN coatings is 75.3, 98.9, and 42.1 nm, respectively, and the roughness depth Sk is 209, 389, and 54 nm, respectively, the sequence of average grain sizes is TiAlN〉TiN〉TiAlSiN. The surface bearing index Sbi of TiN, TiAlN, and TiAlSiN coatings is 0.884, 1.01, and 0.37, respectively, and the sequence of surface bearing capability is TiAlN〉TiN〉TiAlSiN. At the lower wavelength(102-103 nm), the power spectral densities have a certain correlation, and the sequence of TiN〉TiAlN〉TiAlSiN, while the correlation is low at the higher wavelength(〉103 nm).展开更多
In this paper,acoustic emission(AE) and digital image correlation methods were applied to monitor interface cracking in thermal barrier coatings under compression.The interface failure process can be identifie via i...In this paper,acoustic emission(AE) and digital image correlation methods were applied to monitor interface cracking in thermal barrier coatings under compression.The interface failure process can be identifie via its AE features,including buckling,delamination incubation and spallation.According to the Fourier transformation of AE signals,there arefourdifferentfailuremodes:surfaceverticalcracks,opening and sliding interface cracks,and substrate deformation.The characteristic frequency of AE signals from surface vertical cracks is 0.21 MHz,whilst that of the two types of interface cracks are 0.43 and 0.29 MHz,respectively.The energy released of the two types of interface cracks are 0.43 and 0.29 MHz,respectively.Based on the energy released from cracking and the AE signals,a relationship is established between the interface crack length and AE parameters,which is in good agreement with experimental results.展开更多
The differential potentiometric stripping analysis (DPSA) with Nafion coated carbon fibre electrode has been studied, and a method to determine lead and cadmium in urine directly has been attempted. The effect of vari...The differential potentiometric stripping analysis (DPSA) with Nafion coated carbon fibre electrode has been studied, and a method to determine lead and cadmium in urine directly has been attempted. The effect of various experimental parameters on the DPSA response is discussed. The experimental conditions include 0.2M sodium perchlorate, deposition potential of-1.0 or -1.1 V and using 20 ppm mercuric ion as oxidizing agent. The response of the signal is in linear relation with the concentrations of lead and cadmium respectively up to 0.5 ppm. The electrode coated with Nafion film alleviates the interference from organics in urine samples.展开更多
基金Funded by the Jiangsu Province Science and Technology Support Program(Industry)(No.BE2014818)
文摘The TiN, TiAlN, and TiAlSiN coatings were prepared on YT14 cutting tool surface with CAIP(cathode arc ion plating), the surface morphologies and phases were analyzed with FESEM(field emission scanning electron microscopy), and XRD(X-ray diffraction), respectively, and the coating parameters such as 3D surface micro-topography, grain size, surface height, hierarchy, profile height, and power spectral density, etc, were measured with AFM(atomic force microscope). The results show that the phases of TiN, TiAlN, and TiAlSiN coatings are TiN, TiN+TiAlN, TiN+Si_3N_4+TiAlN, respectively, while the surface roughness Sa of TiN, TiAlN, and TiAlSiN coatings is 75.3, 98.9, and 42.1 nm, respectively, and the roughness depth Sk is 209, 389, and 54 nm, respectively, the sequence of average grain sizes is TiAlN〉TiN〉TiAlSiN. The surface bearing index Sbi of TiN, TiAlN, and TiAlSiN coatings is 0.884, 1.01, and 0.37, respectively, and the sequence of surface bearing capability is TiAlN〉TiN〉TiAlSiN. At the lower wavelength(102-103 nm), the power spectral densities have a certain correlation, and the sequence of TiN〉TiAlN〉TiAlSiN, while the correlation is low at the higher wavelength(〉103 nm).
基金supported by the National Natural Science Foundation of China (Grants 11472237,11002122,51172192,and 11272275)
文摘In this paper,acoustic emission(AE) and digital image correlation methods were applied to monitor interface cracking in thermal barrier coatings under compression.The interface failure process can be identifie via its AE features,including buckling,delamination incubation and spallation.According to the Fourier transformation of AE signals,there arefourdifferentfailuremodes:surfaceverticalcracks,opening and sliding interface cracks,and substrate deformation.The characteristic frequency of AE signals from surface vertical cracks is 0.21 MHz,whilst that of the two types of interface cracks are 0.43 and 0.29 MHz,respectively.The energy released of the two types of interface cracks are 0.43 and 0.29 MHz,respectively.Based on the energy released from cracking and the AE signals,a relationship is established between the interface crack length and AE parameters,which is in good agreement with experimental results.
基金This project was supported by the National Natural Science Foundation of China
文摘The differential potentiometric stripping analysis (DPSA) with Nafion coated carbon fibre electrode has been studied, and a method to determine lead and cadmium in urine directly has been attempted. The effect of various experimental parameters on the DPSA response is discussed. The experimental conditions include 0.2M sodium perchlorate, deposition potential of-1.0 or -1.1 V and using 20 ppm mercuric ion as oxidizing agent. The response of the signal is in linear relation with the concentrations of lead and cadmium respectively up to 0.5 ppm. The electrode coated with Nafion film alleviates the interference from organics in urine samples.