Corrosion of reinforced concrete structures is a serious problem in ocean engineering. As an orientation of study, anticorrosion coating technique is developed and widely applied, but many problems need to be solved. ...Corrosion of reinforced concrete structures is a serious problem in ocean engineering. As an orientation of study, anticorrosion coating technique is developed and widely applied, but many problems need to be solved. LSW-2 type anticorrosion coating for maritime reinforced concrete structures is characterized by sea water resistance, salt fog resistance, moisture and heal resistance as well as impermeability to chlorions. The new type coating can be applied to wet concrete surface by conventional construction technique. It is a breakthrough in solving the above mentioned problem. The paper mainly introduces the test results, the property indices, coating procedure, construction technique and economic benefit of Ihe coating.展开更多
Smart coating for corrosion protection of metal materials(steel,magnesium,aluminum and their alloys)has drawn great attention because of their capacity to prevent crack propagation in the protective coating by releasi...Smart coating for corrosion protection of metal materials(steel,magnesium,aluminum and their alloys)has drawn great attention because of their capacity to prevent crack propagation in the protective coating by releasing functional molecules(healing agents or corrosion inhibitors)on demand from delivery vehicle,that is,micro/nanocontainer made up of a shell and core material or a coating layer,in a controllable manner.Herein,we summarize the recent achievements during the last 10 years in the field of the micro/nanocontainer with different types of stimuli-responsive properties,i.e.,pH,electrochemical potential,redox,aggressive corrosive ions,heat,light,magnetic field,and mechanical impact,for smart anticorrosion coating.The state-of-the-art design and fabrication of micro/nanocontainer are emphasized with detailed examples.展开更多
Concentrating solar power(CSP) has garnered considerable global attention as a reliable means of generating bulk electricity, effectively addressing the intermittent nature of solar resources.The integration of molten...Concentrating solar power(CSP) has garnered considerable global attention as a reliable means of generating bulk electricity, effectively addressing the intermittent nature of solar resources.The integration of molten salt technology for thermal energy storage(TES) has further contributed to the growth of CSP plants;however, the corrosive nature of molten salts poses challenges to the durability of container materials, necessitating innovative corrosion mitigation strategies.This review summarizes scientific advancements in high-temperature anticorrosion coatings for molten nitrate salts, highlighting the key challenges and future trends.It also explores various coating types, including metallic, ceramic, and carbon-based coatings, and compares different coating deposition methods.This review emphasizes the need for durable coatings that meet long-term performance requirements and regulatory limitations, with an emphasis on carbon-based coatings and emerging nanomaterials.A combination of multiple coatings is required to achieve desirable anticorrosion properties while addressing material compatibility and cost considerations.The overall goal is to advance the manufacturing, assembly, and performance of CSP systems for increased efficiency, reliability, and durability in various applications.展开更多
A technology of preparing hexachloroiridic acid by melting oxidation chemistry is introduced, the content of Ir 4+ can reach 99% and the total impurities content is less than 0.1% in this hexachloroiridic acid a...A technology of preparing hexachloroiridic acid by melting oxidation chemistry is introduced, the content of Ir 4+ can reach 99% and the total impurities content is less than 0.1% in this hexachloroiridic acid anticorosive coating.展开更多
1 Results Polyaniline (PANI) is one of the most promising materials for commercial applications.It can be applied to electronic devices and products such as light-emitting diodes,organic FETs,EMI shielding,secondary b...1 Results Polyaniline (PANI) is one of the most promising materials for commercial applications.It can be applied to electronic devices and products such as light-emitting diodes,organic FETs,EMI shielding,secondary batteries,etc.Composites of polyaniline with other polymers or inorganic materials can provide new synergistic properties that cannot be attained from individual materials.Vermiculite (VMT) is a chain-layer magnesium-aluminum silicate mineral.We prepared composite anticorrosion coatings of p...展开更多
Viscoelastic anticorrosive tape is extensively used for repairing anticorrosive layers on compressor outlet pipelines in the oil and gas industry.However,there is no relevant research on the coupling effect of tempera...Viscoelastic anticorrosive tape is extensively used for repairing anticorrosive layers on compressor outlet pipelines in the oil and gas industry.However,there is no relevant research on the coupling effect of temperature and vibration on the performance of viscoelastic anticorrosive tape.In this paper,acceleration tests of temperature and vibration coupling conditions were conducted to investigate the performance of viscoelastic anticorrosive tape.After temperature and vibration treatment,the specimens showed wide variance in thickness,and the adhesion and chemical soaking resistance of the tape was reduced.However,the viscoelastic anticorrosive tape still showed high adhesion.According to theoretical calculations,the tested viscoelastic body can repair pipes with a maximum diameter of 903 mm.Therefore,this viscoelastic anticorrosive tape is suitable for the compressor outlets of buried pipelines with diameters smaller than 903 mm.The research in this paper provides a method and basis for the selection of repairing materials for the anticorrosion coatings of compressor outlet pipelines.展开更多
Twice-painting technique was adopted to prepare heavy-duty anticorrosive coating films formed by aqueous latexes of copolymers of vinylidene chloride(VDC) with an acrylate, namely methyl acrylate(MA), ethyl acryl...Twice-painting technique was adopted to prepare heavy-duty anticorrosive coating films formed by aqueous latexes of copolymers of vinylidene chloride(VDC) with an acrylate, namely methyl acrylate(MA), ethyl acrylate(EA), butyl acrylate(BA) or 2-ethylhexyl acrylate(EHA). Harsh salt-spray corrosion tests demonstrated that the optimized twicepainting technique was that the acidic latex solution was adjusted to p H 5-6 for the first painting, while it was utilized directly for the second painting. The test of 600 h of harsh salt-spray corrosion showed that MA-VDC85 coating could protect the steel excellently, whereas the other acrylate-VDC coatings with 75%-90% VDC content could not protect the steel so effectively. Further corrosion test showed that(1) MA-VDC85 coating protected steel from loss of metallic luster for at least 1000 h of salt-spray corrosion;(2) adhesion of MA-VDC85 coating to steel was excellent for at least 800 h of saltspray corrosion, but became very poor after 1000 h. Differential scanning calorimetry, thermogravimetric analysis, X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy were used to evaluate the corroded MA-VDC85 film.展开更多
文摘Corrosion of reinforced concrete structures is a serious problem in ocean engineering. As an orientation of study, anticorrosion coating technique is developed and widely applied, but many problems need to be solved. LSW-2 type anticorrosion coating for maritime reinforced concrete structures is characterized by sea water resistance, salt fog resistance, moisture and heal resistance as well as impermeability to chlorions. The new type coating can be applied to wet concrete surface by conventional construction technique. It is a breakthrough in solving the above mentioned problem. The paper mainly introduces the test results, the property indices, coating procedure, construction technique and economic benefit of Ihe coating.
基金the National Natural Science Foundation of China (Nos.41576079,41922040)the Qingdao National Laboratory for Marine Science and Technology (No.QNLM20160RP0413)the AoShan Talent Program Supported by Qingdao National Laboratory for Marine Science and Technology (No.2017ASTCP-ES02)
文摘Smart coating for corrosion protection of metal materials(steel,magnesium,aluminum and their alloys)has drawn great attention because of their capacity to prevent crack propagation in the protective coating by releasing functional molecules(healing agents or corrosion inhibitors)on demand from delivery vehicle,that is,micro/nanocontainer made up of a shell and core material or a coating layer,in a controllable manner.Herein,we summarize the recent achievements during the last 10 years in the field of the micro/nanocontainer with different types of stimuli-responsive properties,i.e.,pH,electrochemical potential,redox,aggressive corrosive ions,heat,light,magnetic field,and mechanical impact,for smart anticorrosion coating.The state-of-the-art design and fabrication of micro/nanocontainer are emphasized with detailed examples.
文摘Concentrating solar power(CSP) has garnered considerable global attention as a reliable means of generating bulk electricity, effectively addressing the intermittent nature of solar resources.The integration of molten salt technology for thermal energy storage(TES) has further contributed to the growth of CSP plants;however, the corrosive nature of molten salts poses challenges to the durability of container materials, necessitating innovative corrosion mitigation strategies.This review summarizes scientific advancements in high-temperature anticorrosion coatings for molten nitrate salts, highlighting the key challenges and future trends.It also explores various coating types, including metallic, ceramic, and carbon-based coatings, and compares different coating deposition methods.This review emphasizes the need for durable coatings that meet long-term performance requirements and regulatory limitations, with an emphasis on carbon-based coatings and emerging nanomaterials.A combination of multiple coatings is required to achieve desirable anticorrosion properties while addressing material compatibility and cost considerations.The overall goal is to advance the manufacturing, assembly, and performance of CSP systems for increased efficiency, reliability, and durability in various applications.
文摘A technology of preparing hexachloroiridic acid by melting oxidation chemistry is introduced, the content of Ir 4+ can reach 99% and the total impurities content is less than 0.1% in this hexachloroiridic acid anticorosive coating.
文摘1 Results Polyaniline (PANI) is one of the most promising materials for commercial applications.It can be applied to electronic devices and products such as light-emitting diodes,organic FETs,EMI shielding,secondary batteries,etc.Composites of polyaniline with other polymers or inorganic materials can provide new synergistic properties that cannot be attained from individual materials.Vermiculite (VMT) is a chain-layer magnesium-aluminum silicate mineral.We prepared composite anticorrosion coatings of p...
基金supported by the Natural Science Foundation of Shanxi Province,China[grant number 2021JQ-947]the China Postdoctoral Science Fund[grant number 2019M653785]。
文摘Viscoelastic anticorrosive tape is extensively used for repairing anticorrosive layers on compressor outlet pipelines in the oil and gas industry.However,there is no relevant research on the coupling effect of temperature and vibration on the performance of viscoelastic anticorrosive tape.In this paper,acceleration tests of temperature and vibration coupling conditions were conducted to investigate the performance of viscoelastic anticorrosive tape.After temperature and vibration treatment,the specimens showed wide variance in thickness,and the adhesion and chemical soaking resistance of the tape was reduced.However,the viscoelastic anticorrosive tape still showed high adhesion.According to theoretical calculations,the tested viscoelastic body can repair pipes with a maximum diameter of 903 mm.Therefore,this viscoelastic anticorrosive tape is suitable for the compressor outlets of buried pipelines with diameters smaller than 903 mm.The research in this paper provides a method and basis for the selection of repairing materials for the anticorrosion coatings of compressor outlet pipelines.
基金financially supported by the Program for New Century Excellent Talents in Universitiesthe National Natural Science Foundation of China(No.21074088)
文摘Twice-painting technique was adopted to prepare heavy-duty anticorrosive coating films formed by aqueous latexes of copolymers of vinylidene chloride(VDC) with an acrylate, namely methyl acrylate(MA), ethyl acrylate(EA), butyl acrylate(BA) or 2-ethylhexyl acrylate(EHA). Harsh salt-spray corrosion tests demonstrated that the optimized twicepainting technique was that the acidic latex solution was adjusted to p H 5-6 for the first painting, while it was utilized directly for the second painting. The test of 600 h of harsh salt-spray corrosion showed that MA-VDC85 coating could protect the steel excellently, whereas the other acrylate-VDC coatings with 75%-90% VDC content could not protect the steel so effectively. Further corrosion test showed that(1) MA-VDC85 coating protected steel from loss of metallic luster for at least 1000 h of salt-spray corrosion;(2) adhesion of MA-VDC85 coating to steel was excellent for at least 800 h of saltspray corrosion, but became very poor after 1000 h. Differential scanning calorimetry, thermogravimetric analysis, X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy were used to evaluate the corroded MA-VDC85 film.