期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
DETERMINATION OF CREEP PROPERTIES OF THERMAL BARRIER COATING(TBC)SYSTEMS FROM THE INDENTATION CREEP TESTING WITH ROUND FLAT INDENTERS
1
作者 B.Zhao B.X.Xu +1 位作者 J.Liu Z.F.Yue 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第4期503-508,共6页
Indentation creep behavior with cylindrical flat indenters on the thermal barrier coating (TBC) was studied by finite element method (FEM). On ike constant applied indentation creep stress, there is a steady creep rat... Indentation creep behavior with cylindrical flat indenters on the thermal barrier coating (TBC) was studied by finite element method (FEM). On ike constant applied indentation creep stress, there is a steady creep rate for each case studied for different creep properties of the TBC system. The steady creep depth rate depends on the applied indentation creep stress and size of the indenters as well as the creep properties of the bond coat of the TBC and the substrate. The possibilities to determine the creep properties of a thermal barrier system from indention creep testing were discussed. As an example, with two different size indenters, the creep properties of bond coat of the TBC system can be derived by an inverse FEM method. This study not only provides a numerical method to obtain the creep properties of the TBC system, but also extends the application of indentation creep method with cylindrical flat indenters. 展开更多
关键词 thermal barrier coating (TBC) system indention creep testing finite element creep analysis determination of creep parameters bond coat
下载PDF
Influence of heating parameters on properties of the Al-Si coating applied to hot stamping 被引量:8
2
作者 LIANG WeiKang TAO WenJie +1 位作者 ZHU Bin ZHANG YiSheng 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2017年第7期1088-1102,共15页
The Al-Si coating of ultra-high strength steel has been applied to hot stamping more and more widely, owing to solving the problem of oxidation and decarburization. However, the evolution of Al-Si coating during the h... The Al-Si coating of ultra-high strength steel has been applied to hot stamping more and more widely, owing to solving the problem of oxidation and decarburization. However, the evolution of Al-Si coating during the heating process was rarely studied in the previous study. The tests about the influence of heating parameters, such as heating temperature, heating rates and dwell time, on properties of the Al-Si coating were carried out on the Gleeble-3500 thermal simulator. The properties of the Al-Si coating, for instance, volume fraction of FeAl intermetallics, α-Fe layer as well as porosity and 3D surface topography, were explored in the study. Results showed that more and more Kirkendall voids and cracks appeared in the Al-Si coating when the heating temperature exceeded 600°C. The heating rates almost had no influence on properties of the Al-Si coating when the temperature was equal to or lower than 500°C. The volume fraction of FeAl intermetallics in the coating with dwell time from 3 s to 8 min at 930°C was0, 6.19%, 17.03% and 20.65%, separately. The volume fraction of the α-Fe layer in the coating changed from zero to 31.52%with the prolonged dwell time. The porosity of the coating ranged from 0.51% to 4.98% with the extension of dwell time. The unsmooth degree of the surface of the coating rose gradually with the increasing of heating rates and the extension of dwell time.The 3D surface topography of the coating was determined by the comprehensive effect of atoms diffusion, new formed phases,surface tension and the degree of oxidation of the coating surface. Experiments indicated that rapid heating was not suitable for the coating when the temperature exceeded 500°C. Experiments also demonstrated that enough dwell time was essential to obtain the superior properties of the coating. 展开更多
关键词 Al-Si coating heating parameters thermal simulator Kirkendall voids cracks 3D surface topography
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部