The principle and application of optical interferometry to measure the coating thickness of color-coated plates were introduced in this paper.Additionally,several factors affecting the test results,including coating r...The principle and application of optical interferometry to measure the coating thickness of color-coated plates were introduced in this paper.Additionally,several factors affecting the test results,including coating refractive index,wavelength range,and film thickness range setting,were analyzed.Among these,the refractive index of the color coating,which cannot be measured directly,was identified as the key factor.A solution to this problem was proposed.Finally,the optical interference method and the current detection methods,including the micrometer method and the magnetic eddy current method,were analyzed and compared.The results show that optical interferometry has better repeatability and reproducibility than the current methods and show no significant difference from the current methods through statistical tests.Therefore,the method can be applied to the detection of the coating thickness of color-coated plates.展开更多
The special ultrasonic testing system has been developed for thickness measurement of plasma sprayed coatings. The ultrasonic immersion method was used to obtain stable coupling condition and avoid other disadvantages...The special ultrasonic testing system has been developed for thickness measurement of plasma sprayed coatings. The ultrasonic immersion method was used to obtain stable coupling condition and avoid other disadvantages of contact method. Spherical acoustic lens were designed to focus ultrasonic beam so as to improve beam directivity and concentrate ultrasonic energy. To increase testing precision and avoid mussy wave signals, moderate pulse width and frequency of the transducer has been selected. The displacement of transducer in X-Y-Z directions was precisely manipulated by step-controlled system to insure the accuracy of focus length and repetition of measurement. Optimized testing conditions (with the transducer of center frequency of 10 MHz and crystal diameter of 8 mm, focus length of 9.5 mm, diameter of focal column of 0. 1 mm and length of focal column of 0.27 mm) were selected to determine the thickness between 285 -414 μm of ZrO2 coatings plasma sprayed on the nickel based superalloy. The frequency interval of the periodic extremums in ultrasonic power spectra decreases with increasing coating thickness. The ultrasonic results accord with those of metallographical method.展开更多
An experimental study on lost foam casting of an Al-Si-Cu alloy was conducted. The main objective was to study the effect of pattern coating thickness on casting imperfection and porosity percentage as well as eutecti...An experimental study on lost foam casting of an Al-Si-Cu alloy was conducted. The main objective was to study the effect of pattern coating thickness on casting imperfection and porosity percentage as well as eutectic silicon spacing of the alloy. The results showed that increasing slurry viscosity and flask dipping time influenced the casting integrity and microstructural characteristics. It was found that thinner pattern coating produced improved mould filling, refined microstructure and higher quality castings containing less porosity.展开更多
A series of rare earth (RE) dispersed chromizing coatings were produced on P 110 steel by pack cementation. The orthogonal array design (OAD)was applied to set the experiments. An artificial neural network (ANN)...A series of rare earth (RE) dispersed chromizing coatings were produced on P 110 steel by pack cementation. The orthogonal array design (OAD)was applied to set the experiments. An artificial neural network (ANN) approach is employed to predict the thickness values of the obtained chromizing coatings based on the OAD tests results. The results revealed that the built model was reliable, the thickness values of chromizing coatings were well predicted at selected process parameters, and the predicted error lied in rational range.展开更多
A novel thickness measurement method for surface insulation coating of silicon steel based on NIR spectrometry is explored.The NIR spectra of insulation coating of silicon steel were collected by acousto-optic tunable...A novel thickness measurement method for surface insulation coating of silicon steel based on NIR spectrometry is explored.The NIR spectra of insulation coating of silicon steel were collected by acousto-optic tunable filter(AOTF) NIR spectrometer.To make full use of the effective information of NIR spectral data,discrete binary particle swarm optimization(DBPSO) algorithm was used to select the optimal wavelength variates.The new spectral data,composed of absorbance at selected wavelengths,were used to create the thickness quantitative analysis model by kernel partial least squares(KPLS) algorithm coupled with Boosting.The results of contrast experiments showed that the Boosting-KPLS model could efficiently improve the analysis accuracy and speed.It indicates that Boosting-KPLS is a more accurate and robust analysis method than KPLS for NIR spectral analysis.The maximal and minimal absolute error of 30 testing samples is respectively-0.02 μm and 0.19 μm,and the maximal relative error is 14.23%.These analysis results completely meet the practical measurement need.展开更多
A continuous production process was developed for coating bulk metallic glasses on the metallic wire surface. The effects of processing parameters, including the drawing velocity and coating temperature, on the coatin...A continuous production process was developed for coating bulk metallic glasses on the metallic wire surface. The effects of processing parameters, including the drawing velocity and coating temperature, on the coating thickness were investigated. It is found that the coating thickness increases with the increase in drawing velocity but decreases with the increase in coating temperature. A fluid mechanical model was developed to quantify the coating thickness under various processing conditions. By using this theoretical model, the coating thickness was calculated, and the calculated values are in good agreement with the experimental data.展开更多
A new improved investment casting technology (IC) has been presented and compared with the existing IC technology such as lost foam casting (LFC). The effect of thermophysical property and coating thickness on cas...A new improved investment casting technology (IC) has been presented and compared with the existing IC technology such as lost foam casting (LFC). The effect of thermophysical property and coating thickness on casting solidification temperature field, microstructure and hardness has been investigated. The results show that the solidification rate decreases inversely with the coating thickness when the coating contains silica sol, zircon powder, mullite powder and defoaming agent. In contrast, the solid cooling rate increases as the coating thickness increases. However, the solidification rate and solid cooling rate of the casting produced by the existing IC and the improved IC are very similar when the coating thickness is 5 mm, so the microstructure and hardness of a container corner fitting produced by the improved IC and the existing IC are similar. The linear regression equation for the grain size (d) and cooling rate (v) of the castings is d= -0.41v+206.1. The linear regression equation for the content of pearlite (w) and solid cooling rate (t) is w=1.79t + 6.71. The new improved IC can greatly simplify the process and decrease the cost of production compared with the existing IC. Contrasting with LI=C, container corner fittings produced by the new improved IC have fewer defects and better properties. It was also found that the desired microstructure and properties can be obtained by changing the thermophysical property and thickness of the coating.展开更多
The polymer spin coating is critical in flexible electronic manufaction and micro-electro-mechanical system(MEMS)devices due to its simple operation, and uniformly coated layers. Some researchers focus on the effect...The polymer spin coating is critical in flexible electronic manufaction and micro-electro-mechanical system(MEMS)devices due to its simple operation, and uniformly coated layers. Some researchers focus on the effects of spin coating parameters such as wafer rotating speed, the viscosity of the coating liquid and solvent evaporation on final film thickness.In this work, the influence of substrate curvature on film thickness distribution is considered. A new parameter which represents the edge bead effect ratio(re) is proposed to investigate the influence factor of edge bead effect. Several operation parameters including the curvature of the substrate and the wafer-spin speed are taken into account to study the effects on the film thickness uniformity and edge-bead ratio. The morphologies and film thickness values of the spin-coated PDMS films under various substrate curvatures and coating speeds are measured with laser confocal microscopy. According to the results, both the convex and concave substrate will help to reduce the edge-bead effect significantly and thin film with better surface morphology can be obtained at high spin speed. Additionally, the relationship between the edge-bead ratio and the thin film thickness is like parabolic curve instead of linear dependence. This work may contribute to the mass production of flexible electronic devices.展开更多
The thermoelastic behaviors of such as temperature distribution, displacements, and stresses in thermal barrier coatings (TBC) are seriously influenced by top coat thickness and edge conditions. The top coat of TBC sp...The thermoelastic behaviors of such as temperature distribution, displacements, and stresses in thermal barrier coatings (TBC) are seriously influenced by top coat thickness and edge conditions. The top coat of TBC specimens prepared with TriplexPro?-200 system was controlled by changing the processing parameter and feedstock, showing the various thicknesses and microstructures. A couple of governing partial differential equations were derived based on the thermoelastic theory. Since the governing equations were too involved to solve analytically, a finite volume method was developed to obtain approximations. The thermoelastic behaviors of TBC specimens with the various thicknesses and microstructures were estimated through mathematical approaches with different edge conditions. The results demonstrated that the microstructure and thickness of the top coat, and the edge condition in theoretical analysis were crucial factors to be considered in controlling the thermoelastic characteristics of plasma-sprayed TBCs.展开更多
Avirtual wall thicknessmethod is developed to simulate the temperature field of turbine bladeswith thermal barrier coatings(TBCs),to simplify the modeling process and improve the calculation efficiency.The results sho...Avirtual wall thicknessmethod is developed to simulate the temperature field of turbine bladeswith thermal barrier coatings(TBCs),to simplify the modeling process and improve the calculation efficiency.The results show that the virtualwall thickness method can improve themesh quality by 20%,reduce the number ofmeshes by 76.7%and save the calculation time by 35.5%,compared with the traditional real wall thickness method.The average calculation error of the two methods is between 0.21%and 0.93%.Furthermore,the temperature at the blade leading edge is the highest and the average temperature of the blade pressure surface is higher than that of the suction surface under a certain service condition.The blade surface temperature presents a high temperature at both ends and a low temperature in themiddle height when the temperature of incoming gas is uniformand constant.The thermal insulation effect of TBCs is the worst near the air film hole,and the best at the blade leading edge.According to the calculated temperature field of the substrate-coating system,the highest thermal insulation temperature of the TC layer is 172.01 K,and the thermal insulation proportions of TC,TGO and BC are 93.55%,1.54%and 4.91%,respectively.展开更多
Multilayer ceramic coatings were fabricated on steel substrate using a combined technique of hot dipping aluminum(HDA) and plasma electrolytic oxidation(PEO). A triangle of normalized layer thickness was created for d...Multilayer ceramic coatings were fabricated on steel substrate using a combined technique of hot dipping aluminum(HDA) and plasma electrolytic oxidation(PEO). A triangle of normalized layer thickness was created for describing thickness ratios of HDA/PEO coatings. Then, the effect of thickness ratio on stresses field of HDA/PEO coatings subjected to uniform normal contact load was investigated by finite element method. Results show that the surface tensile stress is mainly affected by the thickness ratio of Al layer when the total thickness of coating is unchanged. With the increase of Al layer thickness, the surface tensile stress rises quickly. When Al2O3 layer thickness increases, surface tensile stress is diminished. Meanwhile, the maximum shear stress moves rapidly towards internal part of HDA/PEO coatings. Shear stress at the Al2O3 /Al interface is minimal when Al2O3 layer and Al layer have the same thickness.展开更多
Background:According to World Health Organization,colorectal cancer is the third most common cancer in the world.The prognosis assessment and condition judgment of the colorectal cancer remains a challenge clinically....Background:According to World Health Organization,colorectal cancer is the third most common cancer in the world.The prognosis assessment and condition judgment of the colorectal cancer remains a challenge clinically.Therefore,identification of diagnostic markers to evaluate the prognosis of colorectal cancer clinically should be urgently developed.We have observed that a lot of cancer patients had thick tongue clinically,but what is the relationship between tongue coating and the tumor?Methods:Seventy-four patients with colorectal carcinoma were collected through the outpatients of Tianjin Medical University Cancer Institute and Hospital from May 2010 to September 2011,in which there were 49 patients confirmed with recurrence or metastasis.All photos of patients’tongue were taken with a SONY camera in the same room and under constant conditions such as brightness or distance.Regression equation predicting thickness of tongue coating was constructed using binary logistic regression analysis.The optimal cut off of probabilities to diagnosis thick tongue coating was determined by receiver operating curve analysis.χ2 test for paired data and kappa test were used to determine the diagnostic value for recurrence and/or metastasis in colorectal cancer patients.Kolmogorov-Smirnov test was used to determine the distribution of ALT,AST,ALP ALB,TP,GLO,TBIL,DBIL,GGT,LDH,GLU,UA,CA724,CA199,CA242 and CEA.Data with the skewed distribution were presented as median(quartile interval).The association between the thickness of tongue coating and clinical-pathological character was evaluated by chi square test and two-independent-sample test.The two-independent-samplesχ2 was used to determine whether there were significant differences in the thin coating and thick coating between patients with recurrence and/or metastasis and patients without recurrence and/or metastasis.Kaplan-Meier method was used to analyze survival time.Statistical analysis was performed by SPSS(version 16.0).Results:Through retrospective clinical study we found that overall survival of colorectal cancer patients with thick greasy tongue coating is less than the patients with less tongue coating.What’s more,the risk for recurrence or/and metastasis overall survival in thick coating group was higher than thin coating group.In addition,the histological staining of the tongue slices of rats showed that EGFR receptors in the tongue root were the most among whole tongue surface.Tongue thick coating may be due to tumor patients with high levels of serum EGF which results in significantly increasing tongue coating.This finding suggested that the tongue coating of cancer patients may reflect the level of serum EGF levels in patients which may be related to shorter survival time.In addition,another study showed that serum lactic dehydrogenase level in patients with thick tongue coating is higher than patients with thin tongue coating.Conclusions:These studies suggest that tongue coating is likely to reflect some of the growth factor and enzyme levels.By observing the tongue coating we could predict the prognosis of patients and the characteristics of tongue coating may be used as new diagnostic markers to patients with colorectal carcinoma.展开更多
Pure Al coating was deposited on sintered NdFeB magnet by direct current(DC) magnetron sputtering to improve the corrosion resistance of magnet. The influences of coating thickness and sputtering power on microstruc...Pure Al coating was deposited on sintered NdFeB magnet by direct current(DC) magnetron sputtering to improve the corrosion resistance of magnet. The influences of coating thickness and sputtering power on microstructure and corrosion resistance of Al coating were investigated. The surface morphology of Al coating was characterized by scanning electron microscopy(SEM). The corrosion properties were investigated by potentiodynamic polarization curves and neutral salt spray(NSS) test. The formation of the uniform and compact Al coating is a necessary condition to achieve excellent corrosion resistance. And the optimal corrosion resistance can be obtained in the sample with 6.69 μm thick Al coating deposited at 51-82 W.展开更多
2198 and 5A90 Al-Li alloys were anodized with a constant DC potential in 18%H_2SO_4solution(Solu.A) and the mixture solution of 18%H_2SO_4+5%C_2H_2O_4(Solu.B) at room temperature. 12 and 11 V was optimized as the appl...2198 and 5A90 Al-Li alloys were anodized with a constant DC potential in 18%H_2SO_4solution(Solu.A) and the mixture solution of 18%H_2SO_4+5%C_2H_2O_4(Solu.B) at room temperature. 12 and 11 V was optimized as the applied oxidation potential for 2198 and 5A90 alloys, respectively. Cross-sectional morphology, surface morphology and elements distribution of anodic oxidation coatings were observed by scanning electron microscope equipped with energy dispersive X-ray analysis(SEM/EDX). Corrosion resistance was tested by potentiodynamic polarization plot in 3.5%NaCl solution. The results showed that the thicknesses of coatings obtained at the selected potential in Solu.A and Solu.B were about 50 μm/110 μm for 2198 alloy and 80 μm/110 μm for 5A90 alloy. In both solutions, anodic oxidation coatings of 2198 alloy were primarily composed of Al oxides; those of 5A90 alloy were mainly consisted of Al oxides and a small amount of Mg oxides. The results of potentiodynamic polarization showed that anodic oxidation coatings of 2198 and 5A90 Al-Li alloys had better corrosion resistances than that of untreated alloys.展开更多
Ceramic coatings were prepared on Ti-6AI-4V alloy using ac micro-arc oxidation (MAO) in silicate-hypophosphate solution. Growth regularity and formation mechanism of ceramic coatings were discussed. It was found that ...Ceramic coatings were prepared on Ti-6AI-4V alloy using ac micro-arc oxidation (MAO) in silicate-hypophosphate solution. Growth regularity and formation mechanism of ceramic coatings were discussed. It was found that during the first stage the growth rate of coatings toward the external surface was larger than that toward substrate and then the coating began to grow mainly towards Ti alloy. When the total coating thickness reaches a certain value, it would no longer increase. In addition, the variations of the composition and microstructure of ceramic coatings according to the depositing time were also investigated with X-ray diffraction (XRD) and scanning electron microscope (SEM). The amount of rutile TiO2 gradually increased, whereas the amounts of the anatase TiO2 and amorphous phases first increased and then decreased slightly.展开更多
The preferable mechanical properties of Mg alloys along with excellent compatibility with human bone have established their applicability as implant biomaterials.However,a higher corrosion/degradation rate of Mg alloy...The preferable mechanical properties of Mg alloys along with excellent compatibility with human bone have established their applicability as implant biomaterials.However,a higher corrosion/degradation rate of Mg alloys in body fluids limits its biomedical applications.In this direction,surface modification and coating are explored as appropriate strategies to mode the degradation rate of Mg alloys.The constituents of bioactive glass(BG)provide strength,bio-inertness and bone bonding capability.Hence,researchers have explored the coating of BG on Mg alloys and investigated chemical,mechanical and biological properties of the coated alloys.In this review,we have made an attempt to compile the literature works done on the coating of BG on Mg alloys and its features.Underlying interfacial aspects of the coated substrates towards the degradation behavior are highlighted.The way forward to further improve the coating characteristics of BG coated Mg alloys are remarked.展开更多
With the wide application of coating materials in aerospace and other fields, their safety under fatigue conditions in service is important.However, research on the fatigue properties of ceramic hard coatings started ...With the wide application of coating materials in aerospace and other fields, their safety under fatigue conditions in service is important.However, research on the fatigue properties of ceramic hard coatings started late, and a unified standard is yet to be established to evaluate the fatigue life of hard coating–ductile substrate systems.Studies also present different opinions on whether coatings can improve or reduce the fatigue life of substrates.In this paper, the influence of the properties of ceramic coatings on fatigue performance is reviewed, and the effects of coating on the mechanism of fatigue crack initiation in substrates are discussed, aiming to help readers understand the fatigue behavior of hard coating–ductile substrate systems.展开更多
The properties of dry-coated paracetamol particles(fast-dissolving model drug)with carnauba wax particles as the coating agent(dissolution retardant)were investigated.Raman mapping technique was used to non-destructiv...The properties of dry-coated paracetamol particles(fast-dissolving model drug)with carnauba wax particles as the coating agent(dissolution retardant)were investigated.Raman mapping technique was used to non-destructively examine the thickness and homogeneity of coated particles.The results showed that the wax existed in two forms on the surface of the paracetamol particles,forming a porous coating layer:i)whole wax particles on the surface of paracetamol and glued together with other wax surface particles,and ii)deformed wax particles spread on the surface.Regardless of the final particle size fraction(between 100 and 800 mm),the coating thickness had high variability,with average thickness of 5.9±4.2 mm.The ability of carnauba wax to decrease the dissolution rate of paracetamol was confirmed by dissolution of powder and tablet formulations.The dissolution was slower for larger coated particles.Tableting further reduced the dissolution rate,clearly indicating the impact of subsequent formulation processes on the final quality of the product.展开更多
Objective:To determine the frequency of malaria parasite detection from the buffy coal blood films by using capillary tube in falciparum malaria patients with negative conventional thick films.Methods:Thirty six uncom...Objective:To determine the frequency of malaria parasite detection from the buffy coal blood films by using capillary tube in falciparum malaria patients with negative conventional thick films.Methods:Thirty six uncomplicated falciparum malaria patients confirmed by conventional thick and thin films were included in the study.The patients were treated with artemisinin combination therapy at Hospital for Tropical Diseases,Bangkok,Thailand for 28 day.Fingerpricks for conventional blood films were conducted every 6 hours until negative parasitemia,then daily fingerpricks for parasite checks were conducted until the patients were discharged from hospital. Blood samples were also concurrently collected in 3 heparinized capillary tubes at the same time of fingerpricks for conventional blood films when the prior parasitemia was negative on thin films and parasitemia was lower than 50 parasites/200 white blood cells by thick film.The first negative conventional thick films were compared with buffy coat thick films for parasite identification. Results:Out of 36 patients with thick films showing negative for asexual forms of parasites, buffy coat films could detect remaining 10 patients(27.8%) with asexual forms of Plasmodium falciparum.Conclusions:The study shows that buffy coat thick films are useful and can detect malarial parasites in 27.8%of patients whose conventional thick films show negative parasitemia.展开更多
Diamond-like Carbon (DLC) coatings of thickness 3 μm and 10 μm were deposited with and without radical nitriding on stainless steel disk and ring specimens. Plasma CVD method was used to deposit the DLC coatings wit...Diamond-like Carbon (DLC) coatings of thickness 3 μm and 10 μm were deposited with and without radical nitriding on stainless steel disk and ring specimens. Plasma CVD method was used to deposit the DLC coatings with silicon as dopant. The specimens were tested in vacuum under sliding contact condition to evaluate the tribological characteristics with reference to the DLC coating thickness and sliding distance. The results revealed that wear resistance was more for the highest coating thickness. The changes on the worn surfaces were observed and wear mechanism is discussed using ex situ analysis.展开更多
文摘The principle and application of optical interferometry to measure the coating thickness of color-coated plates were introduced in this paper.Additionally,several factors affecting the test results,including coating refractive index,wavelength range,and film thickness range setting,were analyzed.Among these,the refractive index of the color coating,which cannot be measured directly,was identified as the key factor.A solution to this problem was proposed.Finally,the optical interference method and the current detection methods,including the micrometer method and the magnetic eddy current method,were analyzed and compared.The results show that optical interferometry has better repeatability and reproducibility than the current methods and show no significant difference from the current methods through statistical tests.Therefore,the method can be applied to the detection of the coating thickness of color-coated plates.
文摘The special ultrasonic testing system has been developed for thickness measurement of plasma sprayed coatings. The ultrasonic immersion method was used to obtain stable coupling condition and avoid other disadvantages of contact method. Spherical acoustic lens were designed to focus ultrasonic beam so as to improve beam directivity and concentrate ultrasonic energy. To increase testing precision and avoid mussy wave signals, moderate pulse width and frequency of the transducer has been selected. The displacement of transducer in X-Y-Z directions was precisely manipulated by step-controlled system to insure the accuracy of focus length and repetition of measurement. Optimized testing conditions (with the transducer of center frequency of 10 MHz and crystal diameter of 8 mm, focus length of 9.5 mm, diameter of focal column of 0. 1 mm and length of focal column of 0.27 mm) were selected to determine the thickness between 285 -414 μm of ZrO2 coatings plasma sprayed on the nickel based superalloy. The frequency interval of the periodic extremums in ultrasonic power spectra decreases with increasing coating thickness. The ultrasonic results accord with those of metallographical method.
基金Ministry of Science and Technology of Malaysia for funding the research project under E-science Fund Vote No. 79352
文摘An experimental study on lost foam casting of an Al-Si-Cu alloy was conducted. The main objective was to study the effect of pattern coating thickness on casting imperfection and porosity percentage as well as eutectic silicon spacing of the alloy. The results showed that increasing slurry viscosity and flask dipping time influenced the casting integrity and microstructural characteristics. It was found that thinner pattern coating produced improved mould filling, refined microstructure and higher quality castings containing less porosity.
基金Funded by the National Natural Science Foundation of China(No.51171125)the China Postdoctoral Science Foundation (No.2012M520604)+1 种基金the Youth Foundation of Taiyuan University of Technology (No.2012L050)the Foundation for Talents Introduction of Taiyuan University of Technology
文摘A series of rare earth (RE) dispersed chromizing coatings were produced on P 110 steel by pack cementation. The orthogonal array design (OAD)was applied to set the experiments. An artificial neural network (ANN) approach is employed to predict the thickness values of the obtained chromizing coatings based on the OAD tests results. The results revealed that the built model was reliable, the thickness values of chromizing coatings were well predicted at selected process parameters, and the predicted error lied in rational range.
基金National High Technology Research and Development Program of China(2009AA04Z131)Natural Science Foundation of China (50877056)
文摘A novel thickness measurement method for surface insulation coating of silicon steel based on NIR spectrometry is explored.The NIR spectra of insulation coating of silicon steel were collected by acousto-optic tunable filter(AOTF) NIR spectrometer.To make full use of the effective information of NIR spectral data,discrete binary particle swarm optimization(DBPSO) algorithm was used to select the optimal wavelength variates.The new spectral data,composed of absorbance at selected wavelengths,were used to create the thickness quantitative analysis model by kernel partial least squares(KPLS) algorithm coupled with Boosting.The results of contrast experiments showed that the Boosting-KPLS model could efficiently improve the analysis accuracy and speed.It indicates that Boosting-KPLS is a more accurate and robust analysis method than KPLS for NIR spectral analysis.The maximal and minimal absolute error of 30 testing samples is respectively-0.02 μm and 0.19 μm,and the maximal relative error is 14.23%.These analysis results completely meet the practical measurement need.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20100006120020)the National Natural Science Foundation of China(Nos.51010001,51071018,and 51001009)+1 种基金the Program of Introducing Talents of Discipline to Universities(the 111 Project,No.B07003)the Program for Changjiang Scholars and Innovative Research Team in Universities of the Ministry of Education of China
文摘A continuous production process was developed for coating bulk metallic glasses on the metallic wire surface. The effects of processing parameters, including the drawing velocity and coating temperature, on the coating thickness were investigated. It is found that the coating thickness increases with the increase in drawing velocity but decreases with the increase in coating temperature. A fluid mechanical model was developed to quantify the coating thickness under various processing conditions. By using this theoretical model, the coating thickness was calculated, and the calculated values are in good agreement with the experimental data.
文摘A new improved investment casting technology (IC) has been presented and compared with the existing IC technology such as lost foam casting (LFC). The effect of thermophysical property and coating thickness on casting solidification temperature field, microstructure and hardness has been investigated. The results show that the solidification rate decreases inversely with the coating thickness when the coating contains silica sol, zircon powder, mullite powder and defoaming agent. In contrast, the solid cooling rate increases as the coating thickness increases. However, the solidification rate and solid cooling rate of the casting produced by the existing IC and the improved IC are very similar when the coating thickness is 5 mm, so the microstructure and hardness of a container corner fitting produced by the improved IC and the existing IC are similar. The linear regression equation for the grain size (d) and cooling rate (v) of the castings is d= -0.41v+206.1. The linear regression equation for the content of pearlite (w) and solid cooling rate (t) is w=1.79t + 6.71. The new improved IC can greatly simplify the process and decrease the cost of production compared with the existing IC. Contrasting with LI=C, container corner fittings produced by the new improved IC have fewer defects and better properties. It was also found that the desired microstructure and properties can be obtained by changing the thermophysical property and thickness of the coating.
基金supported by the National Natural Science Foundation of China(Grant Nos.51605079 and 51475076)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(Grant No.51621064)the China Postdoctoral Science Foundation(Grant No.2016M591424)
文摘The polymer spin coating is critical in flexible electronic manufaction and micro-electro-mechanical system(MEMS)devices due to its simple operation, and uniformly coated layers. Some researchers focus on the effects of spin coating parameters such as wafer rotating speed, the viscosity of the coating liquid and solvent evaporation on final film thickness.In this work, the influence of substrate curvature on film thickness distribution is considered. A new parameter which represents the edge bead effect ratio(re) is proposed to investigate the influence factor of edge bead effect. Several operation parameters including the curvature of the substrate and the wafer-spin speed are taken into account to study the effects on the film thickness uniformity and edge-bead ratio. The morphologies and film thickness values of the spin-coated PDMS films under various substrate curvatures and coating speeds are measured with laser confocal microscopy. According to the results, both the convex and concave substrate will help to reduce the edge-bead effect significantly and thin film with better surface morphology can be obtained at high spin speed. Additionally, the relationship between the edge-bead ratio and the thin film thickness is like parabolic curve instead of linear dependence. This work may contribute to the mass production of flexible electronic devices.
文摘The thermoelastic behaviors of such as temperature distribution, displacements, and stresses in thermal barrier coatings (TBC) are seriously influenced by top coat thickness and edge conditions. The top coat of TBC specimens prepared with TriplexPro?-200 system was controlled by changing the processing parameter and feedstock, showing the various thicknesses and microstructures. A couple of governing partial differential equations were derived based on the thermoelastic theory. Since the governing equations were too involved to solve analytically, a finite volume method was developed to obtain approximations. The thermoelastic behaviors of TBC specimens with the various thicknesses and microstructures were estimated through mathematical approaches with different edge conditions. The results demonstrated that the microstructure and thickness of the top coat, and the edge condition in theoretical analysis were crucial factors to be considered in controlling the thermoelastic characteristics of plasma-sprayed TBCs.
基金supported by the National Science and Technology Major Project(J2019-IV-0003-0070)the National Natural Science Foundation of China(Grant No.12102320)+1 种基金the Advanced Aviation Power Innovation Workstation Project(HKCX2019-01-003)China Postdoc-toral Science Foundation(2021M692571).
文摘Avirtual wall thicknessmethod is developed to simulate the temperature field of turbine bladeswith thermal barrier coatings(TBCs),to simplify the modeling process and improve the calculation efficiency.The results show that the virtualwall thickness method can improve themesh quality by 20%,reduce the number ofmeshes by 76.7%and save the calculation time by 35.5%,compared with the traditional real wall thickness method.The average calculation error of the two methods is between 0.21%and 0.93%.Furthermore,the temperature at the blade leading edge is the highest and the average temperature of the blade pressure surface is higher than that of the suction surface under a certain service condition.The blade surface temperature presents a high temperature at both ends and a low temperature in themiddle height when the temperature of incoming gas is uniformand constant.The thermal insulation effect of TBCs is the worst near the air film hole,and the best at the blade leading edge.According to the calculated temperature field of the substrate-coating system,the highest thermal insulation temperature of the TC layer is 172.01 K,and the thermal insulation proportions of TC,TGO and BC are 93.55%,1.54%and 4.91%,respectively.
基金Project(10572141) supported by the National Natural Science Foundation of China
文摘Multilayer ceramic coatings were fabricated on steel substrate using a combined technique of hot dipping aluminum(HDA) and plasma electrolytic oxidation(PEO). A triangle of normalized layer thickness was created for describing thickness ratios of HDA/PEO coatings. Then, the effect of thickness ratio on stresses field of HDA/PEO coatings subjected to uniform normal contact load was investigated by finite element method. Results show that the surface tensile stress is mainly affected by the thickness ratio of Al layer when the total thickness of coating is unchanged. With the increase of Al layer thickness, the surface tensile stress rises quickly. When Al2O3 layer thickness increases, surface tensile stress is diminished. Meanwhile, the maximum shear stress moves rapidly towards internal part of HDA/PEO coatings. Shear stress at the Al2O3 /Al interface is minimal when Al2O3 layer and Al layer have the same thickness.
文摘Background:According to World Health Organization,colorectal cancer is the third most common cancer in the world.The prognosis assessment and condition judgment of the colorectal cancer remains a challenge clinically.Therefore,identification of diagnostic markers to evaluate the prognosis of colorectal cancer clinically should be urgently developed.We have observed that a lot of cancer patients had thick tongue clinically,but what is the relationship between tongue coating and the tumor?Methods:Seventy-four patients with colorectal carcinoma were collected through the outpatients of Tianjin Medical University Cancer Institute and Hospital from May 2010 to September 2011,in which there were 49 patients confirmed with recurrence or metastasis.All photos of patients’tongue were taken with a SONY camera in the same room and under constant conditions such as brightness or distance.Regression equation predicting thickness of tongue coating was constructed using binary logistic regression analysis.The optimal cut off of probabilities to diagnosis thick tongue coating was determined by receiver operating curve analysis.χ2 test for paired data and kappa test were used to determine the diagnostic value for recurrence and/or metastasis in colorectal cancer patients.Kolmogorov-Smirnov test was used to determine the distribution of ALT,AST,ALP ALB,TP,GLO,TBIL,DBIL,GGT,LDH,GLU,UA,CA724,CA199,CA242 and CEA.Data with the skewed distribution were presented as median(quartile interval).The association between the thickness of tongue coating and clinical-pathological character was evaluated by chi square test and two-independent-sample test.The two-independent-samplesχ2 was used to determine whether there were significant differences in the thin coating and thick coating between patients with recurrence and/or metastasis and patients without recurrence and/or metastasis.Kaplan-Meier method was used to analyze survival time.Statistical analysis was performed by SPSS(version 16.0).Results:Through retrospective clinical study we found that overall survival of colorectal cancer patients with thick greasy tongue coating is less than the patients with less tongue coating.What’s more,the risk for recurrence or/and metastasis overall survival in thick coating group was higher than thin coating group.In addition,the histological staining of the tongue slices of rats showed that EGFR receptors in the tongue root were the most among whole tongue surface.Tongue thick coating may be due to tumor patients with high levels of serum EGF which results in significantly increasing tongue coating.This finding suggested that the tongue coating of cancer patients may reflect the level of serum EGF levels in patients which may be related to shorter survival time.In addition,another study showed that serum lactic dehydrogenase level in patients with thick tongue coating is higher than patients with thin tongue coating.Conclusions:These studies suggest that tongue coating is likely to reflect some of the growth factor and enzyme levels.By observing the tongue coating we could predict the prognosis of patients and the characteristics of tongue coating may be used as new diagnostic markers to patients with colorectal carcinoma.
基金Project(NCET-11-0127)supported by Program for New Century Excellent Talents in University,ChinaProject(K1306063-11)supported by the Key Project for Science and Technology of Changsha,China
文摘Pure Al coating was deposited on sintered NdFeB magnet by direct current(DC) magnetron sputtering to improve the corrosion resistance of magnet. The influences of coating thickness and sputtering power on microstructure and corrosion resistance of Al coating were investigated. The surface morphology of Al coating was characterized by scanning electron microscopy(SEM). The corrosion properties were investigated by potentiodynamic polarization curves and neutral salt spray(NSS) test. The formation of the uniform and compact Al coating is a necessary condition to achieve excellent corrosion resistance. And the optimal corrosion resistance can be obtained in the sample with 6.69 μm thick Al coating deposited at 51-82 W.
基金Funded by the Aeronautical Science Foundation of China(No.2015ZE54035)the National Natural Science Foundation of China(No.51301113)
文摘2198 and 5A90 Al-Li alloys were anodized with a constant DC potential in 18%H_2SO_4solution(Solu.A) and the mixture solution of 18%H_2SO_4+5%C_2H_2O_4(Solu.B) at room temperature. 12 and 11 V was optimized as the applied oxidation potential for 2198 and 5A90 alloys, respectively. Cross-sectional morphology, surface morphology and elements distribution of anodic oxidation coatings were observed by scanning electron microscope equipped with energy dispersive X-ray analysis(SEM/EDX). Corrosion resistance was tested by potentiodynamic polarization plot in 3.5%NaCl solution. The results showed that the thicknesses of coatings obtained at the selected potential in Solu.A and Solu.B were about 50 μm/110 μm for 2198 alloy and 80 μm/110 μm for 5A90 alloy. In both solutions, anodic oxidation coatings of 2198 alloy were primarily composed of Al oxides; those of 5A90 alloy were mainly consisted of Al oxides and a small amount of Mg oxides. The results of potentiodynamic polarization showed that anodic oxidation coatings of 2198 and 5A90 Al-Li alloys had better corrosion resistances than that of untreated alloys.
基金This work was finicially supported by the National Natural Science Foundation of China(Grant No.50171026).
文摘Ceramic coatings were prepared on Ti-6AI-4V alloy using ac micro-arc oxidation (MAO) in silicate-hypophosphate solution. Growth regularity and formation mechanism of ceramic coatings were discussed. It was found that during the first stage the growth rate of coatings toward the external surface was larger than that toward substrate and then the coating began to grow mainly towards Ti alloy. When the total coating thickness reaches a certain value, it would no longer increase. In addition, the variations of the composition and microstructure of ceramic coatings according to the depositing time were also investigated with X-ray diffraction (XRD) and scanning electron microscope (SEM). The amount of rutile TiO2 gradually increased, whereas the amounts of the anatase TiO2 and amorphous phases first increased and then decreased slightly.
文摘The preferable mechanical properties of Mg alloys along with excellent compatibility with human bone have established their applicability as implant biomaterials.However,a higher corrosion/degradation rate of Mg alloys in body fluids limits its biomedical applications.In this direction,surface modification and coating are explored as appropriate strategies to mode the degradation rate of Mg alloys.The constituents of bioactive glass(BG)provide strength,bio-inertness and bone bonding capability.Hence,researchers have explored the coating of BG on Mg alloys and investigated chemical,mechanical and biological properties of the coated alloys.In this review,we have made an attempt to compile the literature works done on the coating of BG on Mg alloys and its features.Underlying interfacial aspects of the coated substrates towards the degradation behavior are highlighted.The way forward to further improve the coating characteristics of BG coated Mg alloys are remarked.
基金financially supported by the National Natural Science Foundation of China (Nos.51922002 and 51771025)the Fundamental Research Funds for the Central Universities (No.FRF-TP-17-19-003C1Z)。
文摘With the wide application of coating materials in aerospace and other fields, their safety under fatigue conditions in service is important.However, research on the fatigue properties of ceramic hard coatings started late, and a unified standard is yet to be established to evaluate the fatigue life of hard coating–ductile substrate systems.Studies also present different opinions on whether coatings can improve or reduce the fatigue life of substrates.In this paper, the influence of the properties of ceramic coatings on fatigue performance is reviewed, and the effects of coating on the mechanism of fatigue crack initiation in substrates are discussed, aiming to help readers understand the fatigue behavior of hard coating–ductile substrate systems.
基金supported by specific university research(Grant No.:A1_FCHI_2022_006).
文摘The properties of dry-coated paracetamol particles(fast-dissolving model drug)with carnauba wax particles as the coating agent(dissolution retardant)were investigated.Raman mapping technique was used to non-destructively examine the thickness and homogeneity of coated particles.The results showed that the wax existed in two forms on the surface of the paracetamol particles,forming a porous coating layer:i)whole wax particles on the surface of paracetamol and glued together with other wax surface particles,and ii)deformed wax particles spread on the surface.Regardless of the final particle size fraction(between 100 and 800 mm),the coating thickness had high variability,with average thickness of 5.9±4.2 mm.The ability of carnauba wax to decrease the dissolution rate of paracetamol was confirmed by dissolution of powder and tablet formulations.The dissolution was slower for larger coated particles.Tableting further reduced the dissolution rate,clearly indicating the impact of subsequent formulation processes on the final quality of the product.
基金financially supported by Department of Clinical Tropical Medicine,Faculty of Tropical Medicine,Mahidol University,Thailand(grant No.CTM-2553-01)
文摘Objective:To determine the frequency of malaria parasite detection from the buffy coal blood films by using capillary tube in falciparum malaria patients with negative conventional thick films.Methods:Thirty six uncomplicated falciparum malaria patients confirmed by conventional thick and thin films were included in the study.The patients were treated with artemisinin combination therapy at Hospital for Tropical Diseases,Bangkok,Thailand for 28 day.Fingerpricks for conventional blood films were conducted every 6 hours until negative parasitemia,then daily fingerpricks for parasite checks were conducted until the patients were discharged from hospital. Blood samples were also concurrently collected in 3 heparinized capillary tubes at the same time of fingerpricks for conventional blood films when the prior parasitemia was negative on thin films and parasitemia was lower than 50 parasites/200 white blood cells by thick film.The first negative conventional thick films were compared with buffy coat thick films for parasite identification. Results:Out of 36 patients with thick films showing negative for asexual forms of parasites, buffy coat films could detect remaining 10 patients(27.8%) with asexual forms of Plasmodium falciparum.Conclusions:The study shows that buffy coat thick films are useful and can detect malarial parasites in 27.8%of patients whose conventional thick films show negative parasitemia.
文摘Diamond-like Carbon (DLC) coatings of thickness 3 μm and 10 μm were deposited with and without radical nitriding on stainless steel disk and ring specimens. Plasma CVD method was used to deposit the DLC coatings with silicon as dopant. The specimens were tested in vacuum under sliding contact condition to evaluate the tribological characteristics with reference to the DLC coating thickness and sliding distance. The results revealed that wear resistance was more for the highest coating thickness. The changes on the worn surfaces were observed and wear mechanism is discussed using ex situ analysis.