Ce-doped Zn-Al layered double hydroxide(LDH) nanocontainer was synthesized by a co-precipitation method. X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FT-IR), scanning electron microscopy(SEM...Ce-doped Zn-Al layered double hydroxide(LDH) nanocontainer was synthesized by a co-precipitation method. X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FT-IR), scanning electron microscopy(SEM) and transmission electron microscopy(TEM) methods were used for the characterization of the LDH nanocontainer. The anticorrosion activity of the LDH powders embedded in a hybrid sol-gel coating on aluminum alloy 2024 was investigated by electrochemical impendence spectroscopy(EIS). The results showed that Ce(III) ions were successfully incorporated into LDHs layers. The sol-gel coating modified with Ce-doped Zn-Al LDHs exhibited higher anticorrosion behavior compared with both unmodified and Ce-undoped LDHs containing coatings, which proved the applicability of Ce-doped LDHs in delaying coating degradation and their potential application as nanocontainers of corrosion inhibitors in self-healing coatings.展开更多
Biaxially oriented polypropylene(BOPP)is one of the most commonly used commercial capacitor films,but its upper operating temperature is below 105℃due to the sharply increased electrical conduction loss at high tempe...Biaxially oriented polypropylene(BOPP)is one of the most commonly used commercial capacitor films,but its upper operating temperature is below 105℃due to the sharply increased electrical conduction loss at high temperature.In this study,growing an inorganic nanoscale coating layer onto the BOPP film's surface is proposed to suppress electrical conduction loss at high temperature,as well as increase its upper operating temperature.Four kinds of inorganic coating layers that have different energy band structure and dielectric property are grown onto the both surface of BOPP films,respectively.The effect of inorganic coating layer on the high-temperature energy storage performance has been systematically investigated.The favorable coating layer materials and appropriate thickness enable the BOPP films to have a significant improvement in high-temperature energy storage performance.Specifically,when the aluminum nitride(AIN)acts as a coating layer,the AIN-BOPP-AIN sandwich-structured films possess a discharged energy density of 1.5 J cm^(-3)with an efficiency of 90%at 125℃,accompanying an outstandingly cyclic property.Both the discharged energy density and operation temperature are significantly enhanced,indicating that this efficient and facile method provides an important reference to improve the high-temperature energy storage performance of polymer-based dielectric films.展开更多
Magnesium and aluminum alloys are widely used in various industries because of their excellent properties,and their reliable connection may increase application of materials.Intermetallic compounds(IMCs)affect the joi...Magnesium and aluminum alloys are widely used in various industries because of their excellent properties,and their reliable connection may increase application of materials.Intermetallic compounds(IMCs)affect the joint performance of Mg/Al.In this study,AZ31 Mg alloy with/without a nickel(Ni)coating layer and 6061 Al alloy were joined by ultrasonic-assisted soldering with Sn-3.0Ag-0.5Cu(SAC)filler.The effects of the Ni coating layer on the microstructure and mechanical properties of Mg/Al joints were systematically investigated.The Ni coating layer had a significant effect on formation of the Mg_(2)Sn IMC and the mechanical properties of Mg/Al joints.The blocky Mg_(2)Sn IMC formed in the Mg/SAC/Al joints without a Ni coating layer.The content of the Mg_(2)Sn IMC increased with increasing soldering temperature,but the joint strength decreased.The joint without a Ni coating layer fractured at the blocky Mg_(2)Sn IMC in the solder,and the maximum shear strength was 32.2 MPa.By pre-plating Ni on the Mg substrate,formation of the blocky Mg_(2)Sn IMC was inhibited in the soldering temperature range 240–280℃and the joint strength increased.However,when the soldering temperature increased to 310℃,the blocky Mg_(2)Sn IMC precipitated again in the solder.Transmission electron microscopy showed that some nano-sized Mg_(2)Sn IMC and the(Cu,Ni)_(6)Sn_(5)phase formed in the Mg(Ni)/SAC/Al joint soldered at 280℃,indicating that the Ni coating layer could no longer prevent diffusion of Mg into the solder when the soldering temperature was higher than 280℃.The maximum shear strength of the Mg(Ni)/SAC/Al joint was 58.2 MPa for a soldering temperature of 280℃,which was 80.7%higher than that of the Mg/SAC/Al joint,and the joint was broken at the Mg(Ni)/SAC interface.Pre-plating Ni is a feasible way to inhibit formation of IMCs when joining dissimilar metals.展开更多
Spherical carbonyl iron(Fe)powders were coated with magnesioferrite(MgFe2O4)insulating coating layer and then mixed with epoxy-modified silicone resin(ESR).Soft magnetic composites(SMCs)were fabricated by compaction o...Spherical carbonyl iron(Fe)powders were coated with magnesioferrite(MgFe2O4)insulating coating layer and then mixed with epoxy-modified silicone resin(ESR).Soft magnetic composites(SMCs)were fabricated by compaction of the coated powders and annealing treatment.Transmission electron microscopy(TEM),scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),X-ray diffractometry(XRD)and X-ray photoelectron spectroscopy(XPS)revealed that the MgFe2O4 layer was coated on the surface of the iron powders.The magnetic properties of SMCs were determined using a vibrating sample magnetometer and an auto testing system for magnetic materials.The results showed that the SMCs prepared at 800 MPa and 550℃ exhibited a significant core loss of 167.5 W/kg at 100 kHz and 50 mT.展开更多
Mechanical properties of galvannealed (GA) steel sheet used for automotive exposed panel and predicted failure phenomenon of its coating layer were evaluated using finite element method. V-bending test was performed t...Mechanical properties of galvannealed (GA) steel sheet used for automotive exposed panel and predicted failure phenomenon of its coating layer were evaluated using finite element method. V-bending test was performed to understand better the fracture of coating layer of GA steel sheet during plastic deformation. Yield strength of the coating layer was calculated by using a relative difference between hardness of coating layer measured from the nano-indentation test and that of substrate. To measure shearing strength at the interface between substrate and coating layer, shearing test with two specimens attached by an adhesive was carried out. Using the mechanical properties measured, a series of finite element analyses coupled with a failure model was performed. Results reveal that the fracture of coating layer occurs in an irregular manner at the region where compressive deformation is dominant. Meanwhile, a series of vertical cracks perpendicular to material surface are observed at the tensile stressed-region. It is found that 0.26-0.28 of local equivalent plastic strain exists at the coating and substrate at the beginning of failure. The fracture of coating layer depends on ductility of the coating layer considerably as well.展开更多
MgO thin films with different textures are fabricated by the ion beam assisted (IBAD) method on the Y2O3/Al2O3 buffered C276 tape. Then a CaO2 layer is directly grown on the IBAD-MgO film by the pulsed laser deposit...MgO thin films with different textures are fabricated by the ion beam assisted (IBAD) method on the Y2O3/Al2O3 buffered C276 tape. Then a CaO2 layer is directly grown on the IBAD-MgO film by the pulsed laser deposition (PLD) method. Effects of lBAD-MgO texture, substrata temperature and thickness on the grain alignment of the CeO2 layer are investigated. Film characterization is performed by x-ray diffraction and atomic force microscopy. It is found that the orientation and texture degree of the CaO2 layer are very sensitive to the IBAD-MgO texture. By optimizing the IBAD-MgO texture, CeO2 has pure (002) orientation and excellent biaxial texture deposited in a broad substrata temperature range. In addition, the PLD-CeO2 layer has a thickness effect. Under the optimized experimental condition, the PLD-CeO2 layer has a high in-plane texture of △φ = 2.9° and a smooth surface with an rms surface roughness of less than 2nm. The critical current density Jc of a 0.4μm-thick YBCO film deposited on the CeO2 layer is 6.25 × 106 A/cm2 at 77K and a self-field.展开更多
As the coated materials are widely applied in engineering, estimation of the elastic properties of coating layers is of great practical importance. This paper presents an inversion algorithm for determining the elasti...As the coated materials are widely applied in engineering, estimation of the elastic properties of coating layers is of great practical importance. This paper presents an inversion algorithm for determining the elastic properties of coating layers from the given velocity dispersion of surface ultrasonic waves. Based on the dispersive equation of surface waves in layered half space, an objective function dependent on coating material parameters is introduced. The density and wave velocities, which make the object function minimum, are taken as the inversion results. Inverse analyses of two parameters (longitudinal and transverse velocities) and three parameters (the density, longitudinal and transverse velocities) of the coating layer were made.展开更多
This paper investigates the torsion analysis of coated bars with a rectangular cross-section. Two opposite faces of a bar are coated by two isotropie layers with different materials of the original substrate that are ...This paper investigates the torsion analysis of coated bars with a rectangular cross-section. Two opposite faces of a bar are coated by two isotropie layers with different materials of the original substrate that are perfectly bonded to the bar. With the Saint- Venant torsion theory, the governing equation of the problem in terms of the warping function is established and solved using the finite Fourier cosine transform. The state of stress on the cross-section, warping of the cross-section, and torsional rigidity of the bar are evaluated. Effects of thickness of the coating layers and material properties on these quantities are investigated. A set of graphs are provided that can be used to determine the coating thicknesses and material properties so as to keep the maximum von Mises stress on the cross-section below an allowable value for effective use of the coating layer.展开更多
In this paper, the droplet transfer behavior of the stainless steel coated electrode with double layer coating is researched by means of those experimental methods, such as high speed camera, collecting droplet in wa...In this paper, the droplet transfer behavior of the stainless steel coated electrode with double layer coating is researched by means of those experimental methods, such as high speed camera, collecting droplet in water, surfacing on the steel plate et al. The results show that the droplet transfer indexes of coated electrode are mainly controlled by the size of droplet, which affects the transfer behavior of droplet. The distribution characteristic of the droplet size of the electrode affects the numerical relationship among droplet transfer indexes. The metallurgical process of the coated electrode with double layer coating is carried out continuously in different zones. The main reason for the coated electrode with double layer coating gaining excellent usability quality is that the droplets realize the 'quasi flux wall guided transfer pattern'.展开更多
The insertion loss of acoustic radiation of damped cylindrical shell described by 3-D elasticity Navier equations under radial harmonic applied load in fluid is presented. The classical integral transform technique, p...The insertion loss of acoustic radiation of damped cylindrical shell described by 3-D elasticity Navier equations under radial harmonic applied load in fluid is presented. The classical integral transform technique, potential theory and Lamè resolution are used to derive the solutions of Navier equations. The higher precision inversion computation is introduced to solve the linear equations. Comparing with acoustic radiation of one-layer cylindrical shell, the influence of thickness, mass density, dilatational wave loss factor and Young's modulus of damping material and circumferential mode number of the cylindrical shell on the insertion loss is concluded. The theoretical model in the paper can be used to deal with the arbitrary thickness and any frequency of the coated layer in dynamic problem. The conclusions may be of theoretical reference to the application of damping material to noise and vibration control of submarines and underwater pipes.展开更多
Mg alloy was protected with Mg:Al layered double hydroxide(LDH)coating intercalated with three green corrosion inhibitors(sodium benzoate,3-aminopropyltriethoxysilane and 8-hydroxyquinoline).The in-situ hydrothermal a...Mg alloy was protected with Mg:Al layered double hydroxide(LDH)coating intercalated with three green corrosion inhibitors(sodium benzoate,3-aminopropyltriethoxysilane and 8-hydroxyquinoline).The in-situ hydrothermal approach was adopted to intercalate corrosion inhibitors into Mg:Al LDH coating.The intercalated Mg:Al LDH coating was successfully acquired,and the crystalline structure of Mg:Al LDH coating was verified with X-ray diffraction(XRD).The organic functional groups of corrosion inhibitors were identified with the help of Fourier transform infrared spectroscopy(FTIR)and X-ray photoelectron spectroscopy(XPS).The compact and uniform morphology was confirmed by scanning electron microscopy(SEM).The electrochemical measurement revealed better corrosion resistance of corrosion inhibitorintercalated Mg:Al LDH coatings as compared to that of pristine Mg alloy.The corrosion protection mechanism of corrosion inhibitors was described and unearthed the corrosion inhibitor with the best performance.展开更多
The Ni nanoparticles coated with Pb(Zr,Ti)O3(PZT) were synthesized by a sol-gel method and in situ reaction. And their structure, oxidation resistance, and electromagnetic properties were investigated. The X-ray d...The Ni nanoparticles coated with Pb(Zr,Ti)O3(PZT) were synthesized by a sol-gel method and in situ reaction. And their structure, oxidation resistance, and electromagnetic properties were investigated. The X-ray diffraction patterns(XRD) exhibited that a small amount of impure phase characterized to Ni(OH)2 was detected from the ammonia-treated Ni nanoparticles and the ammonia-treated Ni nanoparticles coated with PZT. After being pre-treated with aqueous ammonia, the PZT coating layer was more uniform and about 10 nm in thickness. The oxidation resistance of the ammonia-treated Ni nanoparticles coated with PZT, compared with that of the non-treated ones, was improved by about 66 ℃. The PZT shell layer prepared by in-situ reaction can greatly reduce the dielectric constant and improve the natural resonance loss at high frequency, so as to obtain the optimal impedance matching performance of the electromagnetic wave transmission.展开更多
The high-rate cyclability of Li-rich Mn-based oxide(LMO)is highly limited by the electrochemical polarization resulting from the slow kinetic of the Li2MnO3 phase.Herein,the Prussian blue(PB)coating layer with specifi...The high-rate cyclability of Li-rich Mn-based oxide(LMO)is highly limited by the electrochemical polarization resulting from the slow kinetic of the Li2MnO3 phase.Herein,the Prussian blue(PB)coating layer with specific redox potential is introduced as a functionalized interface to overcome the side effect and the escaping of O on the surface of LMO,especially its poor rate capability.In detail,the PB layer can restrict the large polarization of LMO by sharing overloaded current at a high rate due to the synchronous redox of PB and LMO.Consequently,an enhanced high rate performance with capacity retention of 87.8%over 300 cycles is obtained,which is superior to 50.5%of the pristine electrode.Such strategies on the high-rate cyclability of Li-rich Mn-based oxide compatible with good low-rate performances may attract great attention for pursuing durable performances.展开更多
In order to improve the adhesion of the middle frequency magnetic sputtered zirconium coating on a polyurethane film,an anode layer source was used to pretreat the polyurethane film with nitrogen and oxygen ions.SEMs ...In order to improve the adhesion of the middle frequency magnetic sputtered zirconium coating on a polyurethane film,an anode layer source was used to pretreat the polyurethane film with nitrogen and oxygen ions.SEMs and AFM roughness profiles of treated samples and the contrast groups were obtained.Besides,XPS survey spectrums and high resolution spectrums were also investigated.The adhesion test revealed that ion bombardment could improve the adhesion to the polyurethane coating substrate.A better etching result of oxygen ions versus nitrogen predicts a higher bonding strength of zirconium coating on polyurethane and,indeed,the highest bonding strengths are for oxygen ion bombardment upto 13.3 MPa.As demonstrated in X-ray photoelectron spectroscopy,the oxygen ion also helps to introduce more active groups,and,therefore,it achieves a high value of adhesion strength.展开更多
Nanostructured metal sulfides are potential electrode materials for sodium-ion batteries; however, they typically suffer from very poor cycling stability due to large volume changes and dissolution of discharge produc...Nanostructured metal sulfides are potential electrode materials for sodium-ion batteries; however, they typically suffer from very poor cycling stability due to large volume changes and dissolution of discharge products. Herein we propose a rational material design strategy for sulfide-based materials to address these problems. Taking nickel sulfide (NiSx) as an example, we demonstrated that its electrochemical performance can be dramatically improved by confining the NiSx nanoparticles in a percolating conductive carbon nanotube network, and stabilizing them with an ultrathin carbon coating layer. The carbon layer serves as a physical barrier to alleviate the effects of both the volume change and dissolution of active materials. The hybrid material exhibited a large reversible specific capacity of 〉500 mAh/g and excellent cycling stability over 200 cycles. Given the traditionally problematic nature of NiSx as a battery anode material, we believe that the observed high performance reported here reflects the effectiveness of our material design strategy.展开更多
Silicone elastomers-based materials have been extensively involved in the field of biomedical devices,while their use is extremely restricted due to the poor surface lubricity and inherent hydrophobicity.This paper de...Silicone elastomers-based materials have been extensively involved in the field of biomedical devices,while their use is extremely restricted due to the poor surface lubricity and inherent hydrophobicity.This paper describes a novel strategy for generating a robust layered soft matter lubrication coating on the surface of the polydimethylsiloxane(PDMS)silicone elastomer,by entangling thick polyzwitterionic polyelectrolyte brush of poly(sulfobetaine methacrylate)(PSBMA)into the sub-surface of the initiator-embedded stiff hydrogel coating layer of P(AAm-co-AA-co-HEMA-Br)/Fe,to achieve a unified low friction and high load-bearing properties.Meanwhile,the stiff hydrogel layer with controllable thickness is covalently anchored on the surface of PDMS by adding iron powder to provide catalytic sites through surface catalytically initiated radical polymerization(SCIRP)method and provides high load-bearing capacity,while the topmost brush/hydrogel composite layer is highly effective for aqueous lubrication.Their synergy effects are capable of attaining low friction coefficient(COFs)under wide range of loaded condition in water environment with steel ball as sliding pair.Furthermore,the influence of mechanical modulus of the stiff hydrogel layer on the lubrication performance of layered coating is investigated,for which the COF is the lowest only when the modulus of the stiff hydrogel layer well matches the PDMS substrate.Surprisingly,the COF of the modified PDMS could remain low friction(COF<0.05)stably after encountering 50,000 sliding cycles under 10 N load.Finally,the surface wear characterizations prove the robustness of the layered lubricating coating.This work provides a new route for engineering lubricious silicon elastomer with low friction,high load-bearing capacity,and considerable durability.展开更多
Magnesium was considered as a revolutionary biodegradable implant material for orthopedic application. Concerning the weakness of intrinsic strength and corrosion behavior, a novel strategy of Mg/metal hybrid system w...Magnesium was considered as a revolutionary biodegradable implant material for orthopedic application. Concerning the weakness of intrinsic strength and corrosion behavior, a novel strategy of Mg/metal hybrid system was proposed for extension of orthopedic application, especially at load-bearing site. In this work, an Mg and HA composite layered coating was constructed on titanium by means of chemical conversion and vapor deposition. The HA transition interlayer was introduced to enhance the bonding between Mg film and Ti substrate. Compared with the bare Mg coating, the Mg/HA coating presented good interface bonding, which avoided the occurrence of Mg film peeling off from the substrate. The Mg/HA coating showed a uniform degradation and kept integrity after immersion of 14 d. The Mg ions release by degradation played a crucial role in osteopromotion and antibacterial effect. Incubation of MC3T3-E1 osteoblasts with the Mg/HA coating showed significant promotion on osteogenic differentiation according to ALP activity and Alizarin Red staining assays. Meanwhile the degradation of Mg exhibited strong suppression of bacteria proliferation. It was believed that this novel Mg/HA composite layered coating could be potentially applied in further development of bio-functional hybrid orthopedic implants.展开更多
To predict sound-absorbing performance of anechoic materials,the acoustic reflection problem of a viscoelastic layer backed with periodically rib-stiffened infinite double plates is studied in this paper.The reason wh...To predict sound-absorbing performance of anechoic materials,the acoustic reflection problem of a viscoelastic layer backed with periodically rib-stiffened infinite double plates is studied in this paper.The reason why structural theories of plates are not applicable to viscoelastic plates is explained through comparing dispersion and attenuation curves of flexural waves with those of Lamb waves.As a result,(visco-)elastic theory is adopted to deal with(visco-)elastic plates,and ribs are treated by structural theories of plates.The coupling between ribs and plates are solved by Hull's method,and solution of the reflected field is obtained.The accuracy of present method is validated by comparing with the results by the structural theories of plates.The influence of a backing on the acoustic reflection of the viscoelatic layer is analyzed by computing reflection coefficients.Performances of different viscoelastic materials are evaluated by the average reflection coefficients.The computational results show that,influence of a backing on the acoustic reflection cannot be suppressed by the viscoelastic materials in low frequencies.The resonance is determined by the coupling of the fluid layer and the double plates.And ribs,which are coupled with the double plates,mainly reduce the acoustic reflection.展开更多
A novel adsorbent was developed by coating yttrium hydroxide precipitate layer on cellulose fibre. This material takes up ca. 98% of 5 μg·L 1 As(Ⅲ) and As(V) at low pH (pH〈7), while a favorable selectivi...A novel adsorbent was developed by coating yttrium hydroxide precipitate layer on cellulose fibre. This material takes up ca. 98% of 5 μg·L 1 As(Ⅲ) and As(V) at low pH (pH〈7), while a favorable selectivity for As(V) was achieved within pH 11--12. In practice, a mini-column packed with Y(OH)3 precipitate layer coated cellulose fibre particles was incorporated into a sequential injection system for selective uptake of arsenate at pH 11.5. The retained arsenate was afterwards recovered with 50μL of 0.8 mol.L l NaOH solution as eluent, followed by hydride generation in a reaction medium of 2.0 mol·L-1 HCl and 1.0% NaBH4 solution (W/V, in 0.5% NaOH) after pre-reduction of arsenate to arsenite by KI-ascorbic acid (5%, W/V), with detection by atomic fluorescence spec- trometry. Total inorganic arsenic was quantitatively taken up at pH 6.0 by following the same procedure and arsenic speciation was performed by difference. With a sample volume of 1.0 mL, an enrichment factor of 16.4 was derived with a detection limit of 17 ng.L-1 within a linear range of 0.05--2.0μg.L ]. A relative standard deviation (RSD) of 2.6% (0.5 μg·L-1, n= 11) was achieved. The procedure was validated by analyzing arsenic in a certified refer- ence material GBW 09101 (human hair), and speciation process requires no organic solvents, thus Y(OH)3 coated of inorganic arsenic in natural water samples. The entire cellulose fibre provides a green adsorbent.展开更多
Theoretical analysis of the electromagnetic field distribution in the focal region of a long metallic parabolic reflector that has its surface covered with a magnetized plasma layer is derived. The incident wave is co...Theoretical analysis of the electromagnetic field distribution in the focal region of a long metallic parabolic reflector that has its surface covered with a magnetized plasma layer is derived. The incident wave is considered to be with a general oblique incidence for both parallel and perpendicular polarizations. The electromagnetic field intensity expressions along the focal region are obtained accurately using Maslov's method. The effects of plasma thickness on the reflected and transmitted field distributions are investigated. The effects of other physi- cal parameters such as the angle of incidence and the plasma and cyclotron frequencies on the transmitted field- intensity distribution along the focal region are also studied. The results obtained by Maslov's method and Kirchhoff's approximation are found to be in a good agreement.展开更多
基金Funded by the National Natural Science Foundation of China(No.51271012)
文摘Ce-doped Zn-Al layered double hydroxide(LDH) nanocontainer was synthesized by a co-precipitation method. X-ray diffraction(XRD), Fourier transform infrared spectroscopy(FT-IR), scanning electron microscopy(SEM) and transmission electron microscopy(TEM) methods were used for the characterization of the LDH nanocontainer. The anticorrosion activity of the LDH powders embedded in a hybrid sol-gel coating on aluminum alloy 2024 was investigated by electrochemical impendence spectroscopy(EIS). The results showed that Ce(III) ions were successfully incorporated into LDHs layers. The sol-gel coating modified with Ce-doped Zn-Al LDHs exhibited higher anticorrosion behavior compared with both unmodified and Ce-undoped LDHs containing coatings, which proved the applicability of Ce-doped LDHs in delaying coating degradation and their potential application as nanocontainers of corrosion inhibitors in self-healing coatings.
基金supported by the National Natural Science Foundation of China(Nos.52277024,U20A20308)Natural Science Foundation of Heilongjiang Province(No.YQ2020E031)+3 种基金China Postdoctoral Science Foundation(Nos.2021T140166,2018M640303)Heilongjiang Province Postdoctoral Science Foundation(No.LBH-Z18099)University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province(No.UNPYSCT-2020178)the support from the China Scholarship Council(CSC)
文摘Biaxially oriented polypropylene(BOPP)is one of the most commonly used commercial capacitor films,but its upper operating temperature is below 105℃due to the sharply increased electrical conduction loss at high temperature.In this study,growing an inorganic nanoscale coating layer onto the BOPP film's surface is proposed to suppress electrical conduction loss at high temperature,as well as increase its upper operating temperature.Four kinds of inorganic coating layers that have different energy band structure and dielectric property are grown onto the both surface of BOPP films,respectively.The effect of inorganic coating layer on the high-temperature energy storage performance has been systematically investigated.The favorable coating layer materials and appropriate thickness enable the BOPP films to have a significant improvement in high-temperature energy storage performance.Specifically,when the aluminum nitride(AIN)acts as a coating layer,the AIN-BOPP-AIN sandwich-structured films possess a discharged energy density of 1.5 J cm^(-3)with an efficiency of 90%at 125℃,accompanying an outstandingly cyclic property.Both the discharged energy density and operation temperature are significantly enhanced,indicating that this efficient and facile method provides an important reference to improve the high-temperature energy storage performance of polymer-based dielectric films.
基金financial support from the National Natural Science Foundation of China(grant numbers 52275385 and U2167216)the Sichuan Province Science and Technology Support Program(grant number 2022YFG0086)。
文摘Magnesium and aluminum alloys are widely used in various industries because of their excellent properties,and their reliable connection may increase application of materials.Intermetallic compounds(IMCs)affect the joint performance of Mg/Al.In this study,AZ31 Mg alloy with/without a nickel(Ni)coating layer and 6061 Al alloy were joined by ultrasonic-assisted soldering with Sn-3.0Ag-0.5Cu(SAC)filler.The effects of the Ni coating layer on the microstructure and mechanical properties of Mg/Al joints were systematically investigated.The Ni coating layer had a significant effect on formation of the Mg_(2)Sn IMC and the mechanical properties of Mg/Al joints.The blocky Mg_(2)Sn IMC formed in the Mg/SAC/Al joints without a Ni coating layer.The content of the Mg_(2)Sn IMC increased with increasing soldering temperature,but the joint strength decreased.The joint without a Ni coating layer fractured at the blocky Mg_(2)Sn IMC in the solder,and the maximum shear strength was 32.2 MPa.By pre-plating Ni on the Mg substrate,formation of the blocky Mg_(2)Sn IMC was inhibited in the soldering temperature range 240–280℃and the joint strength increased.However,when the soldering temperature increased to 310℃,the blocky Mg_(2)Sn IMC precipitated again in the solder.Transmission electron microscopy showed that some nano-sized Mg_(2)Sn IMC and the(Cu,Ni)_(6)Sn_(5)phase formed in the Mg(Ni)/SAC/Al joint soldered at 280℃,indicating that the Ni coating layer could no longer prevent diffusion of Mg into the solder when the soldering temperature was higher than 280℃.The maximum shear strength of the Mg(Ni)/SAC/Al joint was 58.2 MPa for a soldering temperature of 280℃,which was 80.7%higher than that of the Mg/SAC/Al joint,and the joint was broken at the Mg(Ni)/SAC interface.Pre-plating Ni is a feasible way to inhibit formation of IMCs when joining dissimilar metals.
基金Project(2016YFB0700302)supported by the National Key Research and Development Program of ChinaProjects(51862030,51563020)supported by the National Natural Science Foundation of China。
文摘Spherical carbonyl iron(Fe)powders were coated with magnesioferrite(MgFe2O4)insulating coating layer and then mixed with epoxy-modified silicone resin(ESR).Soft magnetic composites(SMCs)were fabricated by compaction of the coated powders and annealing treatment.Transmission electron microscopy(TEM),scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),X-ray diffractometry(XRD)and X-ray photoelectron spectroscopy(XPS)revealed that the MgFe2O4 layer was coated on the surface of the iron powders.The magnetic properties of SMCs were determined using a vibrating sample magnetometer and an auto testing system for magnetic materials.The results showed that the SMCs prepared at 800 MPa and 550℃ exhibited a significant core loss of 167.5 W/kg at 100 kHz and 50 mT.
基金supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0074936)
文摘Mechanical properties of galvannealed (GA) steel sheet used for automotive exposed panel and predicted failure phenomenon of its coating layer were evaluated using finite element method. V-bending test was performed to understand better the fracture of coating layer of GA steel sheet during plastic deformation. Yield strength of the coating layer was calculated by using a relative difference between hardness of coating layer measured from the nano-indentation test and that of substrate. To measure shearing strength at the interface between substrate and coating layer, shearing test with two specimens attached by an adhesive was carried out. Using the mechanical properties measured, a series of finite element analyses coupled with a failure model was performed. Results reveal that the fracture of coating layer occurs in an irregular manner at the region where compressive deformation is dominant. Meanwhile, a series of vertical cracks perpendicular to material surface are observed at the tensile stressed-region. It is found that 0.26-0.28 of local equivalent plastic strain exists at the coating and substrate at the beginning of failure. The fracture of coating layer depends on ductility of the coating layer considerably as well.
基金Supported by the ITER Project of the Ministry of Science and Technology of China under Grant No 2011GB113004the Shanghai Commission of Science and Technology under Grant Nos 09DZ1206000 and 11DZ1100402the Youth Fund of Natural Science Foundation of China under Grant No 11204174
文摘MgO thin films with different textures are fabricated by the ion beam assisted (IBAD) method on the Y2O3/Al2O3 buffered C276 tape. Then a CaO2 layer is directly grown on the IBAD-MgO film by the pulsed laser deposition (PLD) method. Effects of lBAD-MgO texture, substrata temperature and thickness on the grain alignment of the CeO2 layer are investigated. Film characterization is performed by x-ray diffraction and atomic force microscopy. It is found that the orientation and texture degree of the CaO2 layer are very sensitive to the IBAD-MgO texture. By optimizing the IBAD-MgO texture, CeO2 has pure (002) orientation and excellent biaxial texture deposited in a broad substrata temperature range. In addition, the PLD-CeO2 layer has a thickness effect. Under the optimized experimental condition, the PLD-CeO2 layer has a high in-plane texture of △φ = 2.9° and a smooth surface with an rms surface roughness of less than 2nm. The critical current density Jc of a 0.4μm-thick YBCO film deposited on the CeO2 layer is 6.25 × 106 A/cm2 at 77K and a self-field.
基金Project (No. 10372058) supported by the National Natural Science Foundation of China
文摘As the coated materials are widely applied in engineering, estimation of the elastic properties of coating layers is of great practical importance. This paper presents an inversion algorithm for determining the elastic properties of coating layers from the given velocity dispersion of surface ultrasonic waves. Based on the dispersive equation of surface waves in layered half space, an objective function dependent on coating material parameters is introduced. The density and wave velocities, which make the object function minimum, are taken as the inversion results. Inverse analyses of two parameters (longitudinal and transverse velocities) and three parameters (the density, longitudinal and transverse velocities) of the coating layer were made.
文摘This paper investigates the torsion analysis of coated bars with a rectangular cross-section. Two opposite faces of a bar are coated by two isotropie layers with different materials of the original substrate that are perfectly bonded to the bar. With the Saint- Venant torsion theory, the governing equation of the problem in terms of the warping function is established and solved using the finite Fourier cosine transform. The state of stress on the cross-section, warping of the cross-section, and torsional rigidity of the bar are evaluated. Effects of thickness of the coating layers and material properties on these quantities are investigated. A set of graphs are provided that can be used to determine the coating thicknesses and material properties so as to keep the maximum von Mises stress on the cross-section below an allowable value for effective use of the coating layer.
文摘In this paper, the droplet transfer behavior of the stainless steel coated electrode with double layer coating is researched by means of those experimental methods, such as high speed camera, collecting droplet in water, surfacing on the steel plate et al. The results show that the droplet transfer indexes of coated electrode are mainly controlled by the size of droplet, which affects the transfer behavior of droplet. The distribution characteristic of the droplet size of the electrode affects the numerical relationship among droplet transfer indexes. The metallurgical process of the coated electrode with double layer coating is carried out continuously in different zones. The main reason for the coated electrode with double layer coating gaining excellent usability quality is that the droplets realize the 'quasi flux wall guided transfer pattern'.
文摘The insertion loss of acoustic radiation of damped cylindrical shell described by 3-D elasticity Navier equations under radial harmonic applied load in fluid is presented. The classical integral transform technique, potential theory and Lamè resolution are used to derive the solutions of Navier equations. The higher precision inversion computation is introduced to solve the linear equations. Comparing with acoustic radiation of one-layer cylindrical shell, the influence of thickness, mass density, dilatational wave loss factor and Young's modulus of damping material and circumferential mode number of the cylindrical shell on the insertion loss is concluded. The theoretical model in the paper can be used to deal with the arbitrary thickness and any frequency of the coated layer in dynamic problem. The conclusions may be of theoretical reference to the application of damping material to noise and vibration control of submarines and underwater pipes.
基金financially supported by the National Natural Science Foundation of China(No.51471021)。
文摘Mg alloy was protected with Mg:Al layered double hydroxide(LDH)coating intercalated with three green corrosion inhibitors(sodium benzoate,3-aminopropyltriethoxysilane and 8-hydroxyquinoline).The in-situ hydrothermal approach was adopted to intercalate corrosion inhibitors into Mg:Al LDH coating.The intercalated Mg:Al LDH coating was successfully acquired,and the crystalline structure of Mg:Al LDH coating was verified with X-ray diffraction(XRD).The organic functional groups of corrosion inhibitors were identified with the help of Fourier transform infrared spectroscopy(FTIR)and X-ray photoelectron spectroscopy(XPS).The compact and uniform morphology was confirmed by scanning electron microscopy(SEM).The electrochemical measurement revealed better corrosion resistance of corrosion inhibitorintercalated Mg:Al LDH coatings as compared to that of pristine Mg alloy.The corrosion protection mechanism of corrosion inhibitors was described and unearthed the corrosion inhibitor with the best performance.
基金Funded by the National Natural Science Foundation of China(No.61201051)
文摘The Ni nanoparticles coated with Pb(Zr,Ti)O3(PZT) were synthesized by a sol-gel method and in situ reaction. And their structure, oxidation resistance, and electromagnetic properties were investigated. The X-ray diffraction patterns(XRD) exhibited that a small amount of impure phase characterized to Ni(OH)2 was detected from the ammonia-treated Ni nanoparticles and the ammonia-treated Ni nanoparticles coated with PZT. After being pre-treated with aqueous ammonia, the PZT coating layer was more uniform and about 10 nm in thickness. The oxidation resistance of the ammonia-treated Ni nanoparticles coated with PZT, compared with that of the non-treated ones, was improved by about 66 ℃. The PZT shell layer prepared by in-situ reaction can greatly reduce the dielectric constant and improve the natural resonance loss at high frequency, so as to obtain the optimal impedance matching performance of the electromagnetic wave transmission.
基金supported by the National Natural Science Foundation of China (51802261,52072298,and 52172228)the Natural Science Foundation of Shaanxi (2019GHJD-13 and 2020JC-41)+2 种基金the Natural Science Basic Research Plan in Shaanxi province of China (2019JLP-04)Xi'an Science and Technology Project of China (2019219714SYS012CG034)the foundation of National Key Laboratory (6142808200202),PR China.
文摘The high-rate cyclability of Li-rich Mn-based oxide(LMO)is highly limited by the electrochemical polarization resulting from the slow kinetic of the Li2MnO3 phase.Herein,the Prussian blue(PB)coating layer with specific redox potential is introduced as a functionalized interface to overcome the side effect and the escaping of O on the surface of LMO,especially its poor rate capability.In detail,the PB layer can restrict the large polarization of LMO by sharing overloaded current at a high rate due to the synchronous redox of PB and LMO.Consequently,an enhanced high rate performance with capacity retention of 87.8%over 300 cycles is obtained,which is superior to 50.5%of the pristine electrode.Such strategies on the high-rate cyclability of Li-rich Mn-based oxide compatible with good low-rate performances may attract great attention for pursuing durable performances.
文摘In order to improve the adhesion of the middle frequency magnetic sputtered zirconium coating on a polyurethane film,an anode layer source was used to pretreat the polyurethane film with nitrogen and oxygen ions.SEMs and AFM roughness profiles of treated samples and the contrast groups were obtained.Besides,XPS survey spectrums and high resolution spectrums were also investigated.The adhesion test revealed that ion bombardment could improve the adhesion to the polyurethane coating substrate.A better etching result of oxygen ions versus nitrogen predicts a higher bonding strength of zirconium coating on polyurethane and,indeed,the highest bonding strengths are for oxygen ion bombardment upto 13.3 MPa.As demonstrated in X-ray photoelectron spectroscopy,the oxygen ion also helps to introduce more active groups,and,therefore,it achieves a high value of adhesion strength.
基金The authors greatly acknowledge the financial support from the National Natural Science Foundation of China (Nos. 51472173 and 51522208), the Natural Science Foundation of Jiangsu Province (Nos. BK20140302 and SBK2015010320), the Priority Academic Program Development of Jiangsu Higher Education Institutions and Collaborative Innovation Center of Suzhou Nano Science and Technology.
文摘Nanostructured metal sulfides are potential electrode materials for sodium-ion batteries; however, they typically suffer from very poor cycling stability due to large volume changes and dissolution of discharge products. Herein we propose a rational material design strategy for sulfide-based materials to address these problems. Taking nickel sulfide (NiSx) as an example, we demonstrated that its electrochemical performance can be dramatically improved by confining the NiSx nanoparticles in a percolating conductive carbon nanotube network, and stabilizing them with an ultrathin carbon coating layer. The carbon layer serves as a physical barrier to alleviate the effects of both the volume change and dissolution of active materials. The hybrid material exhibited a large reversible specific capacity of 〉500 mAh/g and excellent cycling stability over 200 cycles. Given the traditionally problematic nature of NiSx as a battery anode material, we believe that the observed high performance reported here reflects the effectiveness of our material design strategy.
基金We gratefully acknowledge supports from the National Key Research and Development Program of China(2016YFC1100401)National Natural Science Foundation of China(22032006,52075522)+1 种基金F.Zhou thanks to the project support of the Key Research Program of the Chinese Academy of Sciences(XDPB2404)S.Ma thanks to the support by Youth Innovation Promotion Association(2019411).
文摘Silicone elastomers-based materials have been extensively involved in the field of biomedical devices,while their use is extremely restricted due to the poor surface lubricity and inherent hydrophobicity.This paper describes a novel strategy for generating a robust layered soft matter lubrication coating on the surface of the polydimethylsiloxane(PDMS)silicone elastomer,by entangling thick polyzwitterionic polyelectrolyte brush of poly(sulfobetaine methacrylate)(PSBMA)into the sub-surface of the initiator-embedded stiff hydrogel coating layer of P(AAm-co-AA-co-HEMA-Br)/Fe,to achieve a unified low friction and high load-bearing properties.Meanwhile,the stiff hydrogel layer with controllable thickness is covalently anchored on the surface of PDMS by adding iron powder to provide catalytic sites through surface catalytically initiated radical polymerization(SCIRP)method and provides high load-bearing capacity,while the topmost brush/hydrogel composite layer is highly effective for aqueous lubrication.Their synergy effects are capable of attaining low friction coefficient(COFs)under wide range of loaded condition in water environment with steel ball as sliding pair.Furthermore,the influence of mechanical modulus of the stiff hydrogel layer on the lubrication performance of layered coating is investigated,for which the COF is the lowest only when the modulus of the stiff hydrogel layer well matches the PDMS substrate.Surprisingly,the COF of the modified PDMS could remain low friction(COF<0.05)stably after encountering 50,000 sliding cycles under 10 N load.Finally,the surface wear characterizations prove the robustness of the layered lubricating coating.This work provides a new route for engineering lubricious silicon elastomer with low friction,high load-bearing capacity,and considerable durability.
基金supported by the National Natural Science Foundation of China(Grant No.31500777)the Research Start-up Funds of DGUT(Grant No.GC300501-082)the Characteristic Innovation Project of University in Guangdong(Grant No.2020KTSCX148)。
文摘Magnesium was considered as a revolutionary biodegradable implant material for orthopedic application. Concerning the weakness of intrinsic strength and corrosion behavior, a novel strategy of Mg/metal hybrid system was proposed for extension of orthopedic application, especially at load-bearing site. In this work, an Mg and HA composite layered coating was constructed on titanium by means of chemical conversion and vapor deposition. The HA transition interlayer was introduced to enhance the bonding between Mg film and Ti substrate. Compared with the bare Mg coating, the Mg/HA coating presented good interface bonding, which avoided the occurrence of Mg film peeling off from the substrate. The Mg/HA coating showed a uniform degradation and kept integrity after immersion of 14 d. The Mg ions release by degradation played a crucial role in osteopromotion and antibacterial effect. Incubation of MC3T3-E1 osteoblasts with the Mg/HA coating showed significant promotion on osteogenic differentiation according to ALP activity and Alizarin Red staining assays. Meanwhile the degradation of Mg exhibited strong suppression of bacteria proliferation. It was believed that this novel Mg/HA composite layered coating could be potentially applied in further development of bio-functional hybrid orthopedic implants.
基金supported by the Research Funds(9140A10040813CB04001)the Natural Science Foundation of Shandong Province(2013ZRF01039)
文摘To predict sound-absorbing performance of anechoic materials,the acoustic reflection problem of a viscoelastic layer backed with periodically rib-stiffened infinite double plates is studied in this paper.The reason why structural theories of plates are not applicable to viscoelastic plates is explained through comparing dispersion and attenuation curves of flexural waves with those of Lamb waves.As a result,(visco-)elastic theory is adopted to deal with(visco-)elastic plates,and ribs are treated by structural theories of plates.The coupling between ribs and plates are solved by Hull's method,and solution of the reflected field is obtained.The accuracy of present method is validated by comparing with the results by the structural theories of plates.The influence of a backing on the acoustic reflection of the viscoelatic layer is analyzed by computing reflection coefficients.Performances of different viscoelastic materials are evaluated by the average reflection coefficients.The computational results show that,influence of a backing on the acoustic reflection cannot be suppressed by the viscoelastic materials in low frequencies.The resonance is determined by the coupling of the fluid layer and the double plates.And ribs,which are coupled with the double plates,mainly reduce the acoustic reflection.
文摘A novel adsorbent was developed by coating yttrium hydroxide precipitate layer on cellulose fibre. This material takes up ca. 98% of 5 μg·L 1 As(Ⅲ) and As(V) at low pH (pH〈7), while a favorable selectivity for As(V) was achieved within pH 11--12. In practice, a mini-column packed with Y(OH)3 precipitate layer coated cellulose fibre particles was incorporated into a sequential injection system for selective uptake of arsenate at pH 11.5. The retained arsenate was afterwards recovered with 50μL of 0.8 mol.L l NaOH solution as eluent, followed by hydride generation in a reaction medium of 2.0 mol·L-1 HCl and 1.0% NaBH4 solution (W/V, in 0.5% NaOH) after pre-reduction of arsenate to arsenite by KI-ascorbic acid (5%, W/V), with detection by atomic fluorescence spec- trometry. Total inorganic arsenic was quantitatively taken up at pH 6.0 by following the same procedure and arsenic speciation was performed by difference. With a sample volume of 1.0 mL, an enrichment factor of 16.4 was derived with a detection limit of 17 ng.L-1 within a linear range of 0.05--2.0μg.L ]. A relative standard deviation (RSD) of 2.6% (0.5 μg·L-1, n= 11) was achieved. The procedure was validated by analyzing arsenic in a certified refer- ence material GBW 09101 (human hair), and speciation process requires no organic solvents, thus Y(OH)3 coated of inorganic arsenic in natural water samples. The entire cellulose fibre provides a green adsorbent.
基金the Deanship of Scientific Research at King Saud University for its funding of this work through the Research Group Project No. RG-1436-001
文摘Theoretical analysis of the electromagnetic field distribution in the focal region of a long metallic parabolic reflector that has its surface covered with a magnetized plasma layer is derived. The incident wave is considered to be with a general oblique incidence for both parallel and perpendicular polarizations. The electromagnetic field intensity expressions along the focal region are obtained accurately using Maslov's method. The effects of plasma thickness on the reflected and transmitted field distributions are investigated. The effects of other physi- cal parameters such as the angle of incidence and the plasma and cyclotron frequencies on the transmitted field- intensity distribution along the focal region are also studied. The results obtained by Maslov's method and Kirchhoff's approximation are found to be in a good agreement.